SUBCOMPLEXES OF BOX COMPLEXES OF GRAPHS

By

Akira Kamibeppu

Abstract. The box complex $\mathsf{B}(G)$ of a graph G is a simplicial \mathbb{Z}_2 -complex defined by J. Matoušek and G. M. Ziegler in [4]. They proved that $\chi(G) \geq \operatorname{ind}_{\mathbb{Z}_2}(\|\mathsf{B}(G)\|) + 2$, where $\chi(G)$ is the chromatic number of G and $\operatorname{ind}_{\mathbb{Z}_2}(\|\mathsf{B}(G)\|)$ is the \mathbb{Z}_2 -index of $\mathsf{B}(G)$. In this paper, to study topology of box complexes, for the union $G \cup H$ of two graphs G and G, we compare $\mathsf{B}(G \cup H)$ with its subcomplex $\mathsf{B}(G) \cup \mathsf{B}(H)$. We give a sufficient condition on G and G so that $\mathsf{B}(G \cup H) = \mathsf{B}(G) \cup \mathsf{B}(H)$ and $\mathsf{B}(G \cap H) = \mathsf{B}(G) \cap \mathsf{B}(H)$ hold. Moreover, under that condition, we show

$$\max\{\chi(G),\chi(H)\} \le \chi(G \cup H) \le \max\{\chi(G) + l_H,\chi(H)\},$$

where l_H is the number defined in Definition 3.8. Also we prove

$$\operatorname{ind}_{\mathbb{Z}_2}(\|\mathsf{B}(G \cup H)\|) = \max\{\operatorname{ind}_{\mathbb{Z}_2}(\|\mathsf{B}(G)\|), \operatorname{ind}_{\mathbb{Z}_2}(\|\mathsf{B}(H)\|)\}$$

if $\max\{\inf_{\mathbf{Z}}, (\|\mathsf{B}(G)\|), \inf_{\mathbf{Z}}, (\|\mathsf{B}(H)\|)\} \ge 1$.

The complex B(G) of a graph G contains a 1-dimensional free \mathbb{Z}_2 -subcomplex \overline{G} of B(G), defined in [2]. As a supplement to [2], we show that for a connected graph G, B(G) is disconnected if and only if \overline{G} is disconnected if and only if G contains no cycles of odd length, or equivalently, G is bipartite.

1. Introduction

In this paper, we assume that all graphs are finite, simple, undirected and connected. The box complex $\mathsf{B}(G)$ of a graph G is introduced in [4] by J. Matoušek and G. M. Ziegler as one of applications of topological methods to

E-mail address: akira04k16@math.tsukuba.ac.jp

Received April 2, 2008.

Revised September 1, 2008.

^{*}Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8571, Japan.

obtain a lower bound for the chromatic number $\chi(G)$ of G. The following theorem, in [4], indicates that a lower bound for $\chi(G)$ is obtained from the topology of the complex B(G) of G.

Theorem 1.1 ([4], p. 81). For any graph
$$G$$
, we have
$$\chi(G) \ge \operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G)\|) + 2. \tag{1.1}$$

This motivates us to study the relation between topology of box complexes and combinatorics of graphs. In order to obtain a lower bound for $\chi(G)$ by the inequality (1.1), we need to know the \mathbb{Z}_2 -index of $\|B(G)\|$, while it is not easy in general to obtain topological information of B(G) from the definition except for a few examples: complete graphs, paths and cycles etc.

To study the complex $\|B(G)\|$, we decompose G into subgraphs G_1, \ldots, G_k and compare B(G) with $\bigcup_{i=1}^k B(G_i)$. It is easy to see that B(G) contains $\bigcup_{i=1}^k B(G_i)$ as a subcomplex. One cannot hope that $B(G) = \bigcup_{i=1}^k B(G_i)$ and for $i, j = 1, \ldots, k$, $B(G_i) \cap B(G_j) = B(G_i \cap G_j)$ in general. We confine ourselves to the case k = 2. For the union $G \cup H$ of two graphs G and H, we give a sufficient condition under which $B(G \cup H) = B(G) \cup B(H)$ and $B(G) \cap B(H) = B(G \cap H)$ hold (see Theorem 3.3). For such a graph $G \cup H$, we obtain the following estimate of the chromatic number $\chi(G \cup H)$ in Theorem 3.9:

$$\max\{\chi(G), \chi(H)\} \le \chi(G \cup H) \le \max\{\chi(G) + l_H, \chi(H)\},\tag{1.2}$$

where l_H is the number defined in Definition 3.8. In view of (1.1) and (1.2), it is natural to seek an estimate of $\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G \cup H)\|)$. We prove

$$\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathsf{B}(G \cup H)\|) = \max\{\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathsf{B}(G)\|), \operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathsf{B}(H)\|)\} \tag{1.3}$$

if $\max\{\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G)\|),\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(H)\|)\} \geq 1$ (see Theorem 3.10). The inequalities (1.1), (1.2) and the equality (1.3) imply that, for the union $G \cup H$ satisfying the condition of Theorem 3.3, the lower bound $\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G \cup H)\|) + 2$ is not better than the trivial one $\max\{\chi(G),\chi(H)\}$ for $\chi(G \cup H)$.

Appendix is a supplement to section 4 of [2]. In [2], a 1-dimensional free \mathbb{Z}_2 -complex \overline{G} is defined as a subcomplex of $\mathsf{B}(G)$. It is proved that a graph G contains no 4-cycles if and only if $\|\overline{G}\|$ is a strong \mathbb{Z}_2 -deformation retract of $\|\mathsf{B}(G)\|$ ([2], Theorem 4.3). This indicates $\inf_{\mathbb{Z}_2}(\|\mathsf{B}(G)\|) = \inf_{\mathbb{Z}_2}(\|\overline{G}\|) \le 1$ when G contains no 4-cycles. In appendix, we investigate the relation between $\mathsf{B}(G)$ and \overline{G} for a general graph G. It turns out that \overline{G} is a natural double covering of G. We prove that $\mathsf{B}(G)$ is disconnected if and only if \overline{G} is disconnected (see Theorem 4.2) if and only if G contains no cycles of odd length, or equivalently, G is bipartite (see [1], Theorem 1.6.1).

2. Preliminaries

First, we recall some basic notions on graphs, abstract simplicial complexes, and the \mathbb{Z}_2 -index of a \mathbb{Z}_2 -space. We follow [1] about the standard notation in graph theory.

A graph is a pair G = (V(G), E(G)), where V(G) is a finite set and E(G) is a family of 2-element subsets of V(G). Under this definition, every graph is simple, that is, it has no loops and multiple edges. Elements of V(G) are called vertices of G and those of E(G) are called edges of G. Two vertices G and G are adjacent, if G is an edge of G and edge G and those of G are adjacent, if G is an edge of G and the interval G is said to be independent in G, if no two vertices of G are adjacent in G and G are adjacent to one vertex of G is called an endvertex. For two graphs G and G is only adjacent to one vertex of G is called an endvertex. For two graphs G and G is an endvertex of $G \cap G$ is defined by $G \cap G$ in the intersection $G \cap G$ is defined by $G \cap G$ in the intersection $G \cap G$ is defined by $G \cap G$ in the intersection $G \cap G$ is defined by $G \cap G$ in the intersection $G \cap G$ is a map $G \cap G$ in the intersection of $G \cap G$. The chromatic number of G denoted by $G \cap G$ is the minimum number $G \cap G$ such that there exists a $G \cap G$ denoted by $G \cap G$ is the minimum number $G \cap G$ such that there exists a $G \cap G$ denoted by $G \cap G$ is the

An abstract simplicial complex is a pair (V, K), where V is a finite set and K is a family of subsets of V such that if $\sigma \in K$ and $\tau \subset \sigma$, then $\tau \in K$. The polyhedron of K is denoted by ||K||. The nth barycentric subdivision of K is denoted by ||K||. For a vertex v of K, the star of V in K, denoted by ||K||, is the union of all interiors of simplices of K which contain V. The link of V in K, denoted by ||K||(v), is the set ||K||(v), where ||K||(v) is the union of all simplices with V.

A \mathbb{Z}_2 -space (X, v_X) is a topological space X with a homeomorphism $v: X \to X$ such that $v^2 = \mathrm{id}_X$, called a \mathbb{Z}_2 -action v on X. A \mathbb{Z}_2 -action which has no fixed points is said to be *free* (and a space X with a free \mathbb{Z}_2 -action is also said to be a *free* \mathbb{Z}_2 -space).

EXAMPLE 2.1. The *n*-dimensional sphere $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}$ with the antipodal map $x \mapsto -x$ is a free \mathbb{Z}_2 -space. We always think of S^n as a free \mathbb{Z}_2 -space with this action.

For two \mathbb{Z}_2 -spaces (X, ν_X) and (Y, ν_Y) , a continuous map $f: X \to Y$ which satisfies $\nu_Y \circ f = f \circ \nu_X$ is called a \mathbb{Z}_2 -map from X to Y. For a \mathbb{Z}_2 -space (X, ν) , the \mathbb{Z}_2 -index of (X, ν) is defined as

$$\operatorname{ind}_{\mathbb{Z}_2}(X, \nu) := \min\{n \mid \text{there is a } \mathbb{Z}_2\text{-map } X \to S^n\}.$$

Next, following [3], we introduce the box complex of a graph. Let G be a graph and A a subset of V(G). A vertex v of G is called a *common neighbor* of A if $va \in E(G)$ for all $a \in A$. The set of all common neighbors of A is denoted by $CN_G(A)$. For a one point set $\{a\}$, we see $CN_G(\{a\})$ is the set of all neighbors of a in G. It is simply denoted by $CN_G(a)$. For convenience, we define $CN_G(\phi) = V(G)$. The following holds:

$$A \subseteq B \Rightarrow \operatorname{CN}_G(A) \supseteq \operatorname{CN}_G(B).$$
 (2.1)

For $A_1, A_2 \subseteq V(G)$ such that $A_1 \cap A_2 = \phi$, we define $G[A_1, A_2]$ as the bipartite subgraph of G with

$$V(G[A_1, A_2]) = A_1 \cup A_2$$
 and $E(G[A_1, A_2]) = \{a_1 a_2 \in E(G) \mid a_1 \in A_1, a_2 \in A_2\}.$

The bipartite subgraph $G[A_1, A_2]$ is said to be *complete* if $a_1a_2 \in E(G)$ for all $a_1 \in A_1$ and $a_2 \in A_2$. For convenience, $G[\phi, A_2]$ and $G[A_1, \phi]$ are also said to be complete.

Let A_1 and A_2 be subsets of V(G). The subset $A_1 \uplus A_2$ of $V(G) \times \{1,2\}$ is defined as

$$A_1 \uplus A_2 := (A_1 \times \{1\}) \cup (A_2 \times \{2\}).$$

For vertices $a_1, a_2 \in V(G)$, $\{a_1\} \uplus \phi$, $\phi \uplus \{a_2\}$, and $\{a_1\} \uplus \{a_2\}$ are simply denoted by $a_1 \uplus \phi$, $\phi \uplus a_2$ and $a_1 \uplus a_2$ respectively.

The box complex of a graph G is an abstract simplicial complex with the vertex set $V(G) \times \{1,2\}$ defined by

$$\mathsf{B}(G) = \{ A_1 \uplus A_2 \mid A_1, A_2 \subseteq V(G), A_1 \cap A_2 = \emptyset, \\ G[A_1, A_2] \text{ is complete, } \mathsf{CN}_G(A_1) \neq \emptyset \neq \mathsf{CN}_G(A_2) \}.$$

Whenever we consider the polyhedron $\|B(G)\|$, an abstract simplex $A_1 \uplus A_2$ and its geometric simplex are denoted by the same symbol $A_1 \uplus A_2$. The simplicial map $v : V(B(G)) \to V(B(G))$ defined by

$$v \uplus \phi \mapsto \phi \uplus v$$
 and $\phi \uplus v \mapsto v \uplus \phi$ for all $v \in V(G)$

induces a free \mathbb{Z}_2 -action on $\|\mathsf{B}(G)\|$. We always think of $\|\mathsf{B}(G)\|$ as a free \mathbb{Z}_2 -space with this action.

3. Decomposition of Box Complexes

In this section, to study the box complex B(G) of a graph G, first we take a decomposition $G = \bigcup_{i=1}^k G_i$ and compare B(G) with its subcomplex

 $\bigcup_{i=1}^k \mathsf{B}(G_i)$. In the following theorem, we give a sufficient condition so that $\mathsf{B}(G) = \bigcup_{i=1}^k \mathsf{B}(G_i)$.

THEOREM 3.1. Let G be a graph and assume that G is represented by the union $G = \bigcup_{i=1}^k G_i$, where G_1, \ldots, G_k are the subgraphs of G such that

for each maximal subset $M_1 \uplus M_2 \subseteq V(G) \times \{1,2\}$ with respect to the condition $G[M_1, M_2]$ is complete, there is an $i \in \{1, ..., k\}$ so that $G_i[M_1, M_2]$ is complete.

Then we obtain

$$\mathsf{B}(G) = \bigcup_{i=1}^k \; \mathsf{B}(G_i).$$

Before proving this theorem, we prove the following lemma.

LEMMA 3.2. Let $G = \bigcup_{i=1}^k G_i$ be a graph and assume that G_1, \ldots, G_k satisfy the assumption of Theorem 3.1. Then for any subset $A \subseteq V(G)$ such that $CN_G(A) \neq \emptyset$, there is an $i \in \{1, \ldots, k\}$ such that $CN_{G_i}(A) \neq \emptyset$.

PROOF. For a subset A of V(G) such that $CN_G(A) \neq \phi$, we notice that $G[A, CN_G(A)]$ is complete. Let $M_1 \uplus M_2$ be a maximal subset of $V(G) \times \{1, 2\}$ with respect to $A \subseteq M_1$, $CN_G(A) \subseteq M_2$ and the condition $G[M_1, M_2]$ is complete. By the assumption, there is an $i \in \{1, \ldots, k\}$ such that $G_i[M_1, M_2]$ is complete. Hence, we see $G_i[A, CN_G(A)]$ is complete. Thus, we obtain $CN_{G_i}(A) \supseteq CN_G(A) \neq \phi$, and hence, $CN_{G_i}(A) \neq \phi$.

PROOF OF THEOREM 3.1. It follows from the definition of box complex that $B(G) \supset \bigcup_{i=1}^k B(G_i)$. To show $B(G) \subset \bigcup_{i=1}^k B(G_i)$, we prove that each simplex of B(G) is a simplex of some $B(G_i)$.

- (i) For each simplex of the form $A \uplus \phi, \phi \uplus A \in B(G)$, where A is nonempty, we have $CN_G(A) \neq \phi$. By Lemma 3.2, there is an $i \in \{1, ..., k\}$ such that $CN_{G_i}(A) \neq \phi$. Thus, $A \uplus \phi, \phi \uplus A \in B(G_i)$.
- (ii) For each simplex of the form $A_1 \uplus A_2 \in \mathsf{B}(G)$, where both A_1 and A_2 are nonempty, let $M_1 \uplus M_2$ be a maximal subset of $V(G) \times \{1,2\}$ with respect to $A_1 \subseteq M_1$, $A_2 \subseteq M_2$ and the condition $G[M_1, M_2]$ is complete. By the assumption of this theorem, there is an $i \in \{1, \ldots, k\}$ such that $G_i[M_1, M_2]$ is complete. Then, we see that $G_i[A_1, A_2]$ is complete, and hence, $A_1 \uplus A_2 \in \mathsf{B}(G_i)$.

These prove the desired inclusion
$$B(G) \subset \bigcup_{i=1}^k B(G_i)$$
.

In what follows, we confine ourselves to the case k=2. Next, we present a sufficient condition on $G \cup H$ such that $\mathsf{B}(G) \cap \mathsf{B}(H) = \mathsf{B}(G \cap H)$ in addition to $\mathsf{B}(G \cup H) = \mathsf{B}(G) \cup \mathsf{B}(H)$.

THEOREM 3.3. Let $G \cup H$ be the union of two graphs G and H, and assume that the intersection $G \cap H$ is of the form:

$$V(G \cap H) = \{u_1, \dots, u_k, v_1, \dots, v_k\}$$
 and $E(G \cap H) = \{u_i v_i | i = 1, \dots, k\}.$

Further we assume that

- (1) u_1, \ldots, u_k are endvertices of H,
- (2) v_1, \ldots, v_k are endvertices of G and
- (3) the set $\{u_1, \ldots, u_k\}$ is independent in G.

Then, we obtain

$$\mathsf{B}(G \cup H) = \mathsf{B}(G) \cup \mathsf{B}(H)$$
 and $\mathsf{B}(G \cap H) = \mathsf{B}(G) \cap \mathsf{B}(H)$.

Note. Under the condition of Theorem 3.3, we notice $u_i v_j \notin E(G \cup H)$ for $i \neq j$. Indeed, we see $u_i v_j \notin E(H)$ for $i \neq j$ by (1) and $u_i v_i \in E(H)$. We obtain $u_i v_i \notin E(G)$ for $i \neq j$ by (2) and $u_i v_i \in E(G)$.

Also we notice that

$$\mathsf{B}(G\cap H)=\{u_i\uplus v_i,\,v_i\uplus u_i\,|\,i=1,\ldots,k\},\,$$

the disjoint union of 2k 1-simplices, since the intersection $G \cap H$ consists of disjoint k edges.

To prove $B(G \cup H) = B(G) \cup B(H)$ for the union $G \cup H$ with the condition given in Theorem 3.3, we present the following two lemmas.

Lemma 3.4. Let $G \cup H$ be the union of two graphs G and H with the intersection $G \cap H$ defined by

$$V(G \cap H) = \{u_1, \dots, u_k, v_1, \dots, v_k\}$$
 and $E(G \cap H) = \{u_i v_i \mid i = 1, \dots, k\}.$

We assume (1) and (2) of Theorem 3.3. If $(G \cup H)[M_1, M_2]$ is complete, we have

$$M_1, M_2 \subseteq V(G)$$
 or $M_1, M_2 \subseteq V(H)$.

PROOF. We assume $(G \cup H)[M_1, M_2]$ is complete. Suppose that

"
$$M_1 \not\subset V(G)$$
 or $M_2 \not\subset V(G)$ " and " $M_1 \not\subset V(H)$ or $M_2 \not\subset V(H)$ ".

Our consideration is divided into four cases.

Case 1. $M_1 \neq V(G)$ and $M_1 \neq V(H)$. There are two vertices $m_1, m_1' \in M_1$ such that $m_1 \in V(H) \setminus V(G)$ and $m_1' \in V(G) \setminus V(H)$. Then, we show that

for any $m_2 \in M_2$, either m_1 or m_1' is not adjacent to m_2 in $G \cup H$. (*)

If both m_1 and m_1' are adjacent to m_2 in $G \cup H$, we notice $m_1m_2 \in E(H)$ and $m_1'm_2 \in E(G)$ since $m_1 \notin V(G)$ and $m_1' \notin V(H)$. Then, we see $m_2 \in V(G \cap H) = \{u_1, \ldots, u_k, v_1, \ldots, v_k\}$. If $m_2 = u_i$, then $m_1 = v_i \in V(G)$ by the assumptions (1) and $u_iv_i, m_1u_i \in E(H)$. This contradicts the choice of $m_1 \notin V(G)$. If $m_2 = v_j$, then $m_1' = u_j \in V(H)$ by the assumptions (2) and $u_jv_j, m_1'm_2 \in E(G)$. This also contradicts the choice of $m_1' \notin V(H)$.

However, the statement (*) contradicts the assumption that $(G \cup H)[M_1, M_2]$ is complete.

- Case 2. $M_2 \neq V(G)$ and $M_2 \neq V(H)$. We can derive a contradiction from the same argument as above **Case 1**.
- Case 3. $M_1 \neq V(G)$ and $M_2 \neq V(H)$. There are two vertices $m_1 \in M_1$ and $m_2 \in M_2$ such that $m_1 \in V(H) \setminus V(G)$ and $m_2 \in V(G) \setminus V(H)$. Then, m_1 is not adjacent to m_2 in $G \cup H$. This contradicts the assumption that $(G \cup H)[M_1, M_2]$ is complete.
- Case 4. $M_2 \neq V(G)$ and $M_1 \neq V(H)$. We can derive a contradiction from the same argument as above Case 3.

In all cases, we derived contradictions, and hence, our statement is proved.

LEMMA 3.5. Let $G \cup H$ be the union of two graphs G and H with the intersection $G \cap H$ defined by

$$V(G \cap H) = \{u_1, \dots, u_k, v_1, \dots, v_k\}$$
 and $E(G \cap H) = \{u_i v_i | i = 1, \dots, k\}.$

We assume the condition of Theorem 3.3. If $(G \cup H)[M_1, M_2]$ is complete, we have

 $G[M_1, M_2]$ is complete or $H[M_1, M_2]$ is complete.

PROOF. We assume that $(G \cup H)[M_1, M_2]$ is complete. By Lemma 3.4, we see $M_1, M_2 \subset V(G)$ or $M_1, M_2 \subset V(H)$. Suppose that neither $G[M_1, M_2]$ nor $H[M_1, M_2]$ is complete. Our consideration is divided into two cases.

Case 1. $M_1, M_2 \subset V(G)$. As $G[M_1, M_2]$ is not complete, there are two vertices $m_1 \in M_1$ and $m_2 \in M_2$ such that $m_1 m_2 \in E(H) \setminus E(G)$. Hence, we see

Figure. The union $G \cup H$ of two graphs G and H.

 $m_1, m_2 \in V(G \cap H) = \{u_1, \dots, u_k, v_1, \dots, v_k\}$. Since $m_1 m_2 \in E(H) \setminus E(G)$, we notice that both m_1 and m_2 belong to $\{v_1, \dots, v_k\}$ by the assumption (1). Let $m_1 = v_i$ and $m_2 = v_i$ (see Figure).

On the other hand, since $H[M_1, M_2]$ is not complete, there are two vertices $m_1' \in M_1$ and $m_2' \in M_2$ such that $m_1'm_2' \in E(G) \setminus E(H)$. Then, we show that

both
$$m'_1$$
 and m'_2 belong to $V(H)$. (**)

If not, we have $m_1' \in V(G) \setminus V(H)$ or $m_2' \in V(G) \setminus V(H)$. If $m_1' \in V(G) \setminus V(H)$, then we see

$$m_1'v_i = m_1'm_2 \in E(G \cup H) = E(G) \cup E(H),$$

since $(G \cup H)[M_1, M_2]$ is complete. As $m_1' \notin V(H)$, we see that m_1' is adjacent to v_j in G. Then, by the assumptions (2) and $u_j v_j \in E(G)$, we obtain $m_1' = u_j \in V(H)$, which contradicts the choice of $m_1' \notin V(H)$. Similarly, if $m_2' \in V(G) \setminus V(H)$, then we see

$$v_i m_2' = m_1 m_2' \in E(G \cup H) = E(G) \cup E(H).$$

By the same argument as above we obtain $m'_2 = u_i \in V(H)$, which contradicts the choice of $m'_2 \notin V(H)$. Hence (**) is proved.

By (**) and $m'_1m'_2 \in E(G)$, we see $m'_1, m'_2 \in V(G) \cap V(H) = \{u_1, \ldots, u_k, v_1, \ldots, v_k\}$. Since m'_1 is not adjacent to m'_2 in H, we see $\{m'_1, m'_2\} \neq \{u_i, v_i\}$ for any $i = 1, \ldots, k$. Moreover, we see $\{m'_1, m'_2\} \neq \{v_1, \ldots, v_k\}$ and $\{m'_1, m'_2\} \neq \{u_i, v_j\}$ $(i \neq j)$ by the assumption (2). Thus, we conclude that $\{m'_1, m'_2\} \subset \{u_1, \ldots, u_k\}$. This contradicts the assumption (3).

Case 2. $M_1, M_2 \subset V(H)$. Since $H[M_1, M_2]$ is not complete, there are $m_1 \in M_1$ and $m_2 \in M_2$ such that $m_1 m_2 \in E(G) \setminus E(H)$. Since $m_1, m_2 \in V(H)$ and $m_1 m_2 \in E(G)$, we see $m_1, m_2 \in V(G) \cap V(H) = \{u_1, \dots, u_k, v_1, \dots, v_k\}$. Then, we notice $\{m_1, m_2\} \not\subset \{u_1, \dots, u_k\}$ by the assumption (3). Moreover, we see $\{m_1, m_2\} \not\subset \{v_1, \dots, v_k\}$ and $\{m_1, m_2\} \not\subset \{u_i, v_i\}$ ($i \neq j$) by the assumption (2).

Therefore, there is an $i \in \{1, ..., k\}$ such that $m_1 m_2 = u_i v_i \in E(H)$. This contradicts the condition $m_1 m_2 \notin E(H)$.

These complete the proof of our statement.

PROOF OF THEOREM 3.3. For any maximal subset $M_1 \uplus M_2 \subseteq V(G) \times \{1,2\}$ with respect to the condition $(G \cup H)[M_1, M_2]$ is complete, we see that

$$G[M_1, M_2]$$
 is complete or $H[M_1, M_2]$ is complete,

by Lemma 3.5. Thus, we obtain $B(G \cup H) = B(G) \cup B(H)$ by Theorem 3.1.

Next, we show that $\mathsf{B}(G\cap H)=\mathsf{B}(G)\cap\mathsf{B}(H)$. It is easy to see that $\mathsf{B}(G\cap H)\subset\mathsf{B}(G)\cap\mathsf{B}(H)$, so we show that $\mathsf{B}(G\cap H)\supset\mathsf{B}(G)\cap\mathsf{B}(H)$. A nonempty set M such that $M\uplus\phi,\phi\uplus M\in\mathsf{B}(G)\cap\mathsf{B}(H)$ is a subset of $V(G)\cap V(H)=\{u_1,\ldots,u_k,v_1,\ldots,v_k\}$ and it also satisfies $\mathsf{CN}_G(M)\neq\phi$ and $\mathsf{CN}_H(M)\neq\phi$. We see that such a nonempty set M has precisely the following form:

$$M = \{u_i\}$$
 or $M = \{v_i\}$ $(i = 1, ..., k)$. (4)

Indeed, the common neighbors of $\{u_i\}$ and $\{v_i\}$ in G and in H are nonempty. On the other hand, we see that every subset M of $V(G) \cap V(H)$ which is neither $\{u_i\}$ nor $\{v_i\}$ satisfies one of the following three conditions:

(4.1)
$$M \subseteq \{u_1, \dots, u_k\}$$
 and $|M| \ge 2$; (4.2) $M \subseteq \{v_1, \dots, v_k\}$ and $|M| \ge 2$;

(4.3)
$$M \supseteq \{u_i, v_j\} \ (i, j = 1, \dots, k).$$

For (4.1), we see $CN_H(M) = \phi$ by the assumptions (1) and $u_i v_i \in E(H)$ for each i. For (4.2), we notice $CN_G(M) = \phi$ by the assumptions (2) and $u_i v_i \in E(G)$ for each i. For (4.3), we obtain $CN_G(M) \subseteq CN_G(\{u_i, v_j\})$ from (2.1). Here we verify $CN_G(\{u_i, v_j\}) = \phi$. Suppose that $x \in CN_G(\{u_i, v_j\})$. Then x is adjacent to v_j in G and $x = u_j$ by the assumption (2). Hence, u_i is adjacent to u_j in G. This contradicts the assumption (3).

For any $M \uplus \phi, \phi \uplus M \in \mathsf{B}(G) \cap \mathsf{B}(H)$, we obtain $\mathsf{CN}_{G \cap H}(M), \neq \phi$ by the assumption with respect to the graph $G \cap H$ and (4). Therefore, $M \uplus \phi, \phi \uplus M \in \mathsf{B}(G \cap H)$.

For any $M_1 \uplus M_2 \in \mathsf{B}(G) \cap \mathsf{B}(H)$ such that $M_1 \neq \phi \neq M_2$, we notice that $G[M_1, M_2]$ and $H[M_1, M_2]$ are complete. Hence, we conclude that $(G \cap H)[M_1, M_2]$ is complete, and hence, $M_1 \uplus M_2 \in \mathsf{B}(G \cap H)$. Therefore, we have $\mathsf{B}(G) \cap \mathsf{B}(H) \subset \mathsf{B}(G \cap H)$.

For the union $G \cup H$ satisfying the condition of Theorem 3.3, an upper bound for its chromatic number is given in the following:

PROPOSITION 3.6. Let $G \cup H$ be the union of two graphs G and H satisfying the condition of Theorem 3.3. Let $l_{c_H} := |\{c_H(u_1), \ldots, c_H(u_k)\}|$, where c_H is a $\chi(H)$ -coloring of H. Then, there is a $\max\{\chi(G) + l_{c_H}, \chi(H)\}$ -coloring c of $G \cup H$ such that $c|_{V(H)} = c_H$.

PROOF. Let $c_H: V(H) \to \{1, \dots, \chi(H)\}$ be a $\chi(H)$ -coloring of H. Without loss of generality, we may assume $\{c_H(u_1), \dots, c_H(u_k)\} = \{1, \dots, l_{c_H}\}$. We define a map c on $V(G \cup H)$ as an extension of c_H . First, we define

$$c(v) = c_H(v) \tag{3.1}$$

for all $v \in V(H)$. Next, we define c on $V(G) \setminus V(H)$. Take a $\chi(G)$ -coloring c_G of G and let $V_1, \ldots, V_{\chi(G)}$ be the color classes of V(G) given by c_G . Then, we define

$$c(v) = l_{c_H} + i \tag{3.2}$$

for $v \in V_i \setminus V(G \cap H)$ and each $i = 1, ..., \chi(G)$. We notice that $c(V(G) \setminus V(H)) = \{l_{c_H} + 1, ..., l_{c_H} + \chi(G)\}$. Since $\{u_1, ..., u_k\}$ is independent in G and $v_1, ..., v_k$ are endvertices of G, we see that the map c defined by (3.1) and (3.2) is a $\max\{\chi(G) + l_{c_H}, \chi(H)\}$ -coloring of $G \cup H$.

COROLLARY 3.7. We assume that the union $G \cup H$ of two graphs G and H satisfies the condition of Theorem 3.3. Moreover we assume that $\{v_1, \ldots, v_k\}$ is independent in H. Then, there is a $\min\{\max\{\chi(G) + l_{c_H}, \chi(H)\}, \max\{\chi(H) + l_{c_G}, \chi(G)\}\}$ -coloring of $G \cup H$.

DEFINITION 3.8. Let H be a graph satisfying the condition of Theorem 3.3. We define

$$l_H := \min\{l_{c_H} \mid c_H \text{ is a } \chi(H)\text{-coloring of } H\}.$$

We remark that $l_H \le 2$. We take a $\chi(H)$ -coloring c_H of H and a number $n \in \{1, \ldots, \chi(H)\}$ with $n \ne c_H(v_1)$. Assume that $l_{c_H} = |\{c_H(u_i) \mid i = 1, \ldots, k\}| \ge 3$. Then, we can take another $\chi(H)$ -coloring c_H' of H defined as follows:

$$c'_{H}(v) = \begin{cases} c_{H}(v) & \text{if } v \in V(H) \setminus \{u_{1}, \dots, u_{k}\}, \\ c_{H}(v_{1}) & \text{if } v = u_{i} \text{ and } c_{H}(v_{i}) \neq c_{H}(v_{1}), \\ n & \text{if } v = u_{i} \text{ and } c_{H}(v_{i}) = c_{H}(v_{1}). \end{cases}$$

Then, we have $l_H \leq l_{c'_H} = 2$.

As a consequence of Proposition 3.6, we have the following.

THEOREM 3.9. Let $G \cup H$ be the union of two graphs G and H satisfying the condition of Theorem 3.3 and let $k = |E(G \cap H)|$.

(1) If $k \ge 2$, then we have

$$\chi(G \cup H) \leq \max{\{\chi(G) + l_H, \chi(H)\}}.$$

(2) If k = 1, we have

$$\chi(G \cup H) = \max{\{\chi(G), \chi(H)\}}.$$

PROOF. Our statement (1) follows from Proposition 3.6. We prove (2). If k=1, without loss of generality, we may assume $\chi(G) \geq \chi(H)$. First, take a $\chi(G)$ -coloring $c_G: V(G) \to \{1, \ldots, \chi(G)\}$ of G and a $\chi(H)$ -coloring $c_H: V(H) \to \{1, \ldots, \chi(H)\}$ of G. We define a map G on G on G as an extension of G as an extension of G but G is the color class of G given by G containing G on G is the define G of G given by G containing G on the map G is a G of G of G of G. Then, we define G of G o

In view of (1.1) and Theorem 3.9, it is natural to compute $\operatorname{ind}_{\mathbb{Z}_2}(\|\mathsf{B}(G \cup H)\|)$ for the union $G \cup H$ satisfying the condition of Theorem 3.3. Recall that

$$\mathsf{B}(G)\cap\mathsf{B}(H)=\mathsf{B}(G\cap H)=\{u_i\uplus v_i,v_i\uplus u_i\,|\,i=1,\ldots,k\},$$

the disjoint union of 2k 1-simplices, since the intersection $G \cap H$ consists of disjoint k edges.

THEOREM 3.10. Let $G \cup H$ be the union of two graphs G and H which satisfies the condition of Theorem 3.3.

(1) If $\max\{\inf_{\mathbf{Z}_2}(\|\mathsf{B}(G)\|), \inf_{\mathbf{Z}_2}(\|\mathsf{B}(H)\|)\} \ge 1$, we have

$$\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G \cup H)\|) = \max\{\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G)\|),\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(H)\|)\}.$$

(2) If $ind_{\mathbb{Z}_2}(\|\mathsf{B}(G)\|) = ind_{\mathbb{Z}_2}(\|\mathsf{B}(H)\|) = 0$, we have

$$\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G \cup H)\|) \leq 1.$$

PROOF. We use the same notation used in Theorem 3.3. Let $m := \operatorname{ind}_{\mathbb{Z}_2}(\|\mathsf{B}(G)\|)$ and $n := \operatorname{ind}_{\mathbb{Z}_2}(\|\mathsf{B}(H)\|)$. Before we prove (1) and (2), we will define \mathbb{Z}_2 -maps $\|\mathsf{B}(G)\| \to S^m$ and $\|\mathsf{B}(H)\| \to S^n$ such that each $u_i \uplus v_i$ is mapped to a point. By using these \mathbb{Z}_2 -maps, we will construct a \mathbb{Z}_2 -map $\|\mathsf{B}(G \cup H)\| \to S^l$, where $l := \max\{m, n\}$.

First, we construct a \mathbb{Z}_2 -map from $\|\mathsf{B}(G)\|$ to S^m such that each $u_i \uplus v_i$ is mapped to a point. Let $\mathsf{K} := \mathsf{B}(G \setminus \{v_1, \dots, v_k\})$. We define a simplicial \mathbb{Z}_2 -map $f_1 : \mathsf{B}(G) \to \mathsf{K}$ as

$$f_1(\phi \uplus v_i) = u_i \uplus \phi, \quad f_1(v_i \uplus \phi) = \phi \uplus u_i$$

and $f_1(v) = v$ for any other vertex v of $\mathsf{B}(G)$. We take a \mathbb{Z}_2 -map f_2 as the composition

$$\|\mathsf{K}\| \hookrightarrow \|\mathsf{B}(G)\| \to S^m$$
,

where the latter map is an arbitrary \mathbb{Z}_2 -map. Then, the composition $f_2 \circ f_1$ is a desired \mathbb{Z}_2 -map. Similarly, we can construct a \mathbb{Z}_2 -map from $\|\mathsf{B}(H)\|$ to S^n such that each $u_i \uplus v_i$ is mapped to a point as follows. Let $\mathsf{L} := \mathsf{B}(H \setminus \{u_1, \dots, u_k\})$. We define a simplicial \mathbb{Z}_2 -map $g_1 : \mathsf{B}(H) \to \mathsf{L}$ as

$$g_1(\phi \uplus u_i) = v_i \uplus \phi, \quad g_1(u_i \uplus \phi) = \phi \uplus v_i$$

and $g_1(v) = v$ for any other vertex v of B(H). Let g_2 be the composition $\|L\| \hookrightarrow \|B(H)\| \to S^n$, where the latter map is an arbitrary \mathbb{Z}_2 -map. The composition $g_2 \circ g_1$ is a \mathbb{Z}_2 -map such that each $u_i \uplus v_i$ is mapped to a point.

Next, to construct a \mathbb{Z}_2 -map from $\|\mathsf{B}(G \cup H)\|$ to S^l , we need the following claim:

CLAIM. If $m \ge 1$ and $m \ge n$, there exist \mathbb{Z}_2 -maps $f_3 : ||K|| \to S^{m+1}$ and $g_3 : ||L|| \to S^{m+1}$ such that

- $f_3(u_i \uplus \phi) = g_3(\phi \uplus v_i)$ and $f_3(\phi \uplus u_i) = g_3(v_i \uplus \phi)$ for all i,
- the union im $f_3 \cup$ im g_3 does not contain the north and south poles of S^{m+1} . We show **Claim**. Let $I: S^n \to S^m$ be the inclusion defined by $I(x) = (x,0,\ldots,0)$ and $a: S^{m+1} \to S^{m+1}$ the antipodal map. By the continuity of $f_2: \|\mathsf{K}\| \to S^m$ and $g_2: \|\mathsf{L}\| \to S^n$, we can take a sufficiently large positive integer $r \ge 1$ so that $f_2(\mathrm{lk}_{\mathsf{sd}^r\mathsf{K}}(u_i \uplus \phi))$ and $g_2(\mathrm{lk}_{\mathsf{sd}^r\mathsf{L}}(\phi \uplus v_i))$ contain no pair of antipodal points for each i. Since $m \ge 1$, the sphere S^m is not covered with the union $a \circ f_2(\mathrm{lk}_{\mathsf{sd}^r\mathsf{K}}(u_i \uplus \phi)) \cup a \circ I \circ g_2(\mathrm{lk}_{\mathsf{sd}^r\mathsf{L}}(\phi \uplus v_i))$. Hence, we see

$$X_i := S^m \setminus (a \circ f_2(\mathsf{lk}_{\mathsf{sd}^r} \mathsf{K}(u_i \uplus \phi)) \cup a \circ I \circ g_2(\mathsf{lk}_{\mathsf{sd}^r} \mathsf{L}(\phi \uplus v_i)))$$

is nonempty. Then, we take a point $w_i \in S^{m+1}$ that belongs to the interior of $\left\{\frac{x}{\|x\|} \mid x \in p * X_i\right\}$, where p is the north pole of S^{m+1} and $p * X_i$ is the Euclidean cone on X_i with p.

For each i, we modify f_2 on neighborhoods $\operatorname{st}_{\operatorname{sd}^r \mathsf{K}}(u_i \uplus \phi)$ and $\operatorname{st}_{\operatorname{sd}^r \mathsf{K}}(\phi \uplus u_i)$ to obtain a \mathbf{Z}_2 -map f_3 that maps $u_i \uplus \phi$ to w_i and $\phi \uplus u_i$ to $a(w_i)$. For any $x \in \operatorname{st}_{\operatorname{sd}^r \mathsf{K}}(u_i \uplus \phi) \setminus u_i \uplus \phi$, there exists the unique point $y_x \in \operatorname{lk}_{\operatorname{sd}^r \mathsf{K}}(u_i \uplus \phi)$ such that x is represented by $(1-t)y_x + t(u_i \uplus \phi)$ for some $t \in (0,1)$. Similarly, for $x \in \operatorname{st}_{\operatorname{sd}^r \mathsf{K}}(\phi \uplus u_i) \setminus \phi \uplus u_i$, there exists a unique point $z_x \in \operatorname{lk}_{\operatorname{sd}^r \mathsf{K}}(\phi \uplus u_i)$ such that x is represented by $(1-t)z_x + t(\phi \uplus u_i)$ for some $t \in (0,1)$. Since $r \ge 1$, for $i \ne j$, we see

$$\operatorname{st}_{\operatorname{\mathsf{sd}}^r\mathsf{K}}(u_i\uplus\phi)\cap\operatorname{\mathsf{st}}_{\operatorname{\mathsf{sd}}^r\mathsf{K}}(u_j\uplus\phi)=\phi=\operatorname{\mathsf{st}}_{\operatorname{\mathsf{sd}}^r\mathsf{K}}(u_i\uplus\phi)\cap\operatorname{\mathsf{st}}_{\operatorname{\mathsf{sd}}^r\mathsf{K}}(\phi\uplus u_j).$$

We define a \mathbb{Z}_2 -map $f_3 : \|\operatorname{sd}^r \mathsf{K}\| \to S^{m+1}$ as follows:

$$u_{i} \uplus \phi \mapsto w_{i}, \qquad \phi \uplus u_{i} \mapsto a(w_{i}),$$

$$x = (1 - t)y_{x} + t(u_{i} \uplus \phi)$$

$$\mapsto \frac{(1 - t)(f_{2}(y_{x}), 0) + tw_{i}}{\|(1 - t)(f_{2}(y_{x}), 0) + tw_{i}\|} \qquad \text{if} \quad x \in \operatorname{st}_{\operatorname{sd}^{r}} \mathsf{K}(u_{i} \uplus \phi) \backslash u_{i} \uplus \phi,$$

$$x = (1 - t)z_{x} + t(\phi \uplus u_{i})$$

$$\mapsto \frac{(1 - t)(f_{2}(z_{x}), 0) + t(a(w_{i}))}{\|(1 - t)(f_{2}(z_{x}), 0) + t(a(w_{i}))\|} \qquad \text{if} \quad x \in \operatorname{st}_{\operatorname{sd}^{r}} \mathsf{K}(\phi \uplus u_{i}) \backslash \phi \uplus u_{i},$$

$$x \mapsto (f_{2}(x), 0) \qquad \text{otherwise.}$$

Similarly, we can modify $I \circ g_2$ to obtain a \mathbb{Z}_2 -map $g_3 : \|\mathsf{sd}^r \mathsf{L}\| \to S^{m+1}$ such that $g_3(\phi \uplus v_i) = w_i$ and $g_3(v_i \uplus \phi) = a(w_i)$. By the choice of points $\{w_i\}$, we see that the union im $f_3 \cup \mathsf{im} g_3$ does not contain the north and south poles of S^{m+1} . This completes the proof of **Claim**.

We prove (1). We assume $m \ge n$. We define a \mathbb{Z}_2 -map $h : \|\mathsf{B}(G \cup H)\| \to S^{m+1}$ as

$$h(x) = \begin{cases} (f_3 \circ f_1)(x) & \text{if } x \in ||\mathsf{B}(G)||, \\ (g_3 \circ g_1)(x) & \text{if } x \in ||\mathsf{B}(H)||, \end{cases}$$

and define a \mathbb{Z}_2 -map $h': S^{m+1} \setminus \{p, a(p)\} \to S^m$ as

$$(x_1,\ldots,x_{m+2})\mapsto \frac{1}{\sqrt{1-x_{m+2}^2}}(x_1,\ldots,x_{m+1}).$$

We can regard h as a \mathbb{Z}_2 -map from $\|\mathsf{B}(G \cup H)\|$ to $S^{m+1} \setminus \{p, a(p)\}$. Then, the composition $h' \circ h$ is a \mathbb{Z}_2 -map from $\|\mathsf{B}(G \cup H)\|$ to S^m , and hence,

 $\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G \cup H)\|) \leq m$. On the other hand, we see that $\|\mathsf{B}(G)\|$ and $\|\mathsf{B}(H)\|$ are contained in $\|\mathsf{B}(G \cup H)\|$ as \mathbf{Z}_2 -subcomplexes, and hence, we have $\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G \cup H)\|) \geq m$. Similarly, if m < n, we obtain a \mathbf{Z}_2 -map from $\|\mathsf{B}(G \cup H)\|$ to S^n by the same argument as above. The statement (1) is proved.

We prove (2). If m = n = 0, it is not always possible to construct f_3 and g_3 so that they satisfy the latter condition of **Claim**; Example 3.11 is one of such examples. However, we may repeat the argument of **Claim** by taking $\{w_i\}$ as arbitrary points of the upper semicircle of S^1 . Then, the map h is a desired \mathbb{Z}_2 -map from $\|\mathbb{B}(G \cup H)\|$ to S^1 . Hence, the statement (2) follows.

EXAMPLE 3.11. For a cycle C_5 of length 5, $\|\mathsf{B}(C_5)\|$ is \mathbf{Z}_2 -homotopy equivalent to S^1 , and hence, $\mathrm{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(C_5)\|) = 1$. On the other hand, C_5 is decomposed into P_4 and P_3 such that these satisfy the sufficient condition of Theorem 3.3. Since $\mathrm{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(P)\|) = 0$ for any path P, the inequality of Theorem 3.10 (2) is optimal.

Example 3.12. Let G be the graph defined by

$$V(G) = \{x, u_1, \dots, u_n, v_1, \dots, v_n\}$$
 and $E(G) = \{xu_i \mid i = 1, \dots, n\} \cup \{u_i v_i \mid i = 1, \dots, n\},$

where $n \ge 4$. Let H be the graph $K_n + \{u_i v_i \mid i = 1, \ldots, n\}$, where $V(K_n) = \{v_1, \ldots, v_n\}$. Then, we notice $\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G)\|) = 0$ and $\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(H)\|) = n - 2$. By Theorem 3.10 (1), we see $\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G \cup H)\|) = n - 2$. We also have $\chi(G \cup H) \le \max\{4, n\} = n$ by Theorem 3.9 (1). Hence, we see that the inequality of Theorem 3.9 (1) is optimal by the inequality (1.1).

For the union $G \cup H$ satisfying the condition of Theorem 3.3, we obtain

$$\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G \cup H)\|) + 2 = \max\{\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G)\|), \operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(H)\|)\} + 2$$

$$\stackrel{(1.1)}{\leq} \max\{\chi(G), \chi(H)\} \leq \chi(G \cup H)$$

by Theorem 3.10 (1) and the inequality (1.1), if $\max\{\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G)\|), \operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(H)\|)\} \ge 1$. The lower bound $\operatorname{ind}_{\mathbf{Z}_2}(\|\mathsf{B}(G \cup H)\|) + 2$ is not better than the trivial one $\max\{\chi(G), \chi(H)\}$ for $\chi(G \cup H)$.

4. Appendix: Addendum to [2]

Here we supplement to section 4 of [2]. For a graph G, let \overline{G} be an abstract simplicial complex with the vertex set $V(\overline{G}) = V(B(G))$ defined by

$$\overline{G} := \{ u \uplus \phi, v \uplus \phi, \phi \uplus u, \phi \uplus v, u \uplus v, v \uplus u \mid uv \in E(G) \}.$$

We notice that \overline{G} is a free \mathbb{Z}_2 -subcomplex of $\mathsf{B}(G)$ with the restriction of the free \mathbb{Z}_2 -action on $\mathsf{B}(G)$. In [2], the author proved that a graph G contains no 4-cycles if and only if $\|\overline{G}\|$ is a strong \mathbb{Z}_2 -deformation retract of $\|\mathsf{B}(G)\|$. The \mathbb{Z}_2 -subcomplex \overline{G} is a natural double covering of G with the map $V(\overline{G}) \to V(G)$ defined by $v \uplus \phi, \phi \uplus v \mapsto v$ for each $v \in V(G)$.

Let T be a spanning tree T of G. Then, the graph G is obtained from T by adding finitely many edges $\{u_iv_i\}_{i=1}^l$, where $u_iv_i \in E(G)\backslash E(T)$. Then, we see $\overline{G} = \overline{T} \cup \{u_i \uplus v_i, v_i \uplus u_i\}_{i=1}^l$. Since all trees are bipartite, V(T) is the disjoint union of the partite sets A and B. Let $T^1 = T \times \{1\}$ and $T^2 = T \times \{2\}$ be the copies of T with $V(T^1) = A^1 \coprod B^1$ and $V(T^2) = A^2 \coprod B^2$, where $A^1 = A \times \{1\}$, $A^2 = A \times \{2\}$, $B^1 = B \times \{1\}$ and $B^2 = B \times \{2\}$. Then, we notice that \overline{T} is isomorphic to the disjoint union $T^1 \coprod T^2$ of two copies of T by the following correspondence $V(T^1 \coprod T^2) \to V(\overline{T})$:

$$\begin{split} (a,1) \in A^1 &\mapsto a \uplus \phi, \quad (b,1) \in B^1 \mapsto \phi \uplus b, \\ (a,2) \in A^2 &\mapsto \phi \uplus a, \quad (b,2) \in B^2 \mapsto b \uplus \phi. \end{split}$$

We consider the unique path P in T connecting u_i to v_i for each i. If we add an edge u_iv_i to T so that $T \cup \{u_iv_i\}$ contains a cycle of even length, the path P is of odd length. Then, we notice $u_i \uplus \phi$ and $\phi \uplus v_i$ belong to the same component of \overline{T} and $\phi \uplus u_i$ and $v_i \uplus \phi$ belong to the other component of \overline{T} . Hence, $\overline{T} \cup \{u_i \uplus v_i, v_i \uplus u_i\}$ is disconnected. If we add an edge u_iv_i to T so that $T \cup \{u_iv_i\}$ contains a cycle of odd length, the path P is of even length. Then we see $u_i \uplus \phi$ and $v_i \uplus \phi$ belong to the same component of \overline{T} and $\phi \uplus u_i$ and $\phi \uplus v_i$ belong to the other component of \overline{T} . Hence, $\overline{T} \cup \{u_i \uplus v_i, v_i \uplus u_i\}$ is connected. Repeating this consideration for edges u_1v_1, \ldots, u_lv_l , we see that \overline{G} is disconnected if and only if G contains no cycles of odd length, or equivalently, G is bipartite (see [1], Theorem 1.6.1).

Theorem 4.1. Let G be a connected graph with k induced cycles of G.

- (1) If G contains no cycles of odd length, we have $\|\overline{G}\| \simeq \bigvee_k S^1 \coprod \bigvee_k S^1$.
- (2) If G contains at least one cycle of odd length, we have $\|\overline{G}\| \simeq \bigvee_{2k-1} S^1$.

PROOF. By the preceding argument, the statement (1) holds. Let G be a connected graph which contains at least one cycle of odd length. Then, it follows that \overline{G} is connected. Since the Euler characteristic $\chi_{\overline{G}}$ of \overline{G} is twice as large as that of G, we see

rank
$$H_1(\overline{G}) = 1 - \chi_{\overline{G}} = 1 - 2 \cdot \chi_G = 1 - 2(1 - k) = 2k - 1$$
,

and hence, the statement (2) follows.

Theorem 4.2. Let G be a connected graph. Then, B(G) is connected if and only if \overline{G} is connected.

PROOF. Let G be a connected graph. If $\mathsf{B}(G)$ is disconnected, then \overline{G} is disconnected since \overline{G} is a subcomplex of $\mathsf{B}(G)$ with $V(\overline{G}) = V(\mathsf{B}(G))$.

Conversely, we assume that \overline{G} is disconnected. Then, we see that G contains no cycles of odd length, and hence, \overline{G} is isomorphic to the disjoint union $G \coprod G$. Suppose that B(G) is connected. Then, for the two vertices $u \uplus \phi$ and $\phi \uplus u$ of B(G), there exist the vertices v_0, \ldots, v_n of B(G) such that $v_0 = u \uplus \phi$, $v_n = \phi \uplus u$ and each $v_i v_{i+1} \in B(G)$. Every 1-simplex of B(G) is one of the following forms: $x \uplus y$, $y \uplus x$, $\{x, y\} \uplus \phi$ and $\phi \uplus \{x, y\}$, in particular, $x \uplus y$ and $y \uplus x$ are simplices of \overline{G} . If the 1-simplex $v_i v_{i+1} \in B(G)$ is the form $\{x, y\} \uplus \phi$, then there is a vertex $z \in V(G)$ such that $z \in CN_G(\{x, y\})$. The two vertices v_i and v_{i+1} are joined by two simplices $x \uplus z$ and $z \uplus y$ of \overline{G} . Similarly, if the 1-simplex $v_i v_{i+1} \in B(G)$ is the form $\phi \uplus \{x, y\}$, we can join the two vertices v_i and v_{i+1} by simplices of \overline{G} . Thus, $u \uplus \phi$ and $\phi \uplus u$ are joined by simplices of \overline{G} . This contradicts the fact that $u \uplus \phi$ and $\phi \uplus u$ do not belong to the same component of \overline{G} .

References

- [1] R. Diestel. Graph Theory. 3rd ed. Graduate Texts in Mathematics 173, Springer-Verlag, 2005.
- [2] A. Kamibeppu. Homotopy type of the box complexes of graphs without 4-cycles, Tsukuba J. Math. 32 (2008), no. 2, 307-314.
- [3] J. Matoušek. Using the Borsuk-Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry, Universitext, Springer-Verlag, 2003.
- [4] J. Matoušek and G. M. Ziegler. Topological lower bounds for the chromatic number: A hierarchy. Jahresbericht der Deutschen Mathematiker-Vereinigung, 106 (2004), no. 2, 71–90.

Institute of Mathematics University of Tsukuba Tsukuba-shi, Ibaraki 305-8571, Japan E-mail address: akira04k16@math.tsukuba.ac.jp