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SUBCOMPLEXES OF BOX COMPLEXES OF GRAPHS

By

Akira Kamibeppu

Abstract. The box complex BðGÞ of a graph G is a simplicial Z2-

complex defined by J. Matoušek and G. M. Ziegler in [4]. They

proved that wðGÞb indZ2
ðkBðGÞkÞ þ 2, where wðGÞ is the chromatic

number of G and indZ2
ðkBðGÞkÞ is the Z2-index of BðGÞ. In this

paper, to study topology of box complexes, for the union GUH of

two graphs G and H, we compare BðGUHÞ with its subcomplex

BðGÞUBðHÞ. We give a su‰cient condition on G and H so that

BðGUHÞ ¼ BðGÞUBðHÞ and BðGVHÞ ¼ BðGÞVBðHÞ hold. More-

over, under that condition, we show

maxfwðGÞ; wðHÞga wðGUHÞamaxfwðGÞ þ lH ; wðHÞg;

where lH is the number defined in Definition 3.8. Also we prove

indZ2
ðkBðGUHÞkÞ ¼ maxfindZ2

ðkBðGÞkÞ; indZ2
ðkBðHÞkÞg

if maxfindZ2
ðkBðGÞkÞ; indZ2

ðkBðHÞkÞgb 1.

The complex BðGÞ of a graph G contains a 1-dimensional free

Z2-subcomplex G of BðGÞ, defined in [2]. As a supplement to [2], we

show that for a connected graph G, BðGÞ is disconnected if and only

if G is disconnected if and only if G contains no cycles of odd length,

or equivalently, G is bipartite.

1. Introduction

In this paper, we assume that all graphs are finite, simple, undirected and

connected. The box complex BðGÞ of a graph G is introduced in [4] by J.

Matoušek and G. M. Ziegler as one of applications of topological methods to
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obtain a lower bound for the chromatic number wðGÞ of G. The following

theorem, in [4], indicates that a lower bound for wðGÞ is obtained from the

topology of the complex BðGÞ of G.

Theorem 1.1 ([4], p. 81). For any graph G, we have

wðGÞb indZ2
ðkBðGÞkÞ þ 2: ð1:1Þ

This motivates us to study the relation between topology of box complexes

and combinatorics of graphs. In order to obtain a lower bound for wðGÞ by the

inequality (1.1), we need to know the Z2-index of kBðGÞk, while it is not easy in

general to obtain topological information of BðGÞ from the definition except for a

few examples: complete graphs, paths and cycles etc.

To study the complex kBðGÞk, we decompose G into subgraphs G1; . . . ;Gk

and compare BðGÞ with 6k

i¼1
BðGiÞ. It is easy to see that BðGÞ contains

6k

i¼1
BðGiÞ as a subcomplex. One cannot hope that BðGÞ ¼ 6k

i¼1
BðGiÞ and for

i; j ¼ 1; . . . ; k, BðGiÞVBðGjÞ ¼ BðGi VGjÞ in general. We confine ourselves to the

case k ¼ 2. For the union GUH of two graphs G and H, we give a su‰cient

condition under which BðGUHÞ ¼ BðGÞUBðHÞ and BðGÞVBðHÞ ¼ BðGVHÞ
hold (see Theorem 3.3). For such a graph GUH, we obtain the following es-

timate of the chromatic number wðGUHÞ in Theorem 3.9:

maxfwðGÞ; wðHÞga wðGUHÞamaxfwðGÞ þ lH ; wðHÞg; ð1:2Þ

where lH is the number defined in Definition 3.8. In view of (1.1) and (1.2), it is

natural to seek an estimate of indZ2
ðkBðGUHÞkÞ. We prove

indZ2
ðkBðGUHÞkÞ ¼ maxfindZ2

ðkBðGÞkÞ; indZ2
ðkBðHÞkÞg ð1:3Þ

if maxfindZ2
ðkBðGÞkÞ; indZ2

ðkBðHÞkÞgb 1 (see Theorem 3.10). The inequalities

(1.1), (1.2) and the equality (1.3) imply that, for the union GUH satisfying the

condition of Theorem 3.3, the lower bound indZ2
ðkBðGUHÞkÞ þ 2 is not better

than the trivial one maxfwðGÞ; wðHÞg for wðGUHÞ.
Appendix is a supplement to section 4 of [2]. In [2], a 1-dimensional free

Z2-complex G is defined as a subcomplex of BðGÞ. It is proved that a graph G

contains no 4-cycles if and only if kGk is a strong Z2-deformation retract of

kBðGÞk ([2], Theorem 4.3). This indicates indZ2
ðkBðGÞkÞ ¼ indZ2

ðkGkÞa 1 when

G contains no 4-cycles. In appendix, we investigate the relation between BðGÞ
and G for a general graph G. It turns out that G is a natural double covering of

G. We prove that BðGÞ is disconnected if and only if G is disconnected (see

Theorem 4.2) if and only if G contains no cycles of odd length, or equivalently,

G is bipartite (see [1], Theorem 1.6.1).
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2. Preliminaries

First, we recall some basic notions on graphs, abstract simplicial complexes,

and the Z2-index of a Z2-space. We follow [1] about the standard notation in

graph theory.

A graph is a pair G ¼ ðVðGÞ;EðGÞÞ, where VðGÞ is a finite set and EðGÞ is a
family of 2-element subsets of VðGÞ. Under this definition, every graph is simple,

that is, it has no loops and multiple edges. Elements of VðGÞ are called vertices

of G and those of EðGÞ are called edges of G. Two vertices u and v of G are

adjacent, if fu; vg is an edge of G. An edge fu; vg of a graph is simply denoted by

uv or vu. A subset A of VðGÞ is said to be independent in G, if no two vertices of

A are adjacent in G. A vertex of G which is only adjacent to one vertex of G is

called an endvertex. For two graphs G and H, the union GUH is defined by

VðGUHÞ ¼ VðGÞUVðHÞ and EðGUHÞ ¼ EðGÞUEðHÞ. If VðGÞVVðHÞ0 f,

the intersection GVH is defined by VðGVHÞ ¼ VðGÞVVðHÞ and EðGVHÞ ¼
EðGÞVEðHÞ. A k-coloring of G is a map c : VðGÞ ! f1; . . . ; kg such that cðuÞ0
cðvÞ whenever uv A EðGÞ. The chromatic number of G, denoted by wðGÞ, is the

minimum number k such that there exists a k-coloring of G.

An abstract simplicial complex is a pair ðV ;KÞ, where V is a finite set and K is

a family of subsets of V such that if s A K and tH s, then t A K. The polyhedron

of K is denoted by kKk. The nth barycentric subdivision of K is denoted by sdn K.

For a vertex v of K, the star of v in K, denoted by stKðvÞ, is the union of all

interiors of simplices of K which contain v. The link of v in K, denoted by lkKðvÞ,
is the set stKðvÞnstKðvÞ, where stKðvÞ is the union of all simplices with v.

A Z2-space ðX ; nX Þ is a topological space X with a homeomorphism

n : X ! X such that n2 ¼ idX , called a Z2-action n on X . A Z2-action which has

no fixed points is said to be free (and a space X with a free Z2-action is also said

to be a free Z2-space).

Example 2.1. The n-dimensional sphere Sn ¼ fx A Rnþ1 j kxk ¼ 1g with the

antipodal map x 7! �x is a free Z2-space. We always think of Sn as a free Z2-

space with this action.

For two Z2-spaces ðX ; nX Þ and ðY ; nY Þ, a continuous map f : X ! Y which

satisfies nY � f ¼ f � nX is called a Z2-map from X to Y . For a Z2-space ðX ; nÞ,
the Z2-index of ðX ; nÞ is defined as

indZ2
ðX ; nÞ :¼ minfn j there is a Z2-map X ! Sng:
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Next, following [3], we introduce the box complex of a graph. Let G be a

graph and A a subset of VðGÞ. A vertex v of G is called a common neighbor of A

if va A EðGÞ for all a A A. The set of all common neighbors of A is denoted by

CNGðAÞ. For a one point set fag, we see CNGðfagÞ is the set of all neighbors of

a in G. It is simply denoted by CNGðaÞ. For convenience, we define CNGðfÞ ¼
VðGÞ. The following holds:

AJB ) CNGðAÞKCNGðBÞ: ð2:1Þ

For A1;A2 JVðGÞ such that A1 VA2 ¼ f, we define G½A1;A2� as the bipartite

subgraph of G with

VðG½A1;A2�Þ ¼ A1 UA2 and EðG½A1;A2�Þ ¼ fa1a2 A EðGÞ j a1 A A1; a2 A A2 g:

The bipartite subgraph G½A1;A2� is said to be complete if a1a2 A EðGÞ for all

a1 A A1 and a2 A A2. For convenience, G½f;A2� and G½A1; f� are also said to be

complete.

Let A1 and A2 be subsets of VðGÞ. The subset A1 ] A2 of VðGÞ � f1; 2g is

defined as

A1 ] A2 :¼ ðA1 � f1gÞU ðA2 � f2gÞ:

For vertices a1; a2 A VðGÞ, fa1g ] f, f ] fa2g, and fa1g ] fa2g are simply denoted

by a1 ] f, f ] a2 and a1 ] a2 respectively.

The box complex of a graph G is an abstract simplicial complex with the

vertex set VðGÞ � f1; 2g defined by

BðGÞ ¼ fA1 ] A2 jA1;A2 JVðGÞ;A1 VA2 ¼ f;

G½A1;A2� is complete; CNGðA1Þ0 f0CNGðA2Þg:

Whenever we consider the polyhedron kBðGÞk, an abstract simplex A1 ] A2 and

its geometric simplex are denoted by the same symbol A1 ] A2. The simplicial

map n : VðBðGÞÞ ! VðBðGÞÞ defined by

v ] f 7! f ] v and f ] v 7! v ] f for all v A VðGÞ

induces a free Z2-action on kBðGÞk. We always think of kBðGÞk as a free Z2-

space with this action.

3. Decomposition of Box Complexes

In this section, to study the box complex BðGÞ of a graph G, first we

take a decomposition G ¼ 6k

i¼1
Gi and compare BðGÞ with its subcomplex
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6k

i¼1
BðGiÞ. In the following theorem, we give a su‰cient condition so that

BðGÞ ¼ 6k

i¼1
BðGiÞ.

Theorem 3.1. Let G be a graph and assume that G is represented by the

union G ¼ 6k

i¼1
Gi, where G1; . . . ;Gk are the subgraphs of G such that

for each maximal subset M1 ]M2 JVðGÞ � f1; 2g with respect to the condi-

tion G½M1;M2� is complete, there is an i A f1; . . . ; kg so that Gi½M1;M2� is

complete.

Then we obtain

BðGÞ ¼ 6
k

i¼1

BðGiÞ:

Before proving this theorem, we prove the following lemma.

Lemma 3.2. Let G ¼ 6k

i¼1
Gi be a graph and assume that G1; . . . ;Gk satisfy

the assumption of Theorem 3.1. Then for any subset AJVðGÞ such that

CNGðAÞ0 f, there is an i A f1; . . . ; kg such that CNGi
ðAÞ0 f.

Proof. For a subset A of VðGÞ such that CNGðAÞ0 f, we notice that

G½A;CNGðAÞ� is complete. Let M1 ]M2 be a maximal subset of VðGÞ � f1; 2g
with respect to AJM1, CNGðAÞJM2 and the condition G½M1;M2� is com-

plete. By the assumption, there is an i A f1; . . . ; kg such that Gi½M1;M2� is

complete. Hence, we see Gi½A;CNGðAÞ� is complete. Thus, we obtain CNGi
ðAÞK

CNGðAÞ0 f, and hence, CNGi
ðAÞ0 f. r

Proof of Theorem 3.1. It follows from the definition of box complex that

BðGÞI6k

i¼1
BðGiÞ. To show BðGÞH6k

i¼1
BðGiÞ, we prove that each simplex of

BðGÞ is a simplex of some BðGiÞ.
(i) For each simplex of the form A ] f; f ] A A BðGÞ, where A is nonempty,

we have CNGðAÞ0 f. By Lemma 3.2, there is an i A f1; . . . ; kg such that

CNGi
ðAÞ0 f. Thus, A ] f; f ] A A BðGiÞ.
(ii) For each simplex of the form A1 ] A2 A BðGÞ, where both A1 and A2 are

nonempty, let M1 ]M2 be a maximal subset of VðGÞ � f1; 2g with respect to

A1 JM1, A2 JM2 and the condition G½M1;M2� is complete. By the assumption

of this theorem, there is an i A f1; . . . ; kg such that Gi½M1;M2� is complete. Then,

we see that Gi½A1;A2� is complete, and hence, A1 ] A2 A BðGiÞ.
These prove the desired inclusion BðGÞH6k

i¼1
BðGiÞ. r
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In what follows, we confine ourselves to the case k ¼ 2. Next, we present a

su‰cient condition on GUH such that BðGÞVBðHÞ ¼ BðGVHÞ in addition to

BðGUHÞ ¼ BðGÞUBðHÞ.

Theorem 3.3. Let GUH be the union of two graphs G and H, and assume

that the intersection GVH is of the form:

VðGVHÞ ¼ fu1; . . . ; uk; v1; . . . ; vkg and EðGVHÞ ¼ fuivi j i ¼ 1; . . . ; kg:

Further we assume that

ð1Þ u1; . . . ; uk are endvertices of H;

ð2Þ v1; . . . ; vk are endvertices of G and

ð3Þ the set fu1; . . . ; ukg is independent in G:

Then, we obtain

BðGUHÞ ¼ BðGÞUBðHÞ and BðGVHÞ ¼ BðGÞVBðHÞ:

Note. Under the condition of Theorem 3.3, we notice uivj B EðGUHÞ for

i0 j. Indeed, we see uivj B EðHÞ for i0 j by (1) and uivi A EðHÞ. We obtain

uivj B EðGÞ for i0 j by (2) and ujvj A EðGÞ.
Also we notice that

BðG \HÞ ¼ fui ] vi; vi ] ui j i ¼ 1; . . . ; kg;

the disjoint union of 2k 1-simplices, since the intersection GVH consists of disjoint

k edges.

To prove BðGUHÞ ¼ BðGÞUBðHÞ for the union GUH with the condition

given in Theorem 3.3, we present the following two lemmas.

Lemma 3.4. Let GUH be the union of two graphs G and H with the in-

tersection GVH defined by

VðGVHÞ ¼ fu1; . . . ; uk; v1; . . . ; vkg and EðGVHÞ ¼ fuivi j i ¼ 1; . . . ; kg:

We assume (1) and (2) of Theorem 3.3. If ðGUHÞ½M1;M2� is complete, we have

M1;M2 JVðGÞ or M1;M2 JVðHÞ:

Proof. We assume ðGUHÞ½M1;M2� is complete. Suppose that

‘‘M1 QVðGÞ or M2 QVðGÞ’’ and ‘‘M1 QVðHÞ or M2 QVðHÞ’’:

Our consideration is divided into four cases.
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Case 1. M1 QVðGÞ and M1 QVðHÞ. There are two vertices m1;m
0
1 A M1

such that m1 A VðHÞnVðGÞ and m 0
1 A VðGÞnVðHÞ. Then, we show that

for any m2 A M2; either m1 or m 0
1 is not adjacent to m2 in GUH: (*)

If both m1 and m 0
1 are adjacent to m2 in GUH, we notice m1m2 A EðHÞ and

m 0
1m2 A EðGÞ since m1 B VðGÞ and m 0

1 B VðHÞ. Then, we see m2 A VðGVHÞ ¼
fu1; . . . ; uk; v1; . . . ; vkg. If m2 ¼ ui, then m1 ¼ vi A VðGÞ by the assumptions (1)

and uivi;m1ui A EðHÞ. This contradicts the choice of m1 B VðGÞ. If m2 ¼ vj , then

m 0
1 ¼ uj A VðHÞ by the assumptions (2) and ujvj;m

0
1m2 A EðGÞ. This also con-

tradicts the choice of m 0
1 B VðHÞ.

However, the statement (*) contradicts the assumption that ðGUHÞ½M1;M2�
is complete.

Case 2. M2 QVðGÞ and M2 QVðHÞ. We can derive a contradiction from

the same argument as above Case 1.

Case 3. M1 QVðGÞ and M2 QVðHÞ. There are two vertices m1 A M1 and

m2 A M2 such that m1 A VðHÞnVðGÞ and m2 A VðGÞnVðHÞ. Then, m1 is not ad-

jacent to m2 in GUH. This contradicts the assumption that ðGUHÞ½M1;M2� is
complete.

Case 4. M2 QVðGÞ and M1 QVðHÞ. We can derive a contradiction from

the same argument as above Case 3.

In all cases, we derived contradictions, and hence, our statement is proved.

r

Lemma 3.5. Let GUH be the union of two graphs G and H with the in-

tersection G VH defined by

VðGVHÞ ¼ fu1; . . . ; uk; v1; . . . ; vkg and EðGVHÞ ¼ fuivi j i ¼ 1; . . . ; kg:

We assume the condition of Theorem 3.3. If ðGUHÞ½M1;M2� is complete, we have

G½M1;M2� is complete or H½M1;M2� is complete:

Proof. We assume that ðGUHÞ½M1;M2� is complete. By Lemma 3.4, we

see M1;M2 HVðGÞ or M1;M2 HVðHÞ. Suppose that neither G½M1;M2� nor

H½M1;M2� is complete. Our consideration is divided into two cases.

Case 1. M1;M2 HVðGÞ. As G½M1;M2� is not complete, there are two

vertices m1 A M1 and m2 A M2 such that m1m2 A EðHÞnEðGÞ. Hence, we see

85Subcomplexes of box complexes of graphs



m1;m2 A VðG VHÞ ¼ fu1; . . . ; uk; v1; . . . ; vkg. Since m1m2 A EðHÞnEðGÞ, we notice

that both m1 and m2 belong to fv1; . . . ; vkg by the assumption (1). Let m1 ¼ vi

and m2 ¼ vj (see Figure).

On the other hand, since H½M1;M2� is not complete, there are two vertices

m 0
1 A M1 and m 0

2 A M2 such that m 0
1m

0
2 A EðGÞnEðHÞ. Then, we show that

both m 0
1 and m 0

2 belong to VðHÞ: (**)

If not, we have m 0
1 A VðGÞnVðHÞ or m 0

2 A VðGÞnVðHÞ. If m 0
1 A VðGÞnVðHÞ, then

we see

m 0
1vj ¼ m 0

1m2 A EðGUHÞ ¼ EðGÞUEðHÞ;

since ðGUHÞ½M1;M2� is complete. As m 0
1 B VðHÞ, we see that m 0

1 is adjacent to

vj in G. Then, by the assumptions (2) and ujvj A EðGÞ, we obtain m 0
1 ¼ uj A VðHÞ,

which contradicts the choice of m 0
1 B VðHÞ. Similarly, if m 0

2 A VðGÞnVðHÞ, then
we see

vim
0
2 ¼ m1m

0
2 A EðGUHÞ ¼ EðGÞUEðHÞ:

By the same argument as above we obtain m 0
2 ¼ ui A VðHÞ, which contradicts the

choice of m 0
2 B VðHÞ. Hence (**) is proved.

By (**) and m 0
1m

0
2 A EðGÞ, we see m 0

1;m
0
2 A VðGÞVVðHÞ ¼ fu1; . . . ; uk;

v1; . . . ; vkg. Since m 0
1 is not adjacent to m 0

2 in H, we see fm 0
1;m

0
2g0 fui; vig

for any i ¼ 1; . . . ; k. Moreover, we see fm 0
1;m

0
2gQ fv1; . . . ; vkg and

fm 0
1;m

0
2g0 fui; vjg ði0 jÞ by the assumption (2). Thus, we conclude that

fm 0
1;m

0
2gH fu1; . . . ; ukg. This contradicts the assumption (3).

Case 2. M1;M2 HVðHÞ. Since H½M1;M2� is not complete, there are

m1 A M1 and m2 A M2 such that m1m2 A EðGÞnEðHÞ. Since m1;m2 A VðHÞ and

m1m2 A EðGÞ, we see m1;m2 A VðGÞVVðHÞ ¼ fu1; . . . ; uk; v1; . . . ; vkg. Then, we

notice fm1;m2gQ fu1; . . . ; ukg by the assumption (3). Moreover, we see

fm1;m2gQ fv1; . . . ; vkg and fm1;m2g0 fui; vjg ði0 jÞ by the assumption (2).

Figure. The union GUH of two graphs G and H.
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Therefore, there is an i A f1; . . . ; kg such that m1m2 ¼ uivi A EðHÞ. This con-

tradicts the condition m1m2 B EðHÞ.
These complete the proof of our statement. r

Proof of Theorem 3.3. For any maximal subset M1 ]M2 JVðGÞ � f1; 2g
with respect to the condition ðGUHÞ½M1;M2� is complete, we see that

G½M1;M2� is complete or H½M1;M2� is complete;

by Lemma 3.5. Thus, we obtain BðGUHÞ ¼ BðGÞUBðHÞ by Theorem 3.1.

Next, we show that BðGVHÞ ¼ BðGÞVBðHÞ. It is easy to see that

BðGVHÞHBðGÞVBðHÞ, so we show that BðGVHÞIBðGÞVBðHÞ. A non-

empty set M such that M ] f; f ]M A BðGÞVBðHÞ is a subset of VðGÞVVðHÞ ¼
fu1; . . . ; uk; v1; . . . ; vkg and it also satisfies CNGðMÞ0 f and CNHðMÞ0 f. We

see that such a nonempty set M has precisely the following form:

M ¼ fuig or M ¼ fvig ði ¼ 1; . . . ; kÞ: ð4Þ

Indeed, the common neighbors of fuig and fvig in G and in H are nonempty. On

the other hand, we see that every subset M of VðGÞVVðHÞ which is neither

fuig nor fvig satisfies one of the following three conditions:

ð4:1Þ MJ fu1; . . . ; ukg and jMjb 2; ð4:2Þ MJ fv1; . . . ; vkg and jMjb 2;

ð4:3Þ MK fui; vjg ði; j ¼ 1; . . . ; kÞ:

For (4.1), we see CNHðMÞ ¼ f by the assumptions (1) and uivi A EðHÞ for each i.

For (4.2), we notice CNGðMÞ ¼ f by the assumptions (2) and uivi A EðGÞ for

each i. For (4.3), we obtain CNGðMÞJCNGðfui; vjgÞ from (2.1). Here we verify

CNGðfui; vjgÞ ¼ f. Suppose that x A CNGðfui; vjgÞ. Then x is adjacent to vj in G

and x ¼ uj by the assumption (2). Hence, ui is adjacent to uj in G. This

contradicts the assumption (3).

For any M ] f; f ]M A BðGÞVBðHÞ, we obtain CNGVHðMÞ;0 f by the

assumption with respect to the graph GVH and (4). Therefore,

M ] f; f ]M A BðGVHÞ.
For any M1 ]M2 A BðGÞVBðHÞ such that M1 0 f0M2, we notice that

G½M1;M2� and H½M1;M2� are complete. Hence, we conclude that ðGVHÞ½M1;M2�
is complete, and hence, M1 ]M2 A BðGVHÞ. Therefore, we have BðGÞVBðHÞH
BðGVHÞ. r

For the union GUH satisfying the condition of Theorem 3.3, an upper

bound for its chromatic number is given in the following:
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Proposition 3.6. Let GUH be the union of two graphs G and H satisfying

the condition of Theorem 3.3. Let lcH :¼ jfcHðu1Þ; . . . ; cHðukÞgj, where cH is a

wðHÞ-coloring of H. Then, there is a maxfwðGÞ þ lcH ; wðHÞg-coloring c of GUH

such that cjVðHÞ ¼ cH .

Proof. Let cH : VðHÞ ! f1; . . . ; wðHÞg be a wðHÞ-coloring of H. Without

loss of generality, we may assume fcHðu1Þ; . . . ; cHðukÞg ¼ f1; . . . ; lcHg. We define

a map c on VðGUHÞ as an extension of cH . First, we define

cðvÞ ¼ cHðvÞ ð3:1Þ

for all v A VðHÞ. Next, we define c on VðGÞnVðHÞ. Take a wðGÞ-coloring cG of

G and let V1; . . . ;VwðGÞ be the color classes of VðGÞ given by cG. Then, we define

cðvÞ ¼ lcH þ i ð3:2Þ

for v A Vi n VðGVHÞ and each i ¼ 1; . . . ; wðGÞ. We notice that cðVðGÞnVðHÞÞ ¼
flcH þ 1; . . . ; lcH þ wðGÞg. Since fu1; . . . ; ukg is independent in G and v1; . . . ; vk are

endvertices of G, we see that the map c defined by (3.1) and (3.2) is a

maxfwðGÞ þ lcH ; wðHÞg-coloring of GUH. r

Corollary 3.7. We assume that the union GUH of two graphs G and

H satisfies the condition of Theorem 3.3. Moreover we assume that fv1; . . . ; vkg
is independent in H. Then, there is a minfmaxfwðGÞ þ lcH ; wðHÞg;
maxfwðHÞ þ lcG ; wðGÞgg-coloring of GUH. r

Definition 3.8. Let H be a graph satisfying the condition of Theorem 3.3.

We define

lH :¼ minflcH j cH is a wðHÞ-coloring of Hg.

We remark that lH a 2. We take a wðHÞ-coloring cH of H and a number

n A f1; . . . ; wðHÞg with n0 cHðv1Þ. Assume that lcH ¼ jfcHðuiÞ j i ¼ 1; . . . ; k gjb 3.

Then, we can take another wðHÞ-coloring c 0H of H defined as follows:

c 0HðvÞ ¼
cHðvÞ if v A VðHÞ n fu1; . . . ; ukg;
cHðv1Þ if v ¼ ui and cHðviÞ0 cHðv1Þ;
n if v ¼ ui and cHðviÞ ¼ cHðv1Þ:

8<
:

Then, we have lH a lc 0
H
¼ 2.

As a consequence of Proposition 3.6, we have the following.

Theorem 3.9. Let GUH be the union of two graphs G and H satisfying the

condition of Theorem 3.3 and let k ¼ jEðGVHÞj.
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(1) If kb 2, then we have

wðGUHÞamaxfwðGÞ þ lH ; wðHÞg:

(2) If k ¼ 1, we have

wðGUHÞ ¼ maxfwðGÞ; wðHÞg:

Proof. Our statement (1) follows from Proposition 3.6. We prove (2). If

k ¼ 1, without loss of generality, we may assume wðGÞb wðHÞ. First, take a

wðGÞ-coloring cG : VðGÞ ! f1; . . . ; wðGÞg of G and a wðHÞ-coloring cH : VðHÞ !
f1; . . . ; wðHÞg of H. We define a map c on VðGUHÞ as an extension of cH .

First, put cðvÞ ¼ cHðvÞ for v A VðHÞ. Notice that cHðu1Þ A f1; . . . ; wðGÞg. Then,

take the transposition ðcGðVÞ cHðu1ÞÞ on f1; . . . ; wðGÞg, where V is the color

class of VðGÞ given by cG containing u1. Then, we define cðVðGÞ n VðHÞÞ ¼
ððcGðVÞ cHðu1ÞÞ � cGÞðVðGÞ n VðHÞÞ. We see that the map c is a wðGÞ-coloring of

GUH. r

In view of (1.1) and Theorem 3.9, it is natural to compute indZ2
ðkBðGUHÞkÞ

for the union GUH satisfying the condition of Theorem 3.3. Recall that

BðGÞVBðHÞ ¼ BðG VHÞ ¼ fui ] vi; vi ] ui j i ¼ 1; . . . ; kg;

the disjoint union of 2k 1-simplices, since the intersection GVH consists of

disjoint k edges.

Theorem 3.10. Let GUH be the union of two graphs G and H which satisfies

the condition of Theorem 3.3.

(1) If maxfindZ2
ðkBðGÞkÞ; indZ2

ðkBðHÞkÞgb 1, we have

indZ2
ðkBðGUHÞkÞ ¼ maxfindZ2

ðkBðGÞkÞ; indZ2
ðkBðHÞkÞg:

(2) If indZ2
ðkBðGÞkÞ ¼ indZ2

ðkBðHÞkÞ ¼ 0, we have

indZ2
ðkBðGUHÞkÞa 1:

Proof. We use the same notation used in Theorem 3.3. Let

m :¼ indZ2
ðkBðGÞkÞ and n :¼ indZ2

ðkBðHÞkÞ. Before we prove (1) and (2), we will

define Z2-maps kBðGÞk ! Sm and kBðHÞk ! Sn such that each ui ] vi is mapped

to a point. By using these Z2-maps, we will construct a Z2-map

kBðGUHÞk ! S l , where l :¼ maxfm; ng.
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First, we construct a Z2-map from kBðGÞk to Sm such that each ui ] vi is

mapped to a point. Let K :¼ BðGnfv1; . . . ; vkgÞ. We define a simplicial Z2-map

f1 : BðGÞ ! K as

f1ðf ] viÞ ¼ ui ] f; f1ðvi ] fÞ ¼ f ] ui

and f1ðvÞ ¼ v for any other vertex v of BðGÞ. We take a Z2-map f2 as the

composition

kKk ,! kBðGÞk ! Sm;

where the latter map is an arbitrary Z2-map. Then, the composition f2 � f1 is a

desired Z2-map. Similarly, we can construct a Z2-map from kBðHÞk to Sn such

that each ui ] vi is mapped to a point as follows. Let L :¼ BðHnfu1; . . . ; ukgÞ. We

define a simplicial Z2-map g1 : BðHÞ ! L as

g1ðf ] uiÞ ¼ vi ] f; g1ðui ] fÞ ¼ f ] vi

and g1ðvÞ ¼ v for any other vertex v of BðHÞ. Let g2 be the composition

kLk ,! kBðHÞk ! Sn, where the latter map is an arbitrary Z2-map. The com-

position g2 � g1 is a Z2-map such that each ui ] vi is mapped to a point.

Next, to construct a Z2-map from kBðGUHÞk to S l , we need the following

claim:

Claim. If mb 1 and mb n, there exist Z2-maps f3 : kKk ! Smþ1 and

g3 : kLk ! Smþ1 such that
� f3ðui ] fÞ ¼ g3ðf ] viÞ and f3ðf ] uiÞ ¼ g3ðvi ] fÞ for all i,
� the union im f3 U im g3 does not contain the north and south poles of Smþ1.

We show Claim. Let I : Sn ! Sm be the inclusion defined by IðxÞ ¼ ðx; 0; . . . ; 0Þ
and a : Smþ1 ! Smþ1 the antipodal map. By the continuity of f2 : kKk ! Sm

and g2 : kLk ! Sn, we can take a su‰ciently large positive integer rb 1 so

that f2ðlksd r Kðui ] fÞÞ and g2ðlksd r Lðf ] viÞÞ contain no pair of antipodal points

for each i. Since mb 1, the sphere Sm is not covered with the union

a � f2ðlksd r Kðui ] fÞÞU a � I � g2ðlksd r Lðf ] viÞÞ. Hence, we see

Xi :¼ Smnða � f2ðlksd r Kðui ] fÞÞU a � I � g2ðlksd r Lðf ] viÞÞÞ

is nonempty. Then, we take a point wi A Smþ1 that belongs to the interior ofn
x
kxk j x A p � Xi

o
, where p is the north pole of Smþ1 and p � Xi is the Euclidean

cone on Xi with p.
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For each i, we modify f2 on neighborhoods stsd r Kðui ] fÞ and stsd r Kðf ] uiÞ
to obtain a Z2-map f3 that maps ui ] f to wi and f ] ui to aðwiÞ. For any

x A stsd r Kðui ] fÞnui ] f, there exists the unique point yx A lksd r Kðui ] fÞ such

that x is represented by ð1� tÞyx þ tðui ] fÞ for some t A ð0; 1Þ. Similarly, for

x A stsd r Kðf ] uiÞnf ] ui, there exists a unique point zx A lksd r Kðf ] uiÞ such that

x is represented by ð1� tÞzx þ tðf ] uiÞ for some t A ð0; 1Þ. Since rb 1, for i0 j,

we see

stsd r Kðui ] fÞV stsd r Kðuj ] fÞ ¼ f ¼ stsd r Kðui ] fÞV stsd r Kðf ] ujÞ:

We define a Z2-map f3 : ksdr Kk ! Smþ1 as follows:

ui ] f 7! wi; f ] ui 7! aðwiÞ;

x ¼ ð1� tÞyx þ tðui ] fÞ

7! ð1� tÞð f2ðyxÞ; 0Þ þ twi

kð1� tÞð f2ðyxÞ; 0Þ þ twik
if x A stsd r Kðui ] fÞnui ] f;

x ¼ ð1� tÞzx þ tðf ] uiÞ

7! ð1� tÞð f2ðzxÞ; 0Þ þ tðaðwiÞÞ
kð1� tÞð f2ðzxÞ; 0Þ þ tðaðwiÞÞk

if x A stsd r Kðf ] uiÞnf ] ui;

x 7! ð f2ðxÞ; 0Þ otherwise:

Similarly, we can modify I � g2 to obtain a Z2-map g3 : ksdr Lk ! Smþ1 such that

g3ðf ] viÞ ¼ wi and g3ðvi ] fÞ ¼ aðwiÞ. By the choice of points fwig, we see that

the union im f3 U im g3 does not contain the north and south poles of Smþ1. This

completes the proof of Claim.

We prove (1). We assume mb n. We define a Z2-map h : kBðGUHÞk !
Smþ1 as

hðxÞ ¼ ð f3 � f1ÞðxÞ if x A kBðGÞk;
ðg3 � g1ÞðxÞ if x A kBðHÞk;

�

and define a Z2-map h 0 : Smþ1nfp; aðpÞg ! Sm as

ðx1; . . . ; xmþ2Þ 7!
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
mþ2

q ðx1; . . . ; xmþ1Þ:

We can regard h as a Z2-map from kBðGUHÞk to Smþ1nfp; aðpÞg. Then,

the composition h 0 � h is a Z2-map from kBðG UHÞk to Sm, and hence,
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indZ2
ðkBðGUHÞkÞam. On the other hand, we see that kBðGÞk and kBðHÞk

are contained in kBðGUHÞk as Z2-subcomplexes, and hence, we have

indZ2
ðkBðGUHÞkÞbm. Similarly, if m < n, we obtain a Z2-map from kBðGUHÞk

to Sn by the same argument as above. The statement (1) is proved.

We prove (2). If m ¼ n ¼ 0, it is not always possible to construct f3 and g3

so that they satisfy the latter condition of Claim; Example 3.11 is one of such

examples. However, we may repeat the argument of Claim by taking fwig as

arbitrary points of the upper semicircle of S1. Then, the map h is a desired

Z2-map from kBðGUHÞk to S1. Hence, the statement (2) follows. r

Example 3.11. For a cycle C5 of length 5, kBðC5Þk is Z2-homotopy equiv-

alent to S1, and hence, indZ2
ðkBðC5ÞkÞ ¼ 1. On the other hand, C5 is decom-

posed into P4 and P3 such that these satisfy the su‰cient condition of Theorem

3.3. Since indZ2
ðkBðPÞkÞ ¼ 0 for any path P, the inequality of Theorem 3.10 (2)

is optimal.

Example 3.12. Let G be the graph defined by

VðGÞ ¼ fx; u1; . . . ; un; v1; . . . ; vng and

EðGÞ ¼ fxui j i ¼ 1; . . . ; ngU fuivi j i ¼ 1; . . . ; ng;

where nb 4. Let H be the graph Kn þ fuivi j i ¼ 1; . . . ; ng, where VðKnÞ ¼
fv1; . . . ; vng. Then, we notice indZ2

ðkBðGÞkÞ ¼ 0 and indZ2
ðkBðHÞkÞ ¼ n� 2.

By Theorem 3.10 (1), we see indZ2
ðkBðGUHÞkÞ ¼ n� 2. We also have

wðGUHÞamaxf4; ng ¼ n by Theorem 3.9 (1). Hence, we see that the inequality

of Theorem 3.9 (1) is optimal by the inequality (1.1).

For the union GUH satisfying the condition of Theorem 3.3, we obtain

indZ2
ðkBðGUHÞkÞ þ 2 ¼ maxfindZ2

ðkBðGÞkÞ; indZ2
ðkBðHÞkÞg þ 2

a
ð1:1Þ

maxfwðGÞ; wðHÞga wðGUHÞ
by Theorem 3.10 (1) and the inequality (1.1), if maxfindZ2

ðkBðGÞkÞ;
indZ2

ðkBðHÞkÞgb 1. The lower bound indZ2
ðkBðGUHÞkÞ þ 2 is not better than

the trivial one maxfwðGÞ; wðHÞg for wðGUHÞ.

4. Appendix: Addendum to [2]

Here we supplement to section 4 of [2]. For a graph G, let G be an abstract

simplicial complex with the vertex set VðGÞ ¼ VðBðGÞÞ defined by

G :¼ fu ] f; v ] f; f ] u; f ] v; u ] v; v ] u j uv A EðGÞg:
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We notice that G is a free Z2-subcomplex of BðGÞ with the restriction of the

free Z2-action on BðGÞ. In [2], the author proved that a graph G contains no 4-

cycles if and only if kGk is a strong Z2-deformation retract of kBðGÞk. The Z2-

subcomplex G is a natural double covering of G with the map VðGÞ ! VðGÞ
defined by v ] f; f ] v 7! v for each v A VðGÞ.

Let T be a spanning tree T of G. Then, the graph G is obtained from T

by adding finitely many edges fuivig l
i¼1, where uivi A EðGÞnEðTÞ. Then, we see

G ¼ T U fui ] vi; vi ] uig l
i¼1. Since all trees are bipartite, VðTÞ is the disjoint union

of the partite sets A and B. Let T 1 ¼ T � f1g and T 2 ¼ T � f2g be the copies

of T with VðT 1Þ ¼ A1 q B1 and VðT 2Þ ¼ A2 q B2, where A1 ¼ A� f1g, A2 ¼
A� f2g, B1 ¼ B� f1g and B2 ¼ B� f2g. Then, we notice that T is isomorphic

to the disjoint union T 1 q T 2 of two copies of T by the following correspondence

VðT 1 q T 2Þ ! VðTÞ:

ða; 1Þ A A1 7! a ] f; ðb; 1Þ A B1 7! f ] b;

ða; 2Þ A A2 7! f ] a; ðb; 2Þ A B2 7! b ] f:

We consider the unique path P in T connecting ui to vi for each i. If we add

an edge uivi to T so that T U fuivig contains a cycle of even length, the path P

is of odd length. Then, we notice ui ] f and f ] vi belong to the same compo-

nent of T and f ] ui and vi ] f belong to the other component of T . Hence,

T U fui ] vi; vi ] uig is disconnected. If we add an edge uivi to T so that T U fuivig
contains a cycle of odd length, the path P is of even length. Then we see ui ] f and

vi ] f belong to the same component of T and f ] ui and f ] vi belong to the other

component of T . Hence, T U fui ] vi; vi ] uig is connected. Repeating this con-

sideration for edges u1v1; . . . ; ulvl , we see that G is disconnected if and only if G

contains no cycles of odd length, or equivalently, G is bipartite (see [1], Theorem

1.6.1).

Theorem 4.1. Let G be a connected graph with k induced cycles of G.

(1) If G contains no cycles of odd length, we have kGkF4
k
S1 q 4

k
S1.

(2) If G contains at least one cycle of odd length, we have kGkF4
2k�1

S1.

Proof. By the preceding argument, the statement (1) holds. Let G be a

connected graph which contains at least one cycle of odd length. Then, it follows

that G is connected. Since the Euler characteristic w
G
of G is twice as large as that

of G, we see
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rank H1ðGÞ ¼ 1� w
G
¼ 1� 2 � wG ¼ 1� 2ð1� kÞ ¼ 2k � 1;

and hence, the statement (2) follows. r

Theorem 4.2. Let G be a connected graph. Then, BðGÞ is connected if and

only if G is connected.

Proof. Let G be a connected graph. If BðGÞ is disconnected, then G is

disconnected since G is a subcomplex of BðGÞ with VðGÞ ¼ VðBðGÞÞ.
Conversely, we assume that G is disconnected. Then, we see that G contains

no cycles of odd length, and hence, G is isomorphic to the disjoint union G q G.

Suppose that BðGÞ is connected. Then, for the two vertices u ] f and f ] u of

BðGÞ, there exist the vertices v0; . . . ; vn of BðGÞ such that v0 ¼ u ] f, vn ¼ f ] u

and each viviþ1 A BðGÞ. Every 1-simplex of BðGÞ is one of the following forms:

x ] y, y ] x, fx; yg ] f and f ] fx; yg, in particular, x ] y and y ] x are sim-

plices of G. If the 1-simplex viviþ1 A BðGÞ is the form fx; yg ] f, then there is a

vertex z A VðGÞ such that z A CNGðfx; ygÞ. The two vertices vi and viþ1 are joined

by two simplices x ] z and z ] y of G. Similarly, if the 1-simplex viviþ1 A BðGÞ is

the form f ] fx; yg, we can join the two vertices vi and viþ1 by simplices of G.

Thus, u ] f and f ] u are joined by simplices of G. This contradicts the fact that

u ] f and f ] u do not belong to the same component of G. r
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