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SUBCOMPLEXES OF BOX COMPLEXES OF GRAPHS

By

Akira KAMIBEPPU

Abstract. The box complex B(G) of a graph G is a simplicial Z,-
complex defined by J. MatouSek and G. M. Ziegler in [4]. They
proved that y(G) > indz,(||B(G)||) + 2, where x(G) is the chromatic
number of G and indg,(||B(G)||) is the Zs-index of B(G). In this
paper, to study topology of box complexes, for the union GU H of
two graphs G and H, we compare B(GU H) with its subcomplex
B(G)UB(H). We give a sufficient condition on G and H so that
B(GUH)=B(G)UB(H) and B(GNH) = B(G) NB(H) hold. More-
over, under that condition, we show

max{y(G), x(H)} < x(GUH) < max{y(G) + Iu, x(H)},
where /5 is the number defined in Definition 3.8. Also we prove
indg, (|[B(GU H)||) = max{indz, (|[B(G)||), indz, (|[B(H)I)}

if max{indz, (|B(G)|), indz, (IB(H)|)} > 1.

The complex B(G) of a graph G contains a 1-dimensional free
Z,-subcomplex G of B(G), defined in [2]. As a supplement to [2], we
show that for a connected graph G, B(G) is disconnected if and only
if G is disconnected if and only if G contains no cycles of odd length,
or equivalently, G is bipartite.

1. Introduction

In this paper, we assume that all graphs are finite, simple, undirected and
connected. The box complex B(G) of a graph G is introduced in [4] by J.
Matousek and G. M. Ziegler as one of applications of topological methods to
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obtain a lower bound for the chromatic number y(G) of G. The following

theorem, in [4], indicates that a lower bound for x(G) is obtained from the
topology of the complex B(G) of G.

THEOREM 1.1 ([4], p. 81). For any graph G, we have
%(G) = indg, ([[B(G)[]) + 2. (L.1)

This motivates us to study the relation between topology of box complexes
and combinatorics of graphs. In order to obtain a lower bound for y(G) by the
inequality (1.1), we need to know the Z,-index of ||B(G)||, while it is not easy in
general to obtain topological information of B(G) from the definition except for a
few examples: complete graphs, paths and cycles etc.

To study the complex ||B(G)||, we decompose G into subgraphs Gy, ..., Gk
and compare B(G) with U,k:1 B(G;). It is easy to see that B(G) contains
Uf;l B(G;) as a subcomplex. One cannot hope that B(G) = Ulk:l B(G;) and for
i,j=1,...,k, B(G;))NB(G;) = B(GiN Gj) in general. We confine ourselves to the
case k =2. For the union GU H of two graphs G and H, we give a sufficient
condition under which B(GUH) =B(G)UB(H) and B(G)NB(H)=B(GNH)
hold (see Theorem 3.3). For such a graph GUH, we obtain the following es-
timate of the chromatic number y(GU H) in Theorem 3.9:

max{y(G),x(H)} < x(GUH) < max{y(G) + Iy, x(H)}, (1.2)

where /y is the number defined in Definition 3.8. In view of (1.1) and (1.2), it is
natural to seek an estimate of indz,(||B(GU H)||). We prove

indz, (|B(GU H)||) = max{indz, (|[B(G)|)), indz, (||B(H)]|)} (1.3)

if max{indg, (||B(G)||),indz,(|B(H)|)} = 1 (see Theorem 3.10). The inequalities
(1.1), (1.2) and the equality (1.3) imply that, for the union GU H satistying the
condition of Theorem 3.3, the lower bound indgz,(||B(GU H)||) + 2 is not better
than the trivial one max{y(G),y(H)} for y(GUH).

Appendix is a supplement to section 4 of [2]. In [2], a 1-dimensional free
Z>-complex G is defined as a subcomplex of B(G). It is proved that a graph G
contains no 4-cycles if and only if |G| is a strong Z,-deformation retract of
IB(G)|| ([2], Theorem 4.3). This indicates indz, (||B(G)||) = indz,(||G||) < 1 when
G contains no 4-cycles. In appendix, we investigate the relation between B(G)
and G for a general graph G. It turns out that G is a natural double covering of
G. We prove that B(G) is disconnected if and only if G is disconnected (see
Theorem 4.2) if and only if G contains no cycles of odd length, or equivalently,
G is bipartite (see [1], Theorem 1.6.1).
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2. Preliminaries

First, we recall some basic notions on graphs, abstract simplicial complexes,
and the Z,-index of a Z,-space. We follow [1] about the standard notation in
graph theory.

A graph is a pair G = (V(G), E(G)), where V(G) is a finite set and E(G) is a
family of 2-element subsets of V(G). Under this definition, every graph is simple,
that is, it has no loops and multiple edges. Elements of V' (G) are called vertices
of G and those of E(G) are called edges of G. Two vertices u and v of G are
adjacent, if {u,v} is an edge of G. An edge {u,v} of a graph is simply denoted by
uv or vu. A subset 4 of V(G) is said to be independent in G, if no two vertices of
A are adjacent in G. A vertex of G which is only adjacent to one vertex of G is
called an endvertex. For two graphs G and H, the union GU H is defined by
V(GUH)=V(G)UV(H) and E(GUH)=E(G)UE(H). If V(G)NV(H) # ¢,
the intersection GN H is defined by V(GNH)=V(G)NV(H) and E(GNH) =
E(G)NE(H). A k-coloring of G is a map ¢: V(G) — {1,...,k} such that c(u) #
c(v) whenever uv € E(G). The chromatic number of G, denoted by y(G), is the
minimum number k such that there exists a k-coloring of G.

An abstract simplicial complex is a pair (V,K), where V is a finite set and K is
a family of subsets of V' such that if 6 € K and 7 = g, then 7 € K. The polyhedron
of K is denoted by ||K||. The nth barycentric subdivision of K is denoted by sd” K.
For a vertex v of K, the star of v in K, denoted by stk(v), is the union of all
interiors of simplices of K which contain v. The /ink of v in K, denoted by lkg(v),
is the set M\stK(v), where st (v) is the union of all simplices with v.

A Zy-space (X,vy) is a topological space X with a homeomorphism
v: X — X such that v =idy, called a Zj-action v on X. A Z,-action which has
no fixed points is said to be fiee (and a space X with a free Z-action is also said
to be a free Z,-space).

ExaMPLE 2.1. The n-dimensional sphere S” = {x e R""'||x|| = 1} with the
antipodal map x — —x is a free Z,-space. We always think of S” as a free Z,-
space with this action.

For two Z,-spaces (X,vy) and (Y,vy), a continuous map f : X — Y which
satisfies vy o f = fovy is called a Zy-map from X to Y. For a Z,-space (X,v),
the Z,-index of (X,v) is defined as

indz, (X, v) := min{n|there is a Z;-map X — S"}.
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Next, following [3], we introduce the box complex of a graph. Let G be a
graph and A4 a subset of V(G). A vertex v of G is called a common neighbor of A
if va e E(G) for all ae A. The set of all common neighbors of A4 is denoted by
CNg(A4). For a one point set {a}, we see CNg({a}) is the set of all neighbors of
a in G. It is simply denoted by CNg(a). For convenience, we define CNg(¢) =
V(G). The following holds:

A S B= CNg(4) 2 CNg(B). (2.1)

For A;,A> = V(G) such that 4N A, = ¢, we define G[A4;, A,] as the bipartite
subgraph of G with

V(G[AI,AZ]) = A1 UA2 and E(G[AhAz]) = {a1a2 € E(G) |Cll € Al, ay € A2 }

The bipartite subgraph G[A, 4;] is said to be complete if aja, € E(G) for all
a) € Ay and a; € A;. For convenience, G[¢, A>] and G[A4;,¢] are also said to be
complete.

Let 4; and A, be subsets of V(G). The subset 4| W A, of V(G) x {1,2} is
defined as

Al WA, = (A] X {1}) U (Az X {2})

For vertices aj,a; € V(G), {a1} W, ¢ W {ar}, and {a;} W {a,} are simply denoted
by ay W@, ¢ Wa, and a; Wa, respectively.

The box complex of a graph G is an abstract simplicial complex with the
vertex set V(G) x {1,2} defined by

B(G) = {41 WAy | 41,4, S V(G), 4, N Ay = 4,
G[A1, 4] is complete, CNg(4;) # ¢ # CNg(42)}.

Whenever we consider the polyhedron ||B(G)||, an abstract simplex 4; ¥ 4, and
its geometric simplex are denoted by the same symbol A4; W A4,. The simplicial
map v: V(B(G)) — V(B(G)) defined by

v~ gWv and JgWov—ovWe¢ for all ve V(G)
induces a free Z-action on ||B(G)||. We always think of ||B(G)|| as a free Z,-
space with this action.
3. Decomposition of Box Complexes

In this section, to study the box complex B(G) of a graph G, first we
take a decomposition G = Ulk:] G; and compare B(G) with its subcomplex
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. 1 7).
B(G) = |\, B(GY.

THEOREM 3.1. Let G be a graph and assume that G is represented by the
union G = Ulkzl G;, where Gy,...,Gy are the subgraphs of G such that

Jfor each maximal subset My W M, = V(G) x {1,2} with respect to the condi-
tion G[My, M) is complete, there is an i€ {1,... k} so that Gi[M,, M>] is
complete.

Then we obtain

Before proving this theorem, we prove the following lemma.

LemmA 3.2, Let G = U,k:1 G; be a graph and assume that Gy, ..., Gy satisfy
the assumption of Theorem 3.1. Then for any subset A <= V(G) such that
CNg(A4) # ¢, there is an i€ {l,...,k} such that CNg(A) # ¢.

Proor. For a subset 4 of V(G) such that CNg(A4) # ¢, we notice that
G[A,CNg(A4)] is complete. Let M; & M, be a maximal subset of V(G) x {1,2}
with respect to 4 = M;, CNg(4) € M, and the condition G[M;, M>] is com-
plete. By the assumption, there is an ie {l,...,k} such that G;[M;, M;] is
complete. Hence, we see G;[4,CNg(A4)] is complete. Thus, we obtain CNg,(4) =
CNg(A4) # ¢, and hence, CNg,(4) # ¢. O

ProoF OF THEOREM 3.1. It follows from the definition of box complex that
B(G) = | L, B(G)). To show B(G) = | J&
B(G) is a simplex of some B(G;).

(i) For each simplex of the form 4 W¢, ¢ W A4 € B(G), where A4 is nonempty,
we have CNg(4) # ¢. By Lemma 3.2, there is an ie{l,...,k} such that
CNg,(A4) # ¢. Thus, AW ¢, ¢ A € B(G)).

(i) For each simplex of the form A; W A, € B(G), where both 4; and A, are
nonempty, let M| W M, be a maximal subset of V(G) x {1,2} with respect to
Ay = M,, Ay = M, and the condition G[M|, M>] is complete. By the assumption
of this theorem, there is an i € {1,...,k} such that G;[M,, M>] is complete. Then,
we see that G;[4, 4;] is complete, and hence, 4; W A, € B(G;).

These prove the desired inclusion B(G) < Ulk:] B(G)). O

 B(G;), we prove that each simplex of
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In what follows, we confine ourselves to the case k = 2. Next, we present a
sufficient condition on GU H such that B(G)NB(H) = B(GN H) in addition to
B(GUH) =B(G)UB(H).

THEOREM 3.3. Let GUH be the union of two graphs G and H, and assume
that the intersection GNH is of the form:
VIGNH) ={u,...,ux,v1,...,0x} and E(GNH)={uv;|i=1,... k}.

Further we assume that

(1) uy,...,ux are endvertices of H,
(2) vi,...,vx are endvertices of G and
(3) the set {ui,...,ux} is independent in G.

Then, we obtain
B(GUH)=B(G)UB(H) and B(GNH)=B(G)NB(H).

NoOTE. Under the condition of Theorem 3.3, we notice ujv; ¢ E(GUH) for
i #j. Indeed, we see uyv;¢ E(H) for i #j by (1) and ujv; € E(H). We obtain
uiv; ¢ E(G) for i #j by (2) and ujv; € E(G).

Also we notice that

B(GNH)={uWv;, vyWu; |i=1,... k},

the disjoint union of 2k 1-simplices, since the intersection G\ H consists of disjoint
k edges.

To prove B(GUH) =B(G)UB(H) for the union GUH with the condition
given in Theorem 3.3, we present the following two lemmas.

LemmA 3.4. Let GUH be the union of two graphs G and H with the in-
tersection GN H defined by
V(GNH) = {uy,... ,ug,v1,...,00} and E(GNH)={wv;|i=1,... k}.
We assume (1) and (2) of Theorem 3.3. If (GU H)[M,, M>] is complete, we have
M, My < V(G) or M, M>< V(H).
Proor. We assume (GU H)[M,, M;] is complete. Suppose that
“My ¢ V(G) or My & V(G)” and “M, ¢ V(H) or My, ¢ V(H)”.

Our consideration is divided into four cases.
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Cast 1. M, ¢ V(G) and M, ¢ V(H). There are two vertices my,mj| € M,
such that m; € V(H)\V(G) and mj € V(G)\V(H). Then, we show that

for any ms € My, either m; or m| is not adjacent to m, in GUH. (x)

If both m; and mj are adjacent to m, in GUH, we notice m;m; € E(H) and
mimy € E(G) since m; ¢ V(G) and m{ ¢ V(H). Then, we see my e V(GNH) =
{ur, ..., ug,v1,... vk}, If my =uw;, then m; = v; € V(G) by the assumptions (1)
and w;v;,mu; € E(H). This contradicts the choice of m; ¢ V(G). If my = v;, then
m{ =u; € V(H) by the assumptions (2) and wu;v;,mjm, € E(G). This also con-
tradicts the choice of m| ¢ V(H).

However, the statement () contradicts the assumption that (GU H)[M, M,]
is complete.

CasE 2. M, ¢ V(G) and M, ¢ V(H). We can derive a contradiction from
the same argument as above Case 1.

CaseE 3. M, ¢ V(G) and M, ¢ V(H). There are two vertices m; € M; and
my € M, such that m; € V(H)\V(G) and my € V(G)\V(H). Then, m, is not ad-
jacent to my in GU H. This contradicts the assumption that (GU H)[M, M| is
complete.

CasE 4. M, ¢ V(G) and M, ¢ V(H). We can derive a contradiction from
the same argument as above Case 3.
In all cases, we derived contradictions, and hence, our statement is proved.

O

Lemma 3.5. Let GUH be the union of two graphs G and H with the in-
tersection GN H defined by

V(GNH) ={uy,...,ug,v1,...,00y and E(GNH)={wv;|i=1,... k}.
We assume the condition of Theorem 3.3. If (GU H)[M;, M>] is complete, we have
G[M,\, M) is complete or H[M;,M,] is complete.

Proor. We assume that (GU H)[M,, M>] is complete. By Lemma 3.4, we
see M, M, = V(G) or M|, M, = V(H). Suppose that neither G[M;, M;] nor
H[M,, M>] is complete. Our consideration is divided into two cases.

Case 1. M|, M, < V(G). As G[M,,M;] is not complete, there are two
vertices m; € M, and my € M, such that mym, € E(H)\E(G). Hence, we see
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Figure. The union GUH of two graphs G and H.

my,mpy € V(GNH) = {uy,... ug,vi,...,0c}. Since mym, € E(H)\E(G), we notice
that both m; and m, belong to {vj,...,v;} by the assumption (1). Let m; = v;
and my = v; (see Figure).

On the other hand, since H[M;, M;] is not complete, there are two vertices
mj € M, and mj e M, such that mim) € E(G)\E(H). Then, we show that

both m; and m) belong to V(H). )

If not, we have m{ € V(G)\V(H) or mj € V(G\V(H). It mj € V(G)\V(H), then
we see
mjv; =mym; € E(GUH) = E(G)UE(H),

since (GUH)[M,, M) is complete. As m| ¢ V(H), we see that m| is adjacent to
v; in G. Then, by the assumptions (2) and u;v; € E(G), we obtain m| = u; € V(H),
which contradicts the choice of m{ ¢ V(H). Similarly, if m} e V(G)\V(H), then
we see

vms =mmy e E(GUH) = E(G)UE(H).

By the same argument as above we obtain m)} = u; € V(H), which contradicts the
choice of mj ¢ V(H). Hence (x+) is proved.
By (xx) and mimj e E(G), we see mj,mye V(G)NV(H)={u,...,u,

v1,...,U}. Since mj is not adjacent to mj in H, we see {mj,m)} # {u; v;}
for any i=1,...,k. Moreover, we see {mj,mj} & {vi,...,vx} and
{m{,m5} # {u;,v;} (i#j) by the assumption (2). Thus, we conclude that
{m{,m5} < {u1,...,ux}. This contradicts the assumption (3).

Case 2. M|,M, = V(H). Since H[M;, M;] is not complete, there are
my € M, and my € M, such that mym, € E(G)\E(H). Since m;,my € V(H) and
mymy € E(G), we see my,my e V(G)NV(H)={uy,...,ux,v1,...,0r}. Then, we
notice {my,my} & {uy,...,ur} by the assumption (3). Moreover, we see
{mi,my} & {v1,...,0c} and {m,my} # {u;,v;} (i # j) by the assumption (2).
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Therefore, there is an ie{l,...,k} such that m;m; = wyv; € E(H). This con-
tradicts the condition mymy ¢ E(H).
These complete the proof of our statement. O

PrROOF OF THEOREM 3.3. For any maximal subset M| W M, = V(G) x {1,2}
with respect to the condition (GUH)[M,, M;] is complete, we see that

G[M,, M>] is complete or H[M,, M>] is complete,

by Lemma 3.5. Thus, we obtain B(GUH) = B(G) UB(H) by Theorem 3.1.

Next, we show that B(GNH)=B(G)NB(H). It is easy to see that
B(GNH) =« B(G)NB(H), so we show that B(GNH) > B(G)NB(H). A non-
empty set M such that MW ¢, ¢ w M € B(G) NB(H) is a subset of V(G)NV(H) =
{ur,...,ug,v1,...,0¢} and it also satisfies CNg(M) # ¢ and CNy (M) # ¢. We
see that such a nonempty set M has precisely the following form:

M={u} or M={v} (i=1,...k). (4)

Indeed, the common neighbors of {#;} and {v;} in G and in H are nonempty. On
the other hand, we see that every subset M of V(G)N V(H) which is neither
{u;} nor {v;} satisfies one of the following three conditions:

(41) M <={w,...,u} and [M|=2; (42) M ={vy,...,v} and |M| = 2;
(43) MQ{M,‘,U]'} (l,]: 1,,/()

For (4.1), we see CNy (M) = ¢ by the assumptions (1) and uv; € E(H) for each i.
For (4.2), we notice CNg(M) = ¢ by the assumptions (2) and w;v; € E(G) for
each i. For (4.3), we obtain CNg(M) = CNg({u;,v;}) from (2.1). Here we verify
CNg({ui,v;}) = ¢. Suppose that x € CNg({u;,v;}). Then x is adjacent to v; in G
and x =u; by the assumption (2). Hence, u; is adjacent to u; in G. This
contradicts the assumption (3).

For any MW¢, ¢ M eB(G)NB(H), we obtain CNgny(M), # ¢ by the
assumption with respect to the graph GNH and (4). Therefore,
Muyg, o MeB(GNH).

For any M, W M, e B(G)NB(H) such that M| # ¢ # M>, we notice that
G[M,, M>] and H[M,, M;] are complete. Hence, we conclude that (GN H)[M;, M|
is complete, and hence, M, W M, € B(GN H). Therefore, we have B(G) NB(H) <
B(GNH). O

For the union GU H satisfying the condition of Theorem 3.3, an upper
bound for its chromatic number is given in the following:
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PrOPOSITION 3.6. Let GU H be the union of two graphs G and H satisfying
the condition of Theorem 3.3. Let I, :=|{ca(w),...,cu(ur)}|, where cg is a
x(H)-coloring of H. Then, there is a max{y(G) + I, x(H)}-coloring ¢ of GUH
such that c|yyy = cn.

Proor. Let cy: V(H)— {l,...,x(H)} be a y(H)-coloring of H. Without
loss of generality, we may assume {cy(u1),...,cuy(ux)} =41,...,1.,}. We define
a map ¢ on V(GUH) as an extension of c¢y. First, we define

c(v) = cu(v) (3.1)

for all ve V(H). Next, we define ¢ on V(G)\V(H). Take a y(G)-coloring ¢ of
G and let Vy,..., V) be the color classes of V/(G) given by cg. Then, we define

c(v)y=1., +i (3.2)

for ve V;\ V(GNH) and each i =1,...,y(G). We notice that ¢(V(G)\V(H)) =
{l,+1,...,1L, +x(G)}. Since {uy,...,u;} is independent in G and vy,...,v; are
endvertices of G, we see that the map ¢ defined by (3.1) and (3.2) is a
max{y(G) + I, y(H)}-coloring of GUH. I

COROLLARY 3.7. We assume that the union GUH of two graphs G and
H satisfies the condition of Theorem 3.3. Moreover we assume that {v,..., v}
is independent in H. Then, there is a min{max{y(G)+1,,x(H)},
max{y(H) + l.,, x(G)}}-coloring of GUH. O

DerFINITION 3.8, Let H be a graph satisfying the condition of Theorem 3.3.
We define
Iy :=min{/,, | cy is a y(H)-coloring of H}.

We remark that /y <2. We take a y(H)-coloring ¢y of H and a number
ne{l,....y(H)} with n # cy(v1). Assume that /., = |[{cy(u;)|i=1,...,k}| = 3.
Then, we can take another y(H)-coloring c¢j of H defined as follows:

{CH(U) ifoe V(H)\ {u,...,u},

cp(vr) if v=u; and cy(v;) # cu(v1),
n if v=uw; and cy(v;) = cy(v1).

Then, we have Iy < lc[/’ =2.

As a consequence of Proposition 3.6, we have the following.

THEOREM 3.9. Let GU H be the union of two graphs G and H satisfying the
condition of Theorem 3.3 and let k = |E(GNH)|.
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(1) If k=2, then we have

2(GUH) <max{y(G) + Iy, x(H)}.
(2) If k=1, we have

2(GUH) = max{y(G), z(H)}.

ProOF. Our statement (1) follows from Proposition 3.6. We prove (2). If
k =1, without loss of generality, we may assume y(G) > y(H). First, take a
x(G)-coloring ¢ : V(G) — {1,...,x(G)} of G and a y(H)-coloring cy : V(H) —
{1,...,x(H)} of H. We define a map ¢ on V(GUH) as an extension of cy.
First, put ¢(v) = cy(v) for ve V(H). Notice that cy(u;) € {1,...,x(G)}. Then,
take the transposition (cg(V)cy(uy)) on {1,...,x(G)}, where V is the color
class of V(G) given by c¢g containing u;. Then, we define ¢(V(G)\ V(H)) =
((cg(V)cr(ur)) o cg)(V(G) \ V(H)). We see that the map c is a y(G)-coloring of
GUH. O

In view of (1.1) and Theorem 3.9, it is natural to compute indz,(||B(GU H)||)
for the union GU H satisfying the condition of Theorem 3.3. Recall that

B(G)NB(H)=B(GNH) ={u;Wv;,vo; u;|i=1,... k},
the disjoint union of 2k 1-simplices, since the intersection G'N H consists of

disjoint k& edges.

THEOREM 3.10. Let GU H be the union of two graphs G and H which satisfies
the condition of Theorem 3.3.
(1) 1f max{indz,(IB(G)]), indz,(IBH)I)} = 1, we have

indz, (|B(GU H)||) = max{indg, (|[B(G)|)), indg, (||[B(H)]|)}.
(2) 1f indz,([[B(G)[|) = indz, (|B(H)||) = 0, we have

indz, (|B(GUH)||) < 1.

Proor. We wuse the same notation used in Theorem 3.3. Let
m :=indz, (||B(G)||) and n := indz, (||B(H)||). Before we prove (1) and (2), we will
define Z,-maps |B(G)|| — S™ and |B(H)| — S” such that each u; W v; is mapped
to a point. By using these Z,-maps, we will construct a Z;-map
IB(GUH)|| — S!, where I :=max{m,n}.
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First, we construct a Z-map from ||B(G)|| to S such that each u; Wuv; is
mapped to a point. Let K:=B(G\{vy,...,v}). We define a simplicial Z,-map
fi :B(G) - K as

fNipwu) =u W, filvibd) =dWu;

and fi(v) =v for any other vertex v of B(G). We take a Z,-map f, as the
composition

Kl = [B(G)]| — ™,

where the latter map is an arbitrary Z,-map. Then, the composition f; o f] is a
desired Z,-map. Similarly, we can construct a Z,-map from ||B(H)|| to S” such
that each u; W v; is mapped to a point as follows. Let L := B(H\{u1,...,ux}). We
define a simplicial Z,-map ¢; : B(H) — L as

Gi(pBu) =viWg, gi(uiWe) =gy

and g;(v) =v for any other vertex v of B(H). Let g, be the composition
L]l = |IB(H)|| — S”, where the latter map is an arbitrary Z,-map. The com-
position g og; is a Z,-map such that each u; Wv; is mapped to a point.

Next, to construct a Z,-map from ||B(GU H)|| to S/, we need the following
claim:

Ciamm. If m>1 and m >n, there exist Z,-maps f;: ||K|| — S”*! and
g3 : |ILJ| — S$”*! such that

* fiwi W) =g3(pWu;) and f3(¢Wu;) = g3(v; W ¢) for all i,

+ the union im f3 Uim g3 does not contain the north and south poles of S"*!.
We show Claim. Let 7 : S” — S™ be the inclusion defined by /(x) = (x,0,...,0)
and a:S™! — S”*! the antipodal map. By the continuity of f : [|K| — S
and ¢, : ||L|| — S", we can take a sufficiently large positive integer r > 1 so
that f5(lksgr k(s W ¢)) and gr(lksqr (¢ Wv;)) contain no pair of antipodal points
for each i. Since m > 1, the sphere S” is not covered with the union
ao fr(lksgrk(u; W) Uaol oga(lksgr (¢ Wv;)). Hence, we see

Xi:=8"\(ao folksgrk(t; & $)) Ua oI o ga(lkearL(§ W vi)))

is nonempty. Then, we take a point w; € S”*! that belongs to the interior of
{i |x e px X,-}, where p is the north pole of S”*! and p x X; is the Euclidean

[Ix[
cone on X; with p.
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For each i, we modify f; on neighborhoods steyrk(u; W ¢) and stsqrk(é W u;)
to obtain a Z,-map f3 that maps u;W¢ to w; and gWu; to a(w;). For any
X € stegrk(u; W) \u; W ¢, there exists the unique point y, € lkgyrk(u; W @) such
that x is represented by (1 — )y, + t(u; W ¢) for some te€ (0,1). Similarly, for
X € stegrk (@ Wu;)\@ Wu;, there exists a unique point z, € lkggr k(¢ Wu;) such that
x is represented by (1 — £)zy + t(¢ Wu;) for some ¢ € (0,1). Since r > 1, for i # j,
we see

Stear k (4 & @) Nstegr k(1 & §) = ¢ = Stegrk (i W ) Nstsgri (¢ W uy).

We define a Z,-map f; : ||sd” K| — S”*! as follows:
Uy d— w, dWu; — a(w;),
x=(=0)yx+1(u ¥ ¢)

N (1 =0)(f2(yx),0) + tw;
T 000, 0) + owi]

x=(1 =tz +t(¢Wu;)

(1 = 0)(f2(2x), 0) + t(a(wi))
(1 = 0)(f2(2x), 0) + t(a(wi))|

x = (f2(x),0) otherwise.

if xe Stsd"K(ul’ ] ¢)\H, ] ¢,

if xe Stsd’ K(¢ () u,)\g/) ] u;,

Similarly, we can modify 7 o g, to obtain a Z,-map g3 : [|sd” L|| — S™*! such that
g3(p W v;) = w; and g3(v; W @) = a(w;). By the choice of points {w;}, we see that
the union im f3 Uim g3 does not contain the north and south poles of S”*!. This
completes the proof of Claim.

We prove (1). We assume m > n. We define a Z,-map & : |[|B(GUH)| —
Sm+l as

(o)) if xelBG)],
h(x)‘{@gogl)(x) if xe |B(H)].

and define a Z,-map h’: S\ {p,a(p)} — S™ as

1
(X150 Xong2) = —= (X1, X 1)

o y2
1 Xin+2

We can regard h as a Zp-map from ||[B(GUH)| to S"™\{p,a(p)}. Then,
the composition #'oh is a Zy-map from |[|B(GUH)| to S™, and hence,
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indz, (|B(GU H)||) <m. On the other hand, we see that ||B(G)|| and ||B(H)||
are contained in ||B(GUH)|| as Zj,-subcomplexes, and hence, we have
indz, (||B(GU H)||) = m. Similarly, if m < n, we obtain a Z,-map from ||B(GU H)||
to S” by the same argument as above. The statement (1) is proved.

We prove (2). If m =n =0, it is not always possible to construct f;3 and g3
so that they satisfy the latter condition of Claim; Example 3.11 is one of such
examples. However, we may repeat the argument of Claim by taking {w;} as
arbitrary points of the upper semicircle of S'. Then, the map /4 is a desired
Z,-map from |[B(GUH)| to S!. Hence, the statement (2) follows. O

ExampLE 3.11. For a cycle Cs of length 5, ||B(Cs)|| is Z,-homotopy equiv-
alent to S!, and hence, indgz,(||B(Cs)||) = 1. On the other hand, Cs is decom-
posed into P, and P; such that these satisfy the sufficient condition of Theorem
3.3. Since indz, (||B(P)||) = 0 for any path P, the inequality of Theorem 3.10 (2)
is optimal.

ExampLE 3.12. Let G be the graph defined by
V(G)={x,u1,...,up,v1,...,0, and
E(G):{xul|l: 17"'an}U{uivi|i: 17"',”}7

where n>4. Let H be the graph K, + {uwv;|i=1,...,n}, where V(K,)=
{vi,...,v,}. Then, we notice indz,(||B(G)||) =0 and indg,(||B(H)||) =n—2.
By Theorem 3.10 (1), we see indz,(|B(GUH)||)=n—2. We also have
7(GUH) < max{4,n} = n by Theorem 3.9 (1). Hence, we see that the inequality
of Theorem 3.9 (1) is optimal by the inequality (1.1).

For the union GU H satisfying the condition of Theorem 3.3, we obtain

indz, (|B(GU H)||) + 2 = max{indg, ([|B(G)|)), indg, ([[B(H)]|)} + 2

"2 max{4(G), £(H)} < 1(GUH)

by Theorem 3.10 (1) and the inequality (1.1), if max{indg,(||B(G)|)),
indz, (||B(H)||)} = 1. The lower bound indz,(||B(GU H)||) + 2 is not better than
the trivial one max{y(G),x(H)} for y(GUH).

4. Appendix: Addendum to [2]

Here we supplement to section 4 of [2]. For a graph G, let G be an abstract

simplicial complex with the vertex set V(G) = V(B(G)) defined by
G={uWov¥d ddudWvuvv,vdu|ue E(G)}.
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We notice that G is a free Z,-subcomplex of B(G) with the restriction of the
free Z,-action on B(G). In [2], the author proved that a graph G contains no 4-
cycles if and only if |G| is a strong Z,-deformation retract of ||B(G)||. The Z,-
subcomplex G is a natural double covering of G with the map V(G) — V(G)
defined by vW ¢, ¢ Wv— v for each ve V(G).

Let T be a spanning tree 7 of G. Then, the graph G is obtained from T
by adding finitely many edges {uivi}le, where u;v; € E(G)\E(T). Then, we see
G=TU{uy v, u,-}l-lzl. Since all trees are bipartite, V(T is the disjoint union
of the partite sets 4 and B. Let T! = T x {1} and T? = T x {2} be the copies
of T with V(T') = A'1I B! and V(T?) = A>11 B?, where A' = A4 x {1}, 4% =
Ax {2}, Bl = Bx {1} and B*> = B x {2}. Then, we notice that T is isomorphic
to the disjoint union 7' IT 7% of two copies of T by the following correspondence
V(T' 11 T?) — V(T):

(a,1)eAd' —awg, (b,1)eB' — Wb,

(a,2) e A* — ¢pWa, (b,2)eB*—bWe.

We consider the unique path P in T connecting u; to v; for each i. If we add
an edge uv; to T so that T'U{w;v;} contains a cycle of even length, the path P
is of odd length. Then, we notice u; W ¢ and ¢ W v; belong to the same compo-
nent of 7 and ¢Wu; and v; W ¢ belong to the other component of T. Hence,
T U {u; W, v; Wu;} is disconnected. If we add an edge wv; to T so that T U {u;v;}
contains a cycle of odd length, the path P is of even length. Then we see u; W ¢ and
v; & ¢ belong to the same component of T and ¢ W u; and ¢ & v; belong to the other
component of 7. Hence, TU {w; Wv;,v; Wu,;} is connected. Repeating this con-
sideration for edges u;vy,...,uv;, we see that G is disconnected if and only if G
contains no cycles of odd length, or equivalently, G is bipartite (see [1], Theorem
1.6.1).

THEOREM 4.1. Let G be a connected graph with k induced cycles of G.
(1) If G contains no cycles of odd length, we have ||G|| ~\/, S'II \/, S'.
(2) If G contains at least one cycle of odd length, we have ||G|| ~\/,,_, S'.

ProoF. By the preceding argument, the statement (1) holds. Let G be a
connected graph which contains at least one cycle of odd length. Then, it follows
that G is connected. Since the Euler characteristic xé of G is twice as large as that
of G, we see
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rank H)(G) =1 —yg=1-2-75=1-2(1—k) =2k — 1,

and hence, the statement (2) follows. O

THEOREM 4.2. Let G be a connected graph. Then, B(G) is connected if and
only if G is connected.

PrOOF. Let G be a connected graph. If B(G) is disconnected, then G is
disconnected since G is a subcomplex of B(G) with V(G) = V(B(G)).

Conversely, we assume that G is disconnected. Then, we see that G contains
no cycles of odd length, and hence, G is isomorphic to the disjoint union G II G.
Suppose that B(G) is connected. Then, for the two vertices uW ¢ and ¢ Wu of
B(G), there exist the vertices vy,...,v, of B(G) such that vy =uWg¢, v, =PWu
and each v;v;1; € B(G). Every l-simplex of B(G) is one of the following forms:
xWy, ywWx, {x,y}W¢ and ¢W{x, y}, in particular, x& y and y W x are sim-
plices of G. If the 1-simplex v;v;11 € B(G) is the form {x, y} W ¢, then there is a
vertex z € V(G) such that z € CNg({x, y}). The two vertices v; and v;;| are joined
by two simplices x Wz and z@ y of G. Similarly, if the 1-simplex v;v;1 € B(G) is
the form ¢ & {x, y}, we can join the two vertices v; and v;y; by simplices of G.
Thus, uW ¢ and ¢ W u are joined by simplices of G. This contradicts the fact that
uw¢$ and ¢Wu do not belong to the same component of G. ]
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