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THE LIFTING OF ELLIPTIC MODULAR FORMS
TO HILBERT MODULAR FORMS
AND PETERSSON INNER PRODUCTS

By

Hisashi Koyma

Introduction

Let K be a totally real number field of degree / and discriminant ¢ which is
a cyclic extension of Q and satisfies certain conditions and I'x the full Hilbert
modular group over K. We denote by S;(I'x) the space of Hilbert cusp forms
of weight k with respect to I'x. Put Si(SLy(Z)) = Sk(I'q). Furthemore, we set
Sk = Sk(SL2(Z)) ®, Sk(I'o(q),x), where x is the non-trivial primitive characters
attached to K and Si(To(g),y) is the space of all cusp forms of weight &, level ¢
and character .

Applying Selberg-Eichler trace formula, Saito [4] proved the existence of a
linear mapping W, of Sy to Si(I'k) satisfying the following conditions:

Yi(f) is a Hecke eigen form for every primitive form f in Sy and the
Fourier coefficient Cy(*P) of Wi (f) at any prime ideal P is determined by those
of f at prime p satisfying B|p.

The first purpose of this note is to express explicitly the Fourier coefficients
of Wi (f) in terms of those of f for an arbitrary f in Si. Kohnen [2] had proved
such relations of Fourier coefficients in the case of Ikeda lifting of Siegel modular
forms of even degree.

Our second purpose is to determine a relation between the Petersson norm
(), Wi(f))> and that {f,f> of f. Such relations of another liftings of
modular forms were discussed by several authors [1], [3] and [10] in the case
where the lifts are constructed by kernel functions. Our proof is based only on a
relation between the Rankin’s convolution of L-functions and the Petersson inner
products and the results in [8]. Next we explain contents of each section in precise
form.
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Section 0 is a preliminary section. In Section 1, we shall express explicitly
the Fourier coefficients Cr(2) of Wi (f) at any ideal U in terms of those of f
for every f in S;. From this we may reformulate the lifting in terms of linear
relations among Fourier coefficients of modular forms.

In Section 2, using the Rankin method of Dirichlet series, we shall deduce
Ve(/), Yi (/)2

S

of product of certain zeta functions attached to f at s =k for every eigen form

that the ratio of Petersson norms is equal to the critical value

f € Sk. As a corollary of it, using a theorem in Strum [9], we may deduce that the
(), W)
S
We mention that Zagier [10] proved the algebraicity properties of the

ratio is an algebraic number for f € Si(SL»(Z)) and [ # 2.

Petersson norms in the case where / =2 and f € Si(To(g), ).

§0 Notation and Preliminaries

We denote by Z, Q, R and C the ring of rational integers, the rational
number field, the real number field and the complex number field, respectively.
For an associative commutative ring R with identity element we denote by
M, »(R) the set of m x n matrices entries in R. We set M,(R) = M, ,(R) and
R"= M, ,(R). Put SL,(R) ={g e M,(R)|detg =1} and GL,(R) = {g e M,(R)|
det g € R*}, where R* denotes the group of all invertible elements of R. Let
9 ={zeC|(z) >0} be the complex upper half plane.

§1 The Lifting of Modular Forms to Hilbert Modular Forms

For a totally real number ficld K of degree /, we denote by Ok, d, dr, E the
ring of integers, the different, the discriminant and the unit group, respectively.
We consider the set of the isomorphims 7; (1 £i</) of K into R. For € K,
we put o) = 7;(e) (1 £i < ). Introduce a Hilbert modular group T'x defined by

b
FK:{y: (i d)eGLz(K) a,deoK,bebl,ceb,detyeE+},

where ET ={¢e E|e) >0 (1 £i<I)}. The group I'x acts on $’ by

M ) 0 )
o ] . a‘\’zy +b av’zy +b ]
z= (Zla te 7Z/) € 5 - y(Z) - <c<1>21 +d<1>7 . ,C<I>Z] +d(/)> € 5
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b
d) e I'k. For a positive integer k, let S;(I'x) be the space

of all Hilbert cusp forms F(z,...,21) = Y., o, ;0 Ci€”™* of weight k with
respect to ['x such that

a
for every y = (
c

1
. : b
Fy(2) = [z +d D) F(z) £ —(“ T and
(y(2)) ,~:1(C zi+d\V)"F(z) for every y . g )cTxan

z=(z1,...,2/) € 9’ where iz = imzl + - -%(l)z;. Here we impose the fol-
lowing conditions on K:

(1-1) I =[K: Q] is prime, the class number of K is one, K is a
tamely ramified cyclic extenstion of Q and [E,E*] =2/

From those conditions we see that the conductor of K/Q is equal to a prime gq.
Furthermore we assume that

(1-2) (I,q) =1.

By those assumptions, every form F(z) of Si(I'x) has the following Fourier
expansion

F(Zla s 721) = Z C(QI) Z eZm’lriz’
A A€ 0k, A>»0,A=(2)

where 2 runs over all integral ideals of K. We call C() the Fourier coeffcient of
F at . For two F, G € S(I'x), we define the Petersson inner product {F, G) by

/ k
F(z)G(z) (H y<">> dz,
i=1

where z = (z1,...,2) €9, zi=xD + /=1y (1 <i <) and dz = []
For a positive integer M, put

(F,G> = vol(Tx\$") ™! JF o

{ dx Dy
O

To(M) = { <‘C’ 2) € SLy(Z)

¢=0 (mod M)}

Let  be a Dirichlet character modulo M. For a positive integer k, we denote
by Sk(To(M), ) the set of all cusp forms f(z) =7, c(n)e*™ such that

F(EE0) = v+ @) for every = (41 )eroan,
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For two f,g € Sp(To(M),{), we define the Petersson inner product {f,g)> by

(f,g> =vol(To(M)\$) ™ f@)g(z)y* dz,

JFO(M)\SE)

dxd
where ze 9, z=x++V—1ly and dz = );zy

[4, Theorem 3] proved the following theorem.

THEOREM 1.1. Let k be an even integer such that k >3 and y a primitive
character modulo q attached to the abelian extension K of Q. Then, there exist
normalized Hecke eigen forms Fy,...,Fy (resp. F{,...,F}) in S(T'x) for a basis
of consisting of normalized eigen form fi,..., fa (resp. f{,...,[f]) in Sk(SLy(Z))
(resp. Sk(To(q),x)) such that

(1-3) Zc, ¥ (1 <i<d)

(resp fl(z) = Zc,’ e (1<isd ))

are a basis of Sk(SLy(Z)) (resp. Sk(To(q),x)) and the Fourier coefficient of F;
(resp. F/) at every B ((B,q) =1) is given by

felp) if N() = p for some prime p,
(1-4)  G¥) = {c,- p’) —pk’lci(pl/pz) if N(B)= p! for some prime p.

(
() if N(B)=p for some prime p, )
cl(ph) —x(p)p*=tel(p'/p?) if N(B) = p' for some prime p.

REMARK. This theorem is a part of Saito [4, Theorem 3]. In fact, he showed
that Fi,..., Fy; are linearly independent (resp. Fj,..., F; generate a vector space
of dimension 1d’) and characterized the subspace of Si(I'x) generated by
Yi(fi) 1=i=<d) and ¥i(f/) (1=i=<d’) as the space of Si(I'x) generated
by eigen forms which are invariant under the action of Gal/(K/Q), where
fi (1=i<d') are all primitive forms in C—Bx Sk(To(q),x), x runs over all
primitive characters of the conductor ¢ associated with the abelian extension
K of Q and Wi : Si(SLy(Z)) @, Sk(To(q),x) = Sk(I'x) is a linear mapping
given by Fi = Wi (/i) and F/ =¥, (f/) (1Sisd, 1 <j<d’). Let {){i}le be the
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Dirichlet characters modulo ¢ determined by the cyclic extension K over Q,
where y;(n) =1 for every ne€ Z. For convenience, we write Xx as {){i}le. Put

(1) Lisf) = f G, Lis,fizy) = ixm)cl«(n)n“'
and

L(s, F)) = ZH: GONQ)™ (1 <i<d)
Put

8

L(s, /) = Z cjmn™,  L(s,(f)),) =Y cimn™, Lis,f,x) =Y _x(m)ej(mn™

n=1 n=1 n=1

for every ye Xx and L(s,F/) =) o C/(A)N(A)™ (1 £i<d’). Then the fol-
lowing proposition is given in [5].

ProposITION 1.2, Under the same notation in Theorem 1.1, let B be the
prime ideal in K such that Blq. Then

/

(1'6) Cl(EB) :Cl(q)v L(S,F,) :HL(Svﬁvxh) (1 éléd)a
h=1

(1-7) C/(B) = ci(q) + ¢{(q)

and

L(s, F/) = L(s, /i) L(s. (f),) II L(s, fix) (1sisd),

1eXg ' #FLy #
where (f!),(z) = Y2, ¢/(n)e*™™.

For any integral ideal 2 and positive integer d such that d | N(2), a function
&y (d; ) (resp. ¢, (d;N)) is determined by the relations:

(1-8) If A= ‘1[1912 ((911,912) = 1), d= dldz (dl |N(911)7d2‘N(912)), then

$i(dida; N) = dy(dy; Wy (do; N) (vesp. ¢ (dida; N) = i (dy; Wy (o3 ),



166 Hisashi Korma

(1-9) If A =P* and N(B) = p' for some prime ideal P and some

prime p, then

i (d;B*) = ¢i(d;B*)  and
(—1)'dk! ifl;é2,% e S for some i € {0, 1},
(=D)'dkt if =2, 4 € S for some i € {0,1} and d* # N(BH),

LD gkt [ =2, 42 = N(7),
0 otherwise,

by (d; D) =

with S = {N(2)|an ideal A’ such that A’ > B*},

If A =P* and N (B) = p for some prime ideal P and some prime p and
(*B,q) =1, then

4 (d; D7) = ¢(d; D) and ¢k(d;$z){1 ifd=1,
0 otherwise

and

If A= $* and N(P) =g, then ¢ (d; P") = {1) lf: ~ 1 and g9 =
d*='. We may deduce the following theorem. otherwise

THEOREM 1.3.  Let f(z) = .77, c(n)e*™ be an element of Sy(SLa(Z)) (resp.

Si(To(q),x)). Then the Fourier coefficient Cr(N) of Wi (f) at any integral ideal
A equals

(1-10) Cr() = Y $i(d; We(N(W)/d?)
d|N()
(resp. =y ¢,;(d;91)c(zv(m)/d2)).
d|N ()

ProoF. We assume that f(z) is a normalized Hecke eigen form in
Sk(SLy(Z)). We put

(1-11) L(s, f) = H(l —c(p)p + pk—l—Zs)fl

p
= [T = app™2p=) (1 — o p 2=
p
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and

Ls, () = [J(1 = CBNEB) ™ + N(p) 2!

R

=TT = aqpN(B) EDPN(R) ) (1 — o N () V2N () 7))
B

The following is a key relation for our later arguments:

1 -1 _
_{ocp or ot if N(*) = p’,
ap =

o, or ot if N(P) is prime.

(1-12)

First we treat the case where N() = p’. To prove (1-10), we need the Laurent
polynomial defined by

Yn(X)=LX:IH=x*"+x*"*2+---+x”*2+x".
X=X
From (1-11), we have
S oy ! _ N7 (=2 n
(13 32l = ey = 2 P T,

which implies that
o(p") = p Y (o),
By our definition, we may check that
(1-14) () = p VPN (Vi) = Yia(o)) = N(B) T (o - ),
which yields (1-12). Similarly, from (1-11), we obtain
Cr(BY) = (N(B) ) Y (o).

If A is even, we have

Yilow) = Vi(ah) = - (o7 4l 1 1.

Since x "+ x" = Y;(x) — Yj_a2(x) (h=2), we find that

3/2—1

(1-15) Y (o) = Z (Y20 (o) = Yig-2i)-2(0p)) + 1.
i=0
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Similarly, if 4 is odd, we conclude that
(2=1)/2

Y (ag) = Z (Y20 (%) = Yi(-2i)-2(2))-
i=0

Thus we may deduce that

G(B) = D dld;Be(N(P)/d?).
d|IN(B*)
We may also verify the case where N(B) is a prime. Next we assume that

f1(z) = 322, ¢'(n)e?™™ is a normalized Hecke eigen form in Sx(I'o(q), ). We put

(1-16) Lis, /) =T[0= ¢ (p)p™ +2(p)p*" )" and
P

L(S, ‘Pk(f,)) = H(l — Cf«(‘B)N(%)_S +N(§B)k—l—25')—l
P

= JJ((1 = apN () V2N (EB) ) (1 — o' N () VAN () ))
B

Furthermore, we define two complex numbers o, and 8, by

(1-17) {oc,, + B, = (p* V)7 (p) and @, = x(p) if p#4q,
o= (p* V)7 e (p) and g, = (p*2) () if p=4g.

We can derive the following relation

1-18
(1-18) a, or B, if N(P) is prime.

! I _ 1
s :{ocp or f, if N(*B)=p’,
First we treat the case where N(¥) = p’. Define a Laurent polynomial Y,(x, )
by

n+l1 _ . n+l

X

(1-19) Y, (x, ) = 2

X—=Y
Then we obtain

c'(p") = p Y (04, ).

From the definition, we have
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(1-20) Cr(B) = ' (p') = x(p)p* ' (p')
= p Iy (@, B,) = 2(P) Yi-2(2p, B,))-
Now we can check that
Yi(op, B,) = oy + By + 0B, 0y >y B+ 4+ By
= o)+ By + x(p) Yi-a(9p, B,).

Since Cy/(‘B) = N(P) D12y, (ocgp,o@l), we get our desired relation (1-18). We
see that

(121)  Cr(B*) = (N(®) )Y, (o, 05)
= (N®) 2 (o) + o) By -+ (@) (B + (B
If 2|J, then we have
Yo, ') = Yi(oyh, By7) + (2p,) V(g2 B572) + (,8,)

x Yl(aé().—4)7ﬂl(/l—4)) Foeeed (apﬂp)wz_m Yl(ocjl,ﬁlf’) L1

P
2/2-1
— Z(}l)(/FZz +ﬁ p, 21)_|_1
i=0
2/2-1
= > (Yig-20(op, B,) = Yig-ai-2(p, B,)) +
i=0
If 2 44, we have
(2-1)/2 _ .
Vil o) = Y (7 4+ g4
i=0
(—1)/2
Y/A 2i) apvﬂp) Yl(172i)72(apaﬂp))'
i=0

Consequently, we may deduce
= D Gld, Be(N(RH) /).
AN (P

We may also verify the case where N(‘B) is a prime. This proves our assertion.
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§2 The Petersson Inner Product of the Lifting

Let f(z) = >, ¢(n)e*™ be a normalized Hecke eigen form in Si(SLy(Z)).

n=1

Define the Dirichlet series D(s, f,y') b
(2'1) D(S’f7)(/)
= H (1 =2 (p)a2p* (1 = 1 (P, 0" )1 = X (p)Brp* 7))
Ls—k+1,7)""L(2s — 2k + 2, (') )i}(’(n)c(n)zn_s
n=1

for every y' € Xk, where L(*,y) means the Dirichlet series attached to a Dirichlet
character  and o, and f, are given by

= Zc = [Tt = ap®=2p=) (1 = g, p* D72~

P

Then the following theorem was proved by Shimura [6, Theorem 1 and 2].

THEOREM 2.1. Set

H(s, f,2") = a>0(s/2)T((s + 1)/2)0((s = k +2 = 40)/2)D(s, . 1),

0 if y/(-1)=1,
1 if y/'(—1)=-1.
omorphic function on the whole s-plane, which is holomorphic except for possible

where g —{ Then, H(s, f,x') can be continued to a mer-

simple poles at s =k and s =k — 1. Moreover, the following is equivalent:
(2-2) H(s, f,x') has a simple pole at s = k.
y' is a non-trivial character of order 2 and
J fay*t dxdy # 0,
Lo(r)\H

where r is the conductor of y' and g(z) =" x'(n)c(n)e* ™.

This theorem is proved in a more general form in [6]. Put F = W, (f) for a
normalized Hecke eigenform f in S;. Define the function L(s, F) by

(23) L(s,F) = 3 GG N ()™,
A
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We see that L(s, F) = D(s, F,,F), where D(s,F,, F) is the function given in [8,
p. 661]. By [7, Lemma 1], we have

(2-4) L(s,F) = (g(25 — 2k + 2)71
1
1;[ (1 - OC«BO(_QBN(Q/B)/C*lﬁv)(l 7 ai‘\l(x_‘BN(SB)kilix)
1
(1= g !N ()7 (1 = aglam = N (B) )

X

b

where (g means the Dedekind zeta function of K and ag is given by

L(s,F) = [J(1 = GBINB) ™ + N(9)2)7!
P

=TT = aqpN () 2N (R) ) (1 — o N () VPN () )
P
We may derive the following.

PROPOSITION 2.2.  Under the above notation, for a normalized Hecke eignform
€ SKSLo(Z)) (resp. f" € Sk(To(q),7)), one has

(2-5) L(s,F) = (x(s —k + Dig(2s =2k +2)"" T D(s, /.2

1 e Xk

(resp. = (x(2s —2k+2)7" H H((l —){/(p)|06p|2pk13)(1 _X/(p)ogpkls>

1eXg p %p

(1 —x’(p)gpk‘l‘s)(l —x’(p)lapzpk‘l‘s)V),

%p

where — f'(z) =>7  c'(n)e*™™  and S (m)n~ = (1 - otqc](k’wzq’s)*1 .

n=1

T1, ., (1 = a,p®=02p=s)(1 — g, pk=D/2p=s)) 71,

Proor. Let f be a Hecke eigen form in S;(SLy(Z)). Then we see that the
Fourier coefficients of W (f) are all real number. Therefore oy = oy for all prime
ideals ¥. We assume that N() = p/. We see that

(2-6) (1= g N(R) " 7)(1 — g N(B) 7)™

= (1= (2P 1)) (1 = (o521 ) )7
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Since {7'(p)|x' € Xx.x' # 1} = {¢| ' = 1,{ # 1}, the right hand side of (2-6) is
equal to

(2-7) [T (=2 (o)1 = £ (p)et, "))

= Q’K(S_k_k 1);1 H D[?(Svfaxl)v

x'eXk

where D, (s, f, ') and k(s — k + 1), are p-factors of D(s, f,x') and (g(s — k + 1),
respectively. Next consider the case where p = T, ---B;. Then

(1= oy N(B) ) (1 = og?N(B)T7)) 7 = (1= e p™ 1)(1 = o, 2p 1))

Since y'(p) =1 for every y' € Xk, we find that

(2-8) TTr = o N(B) 1) (1 — 2N () 7))
i=1
= [ (A= @)y p )1 = 1 (p)o, 2p* )7
=lk(s—k+1)," [ Dpls.f. 7).

1€ Xk

Thus we conclude the proof in this case. We can also treat the case where

f€8k(To(q),%) in the same manner. So we check only the case where g = ',

1
B (1 — O(sBoc_sBN(‘B)kilf‘y)(l _ Oﬁila_q}N(‘B)kili‘y)
1
(1 — o TN (B) ) (1 — oo IV () 1)
1
pexe (1= 2/ (@) Pg* =) (1 = 1 (q)er, " otgg* 1)
1
(1 — 1" (@)ong gL g% 1=5) (1 — 1 (q) |y | gk-1- &)'

(k(2s—2k+2),

X

=(x(2s =2k +2),"

X

This proves our assertion.

We may deduce the following theorem.
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THEOREM 2.3.  Suppose that f =Y.~ ¢(n)e*™ be a normalized Hecke eigen
form in Sp(SLa(Z)) (resp. Sp(To(q),y)). Then

(2-9)  <CPr(f), () = ((4r) (ke — D)) Ndp|VPET L ERKSL S

< I pkraey) "

2 €eXk, ' #1
(resp. = 2"((4n) (k= DY) [ET : EIRKS /)Ek(2)7 Dlk, f)),
where E* = {*|¢ € E},

LV | O | (P A [CEPADE

i eXg—{1} p %p
B i AP

(120 Z 1) 1= 2 oy )
P

and Rg is the regulator of K.

Proor. Let f be a normalized Hecke eigen form of Si(SL»(Z)). By [6,
Theorem 2], we see that D(s, f,1) is holomorphic at s = k. Furthermore, by
(8, Proposition 4.13], the Dirichlet series )., ¢(n)®n™* has a simple pole at
s=k. It follows from (2.1) that D(k, f,1) is non vanishing. By virtue of [6,
Theorem 2], D(s, f,y') is holomorphic at s =k in the case where / # 2. When
[ =2, we assume that D(s, f, ') has a simple pole at s = k. Then by Proposition
2.2, L(s,F) has a pole of order 2 at s=k. This contradicts the assertion in
[8, Proposition 4.13]. Therefore D(s,f,x’) is holomorphic at s = k. Using [8,
Proposition 4.13], we have

lim(s — k)L(s, F) = 2! (4m)" T (k) 'Rk [ET : E*]'<F, F).

s—k

By Proposition 2.2, we obtain

lim(s — K)L(s, F) = lim(s — k){x(s =k + D)7 [ Dk S

s—k SeX

=2!(Rg/2d|"*)ck )" 1] Dk, f.2")

1 e Xk

=21 Reld| Pt T Dk, S 7).

1 €Xk

Now by (2-2) and [8, Proposition 4.13], we have
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Dik,f.1) = lim {(s—k + 1) '¢(2s — 2k +2) ic(mzn—f

= (@) lim 7= k)C(; eyt i ()’
= {2) @) TR S 1.
Therefore we deduce
(2-9) CF Py = ((dm) (k= D)) 2B : B/, 1
x [ DplesfL@x)™"
1 eXk, ' #1

We obtain the proof of the case where f € Sx(SLy(Z)). Similarly, we may derive
the proof of the case where f belongs to Si(I'¢(g), ). This completes our proof.

By virtue of Strum [9, Theorem 1], we may deduce the following corollary.

COROLLARY. Let f be an element of Si(SLy(Z)). Then D(s, f,y') is non
vanishing at s = k for every y' € Xx — {1}. Moreover, the value of (¥ (f), Vi (f))-
S, f>_1 is an algebraic number for 1> 2.

PrOOF. By [9, Theorem 1], we have the value of 7% 2D(k, f, ) {f, f>!
is an algebraic number for y' € Xx — {1}. On the other hand, the value of
L(2,7")n~? is an algebraic number for 7’ € Xx — {1}. Therefore, by Theorem 2.3,
we obtain our assertion.

We mention that the author does not know whether Corollary is ture in the
case where / = 2.
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