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ABSTRACT. Let CXL) = CI(L‘") (D x D) denote the subspace of functions in the

Banach space C(™ (D x D) which are analytic in the bi-disc D x . We con-

sider the subspace B,,, consisting from the functions f € an) which can be
represented in the form f (z,w) = g (z2w), where ¢ is a single variable function
from the disc algebra C4 (D). We prove that B,,, is a Banach algebra under
the Duhamel multiplication

2 z w
(F©.9) () = 5o [ [ (=) (0= 0)) g (w0) o
00

and describe its maximal ideal space. We also consider the Hardy type operator

zy
[ — azy [ [f (tr)drdt and discuss its some properties.
00

1. INTRODUCTION

Let B be a Banach algebra. Recall that (see Rickart [9]) the radical R of an
algebra B is equal to the intersection of the kernel of all (strictly) irreducible
representations of B. If R = {0}, then B is said to be semi-simple and, if R = B,
then B is called a radical algebra. Equivalently, B is a radical Banach algebra, if
for every element b € B the multiplication operator M, Mya := ba (a € B), is a
quasinilpotent operator on B (i.e., o (M) = {0}).
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MAXIMAL IDEAL SPACE OF SOME BANACH ALGEBRAS 17

The classical example to the radical Banach algebras is the disc algebra A(D)
under a different multiplication defined in terms of a convolution

(f * 0)(z /fz—t

where |z| < 1 and the integral is taken over any Jordan arc which (except possibly
for z) lies entirely within the interior of the disc D ={z € C : |z| < 1} (Recall that
the norm of disc algebra A(D) is defined by || f|| 4y := sup.ep |/ (2)]). With this

definition of multiplication, it is not difficult to prove that

R i
1< G S

which implies that lim || f”||1/ " = 0, that is f is quasinilpotent, and therefore

A(D) is a radical algebra under convolution multiplication * (see, for example,
Rickart [9, p. 316] and Hille-Phillips [4, p. 701]).

The next example is the class L' (0, 1) of all complex-valued functions f which
are absolutely continuous on [0,1]. Under the ordinary definitions of addition
and multiplication by scalars and the norm

wuz/vumw,

L' (0,1) is a Banach space. It becomes a Banach algebra under the convolution

multiplication
(Fr o l/fx—t

As in the preceding example, the followmg is true,

oo < Ml @

n!
so that L' (0,1) is a radical algebra (more detailly see for instance, Rickart [0)]
and Gelfand, Raikov and Shilov [3, p. 118]).

As is known (see, for example, Rickart [9], Dunford and Schwartz [2], Gelfand,
Raikov and Shilov [3]), description of the maximal ideal space is well studied
for the radical Banach algebras. However, for the "non-radical Banach algebras”
with respect to the Duhamel multiplication the same questions, apparently, are
not completely investigated. Some particular results are contained in Karaev
[5, 6], Karaev and Tuna [7, 8].

In the present paper, we consider a concrete non-radical Banach function alge-
bra with multiplication as the Duhamel multiplication and describe its maximal
ideals, and thus characterize its maximal ideal space. Namely, we consider a Ba-
nach algebra C™ (D x D) (n > 2) consisting of the complex-valued functions f
that are continuous on D x D and have nth partial derivatives in D x ID which can

be extended to functions continuous on D x D. Let 01(4") = 01(4") (D x D) denote
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the subspace of functions in C'™ (]D X ]D)) which are analytic in D x D, that is
C'XL) = C™ (D x D) N Hol (D x D). The Duhamel multiplication in the space
C'™ is defined by

(f®g)(z,w) = 85@w//f (z —u,w—v) g (u,v) dvdu. (1.1)

It is well known (and easy to verify) that this multiplication ® has a closure
property (i.e., f® g € Cﬁln) for all f,g € 01(4")), and also has a commutativity
and associativity property. Let B., denote the subspace consisting from the
functions f € Cﬁxn), which can be represented in the form f(z,w) = g (zw),
where ¢ is a single variable function from the disc algebra Cy (D). Since B,,, is

a closed subspace of a Banach space C’XL), B.,, is also a Banach space. The norm
in B,,, is defined by the formula

9! f (zw)

=2 —
£, max { max |-l

(z,w)eDxD

Cal=a1+a2=0,1,--- ,n}. (1.2)
We prove that B, is a Banach algebra under the Duhamel multiplication

Fo9) 0 = 5o [ [ w-ogw)dt (13)

with the unit 1 (and therefore (B,,, ®) is a non-radical Banach algebra), and we
describe its maximal ideal space.

2. THE CHARACTERIZATION OF INVERTIBLE ELEMENTS OF THE BANACH
ALGEBRA (B, ®)

In this section we investigate the maximal ideals of the Banach algebra (B,,,, ®).
For this purpose, we will give an invertibility criterion for the elements of (B,,,, ®),
which is equivalent to the description of maximal ideals of (B.,,, ®) (an element
f of (B.y,,®) is invertible in (B.,,,®) if and only if f does not belong to any
maximal ideal of (B,,,®)) (For the related results, see also [5] and [10]).

Lemma 2.1. The algebra (B.,,, ®) is a Banach algebra with respect to the norm
defined by (1.2).

Proof. 1t follows from (1.1) that for every f, g € C/g") (D x D)

(f®g)(zw) = f(z—u,w—0)g(u,v)dvdu+
[{ 0z0w

w

0 0
+ [ —f(z—u,0)g(u,w)du+ | —f(0,w—v)g(z,0v)dv+
[82 \0/811)
+ f(0,0) g (2,w),
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which implies that

(F®G)(zw) //(%aaw (z —u) (w—v))G (wv) dvdu + F (0) G (zw)

for every F,G € B,,,. Then the standard calculation for derivatives shows that

olel lel 2
D221 Qw2 8wa2 (F®G) // zalawa'z (z —u) (w—v)) (’3u6vF (uv) dvdu+
(2.1)
olal
FFO) gamgen € (20

and thus by using (1.2), it is easy to verify that
I1F @G, <|Fll, G, -

Obviously, f®1=1® f = f for every f € (B,y,,®). The lemma is proven. [

Now let us prove our main lemma. The quasinilpotent operators technique
is used for the proof of the lemma. Note that this technique for the proof of
invertibility of the analytic functions f € C’g") (D), apparently, was firstly applied
by Karaev and Tuna in [7], see also Karaev [0] and Karaev and Tuna [3].

Lemma 2.2. Let f € (B.,,®). Then f is invertible if and only if f|,,_, # 0.

Proof. Let f is an invertible element of the Banach algebra B,, with respect to
the Duhamel multiplication ® (see formula (2.1) and Lemma 2.1). Then, there
exists a unique element g € (B, ®) such that (f ® g) (z) =1 for all z € D x D.
Then, in particular, (f ® ¢g) (0) = 1, that is f (0) - ¢ (0) = 1, and hence f (0) # 0.

Conversely, let f (0) # 0. Let us prove then that f is an invertible element of
the Banach algebra (B,,, ®). For this purpose, it is sufficient to prove that the
corresponding Duhamel operator Dy, D¢h = f ® h, h € B.,,, is invertible in B,,,.
Indeed, let us denote F':= f— f(0). Clearly, F'(0) =0, f(z) = F (2)+ f (0), and
thus Dy = f (0) [ +Dp, where I denotes the identity operator on B,,,. Therefore,
since f (0) # 0, in order to prove the invertibility of the operator Dy, it is enough
to prove that Dp is a quasinilpotent operator (i.e., o (Dr) = {0}) on B,,,. For
this, we will use the classical Gelfand formula for the spectral radius of operators:

r(Dr) = hm HD ||
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Let us now calculate the value HD || For this purpose we obtain that

(Drg) (2 f)z@w//F z—u) g (uwv) dvdu
0

//sz_u w—v)

(z = u) (w =) F"((z — u) (w — v))lg (uv) dvdu + F (0) g (zw)

//pvz_u w—v)

+(z—u)( —v) F" ((z — u) (w —v))]g (uwv) dvdu
= (K%g) (zw)

where

Then, we obtain the following:

z

// z—u +
00

(z =) (w—=v) F"((z = u) (w = v))lg (uv) dvdul

(¥ g) ()| =

+ (2 =) (w=v) F"((z = u) (w = 0))]| [g (wo)] |dv| |du|
< 1]l llgll,, |zwl, and
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(300
=| [ gz (Kaff;gﬂ <Zw>)

= {[ (z —w) )+

+ (z—u) (w—2v)F"((z — u) (w—v))]Ka%ig(uv)dvdu‘

+(z—u) (w—2v)F"((z —u) {// (u—1t)(v—7))+
+ ((u—1t)(v—7)) F" ((u (v —17))] g (t7) drdt} dvdul

+<zu><wv>F"<<zu)(wv»{//F'«ut)(vT)H

+[(w—=1t) (v=7) F" ((u—=1t) (v = 7)) g (t7)| |dr] |dt]} |dv] |du|

Bl

<IFI gl

Thus, by induction we get

|zw]*

K'p g) (zw)| < ||Fl, lgll,, =7 (2:2)
(p) G i

On the other hand,
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et ([

+ (z = u) (w—v) F"((z — u) (w — v))]g (w) dvdu)|

_ 85;0 (/79 2 — ) )[F’ (uv) + wvF" (uv) dvdul

:// (2 — ) (1w — ) + (2 — ) (w— v) ¢" (2 — u) (w — )] (F' (uv) +

(z—u)(w—0))+

o\g

+ qu” (uv))dvdu + g (0) (F' (2w) + 2w F" (zw))]

| [ [ (G =) =)+ = 0) = o) P (& = 0) (w = )] g (w0)

+uvg” (w)|dvdu + g (0) (F' (zw) + zwF" (2w))|

< [ [1F (-0 @)+ (=0 = 0) (= 0 (= 0)]]g () +

+uvg” (uo)| |dvl [dul + |g (O)[F" (zw) + zwF" (zw)]
< [1F[l,, llgll,, 220l + [1£1L,, [[gl,
= [1F1L, llgll,, (2wl +1) .

Same calculus shows that

e L) <Z“’>|

- aaaw//w (2 —w) (w— ) +




MAXIMAL IDEAL SPACE OF SOME BANACH ALGEBRAS 23

(zu><wv)F"((zu)(wv>>]{//[F’<<ut><vr>>+

+u—t)(v—71)F" (u—1t)(v—1))] g (t7) +trg" (¢t7)drdt] +
+ g (0) [F" (uv) + uwvF" (uwv)]} dvdul

S]?\F’((z—w(w—v)H
+ (z—uw)(w—2v)F"((2 w —v) {//F’ (u—1t)(v—1))|+

+(u—=1) (v =7) F" ((u =) (v = 7))l g' (t7) + t7g" (t7)| |d]| |dt] +
+ 1g ()] [F' (wv) + wvF" (wv)[} [dv] |du|

=]7!F'((Z—U)(w—v))+

+<zu><wv>F"<<zu)(wv))]{//[F’«ut)(vT)H

+(u—1t)(v—7)F" ((u—1)(v—7))]g (t7) drdt} dvdu

v

+ (e =) (=) (2 = ) (w - v) (//F’((ut)(vﬂH

+ (u—1t) (v—7) F" ((u—1) (v —7))|lg (t7) + trg" (t7)| |dr|[dL] |dv] |du)

//F 2 =) (w—v)

+ (Z —u) (w—v) F"((z = u) (w = 0))| [g ()| [F" (uv) + uo F" (wv)| |dv| |dul

| w|2 2
<|IFI2 gll,, 5 T IEI gl [zwl

2
2 |zw|
ZHFHanHn< 5 +\2w\>

(|zw|2 + 1)2
2! '

2
< [I1E1; lgll,
By induction we get

k

02 (lzw]? + 1)
K*, <||F|" _ 2.3
o (Khap 0) G| < 11 ol 0 23)
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On the other hand,

az?—;wz (1€ # 9) (z“”‘

+ (z—u)(w ) F"((z = u) (w = v))lg (w) dodul

azﬁw(// (z —u) v)) +

( u) (w—v) F" (2 = u) (w = v))] [¢' (uv) + uvg” (w)] dvdu
9(0) (F' (zw) + zwlF" (zw)))|

[/0 (z —u) )+

+(z —u) (w—v) F" ((z = u) (w — v))][g® (w) +

+ 4uvg® (uv) + (uv)2 g (wv)]dvdu

+ (F' (zw) + zwF" (zw)) ¢’ (0) + (F' (zw) + zwF" (zw)) g (0)|
< (], [lgl,, lzw[ + [1F][, llgll,, + [ F1],, 9],

=[[Fl, gl ([zw| +2).

Analogously, we have

0220w? <K§,:£ g) (zw)‘
0? 0?
= — K2,
dz0w <3z8w aaaig> (zw)‘

828w(//F z—u)(w—0)

+(z—w) (w—v) F"((z = u) (w —v))] / [F' ((w—1t) (v —7))+

+[(w—=1) (0 =7) F" ((u—=1) (v = 7))] g’ (t7) + trg" (t7)] drdi~+
+ g (0) [F" (uv) + wo " (uv)]} dvodu)])

[F' ((z — —
8z8w(// (z —u) v)) +
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+ (2 =) (w—v) F" (2 — u) (w — v) // F (= 1) (0 — 7)
+(u—t)(—=7) F"((u—=1t)(v=7))[g (tT) +trg” (tr)])+
32811)// (2 —u) )+ (2 =) (w—v) F" ((z = u) (w —v))] [F (uv) +

00
+ uwvF" (uv)] g (0) dvdul

- 77[F’<<z—u> (w =)+

b (2= ) (w =) P (2 — u) (w — v) // ' ((u—1) (v —7)

+ (=) (v—7) F" ((u—1) (v 7)) [g? () +
+ 4uvg® (uv) + (uv)® gW (uv)]drdt+

+ o (0)[F'(2w) + zwF" (2w)) / / ' (2 — u) (w — 0)) + F" (2 — u) (w — v))|dvdu

+9(0) [F' (zw) - F (zw)]’

|zw0[*
< IEI; lgll, +IF1 llgll, =l + EI Ngll,
2 (|zw] +2)°

< 172 fgl, L
Then, by induction we get that

ot k (|zw| + 2)F

e | (Kl ) o) < IFIS gl == (2.4)
By induction we obtain from (2.2), (2.3) and (2.4) that
0° (lzw] + )"
o (Kt ) G| <171 Lal, B

where s = n + m. Hence,

k
k (1+5s)
|Kee o < IFIS gl 5
that is
(1+ s)k
b | <00 =2
dzow lln .
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or
1/k 1+s

k ——
HKBQF < ||F||n (k!)l/k

9z0w

— 0, (k— 00).

Thus, r (K 025 > = 0, that is K _,, is a quasinilpotent operator on B,,,, which

9z0w dz0w

shows that an operator Dy = f(0)I + Dp is invertible in B,,.The lemma is
proved. O]

It is obvious from Lemma 2.2 that (B.,, ®) is a non-radical Banach algebra.
Now we can state our main result, which describes the maximal ideal space of
the commutative non-radical Banach algebra (B,,,, ®) .

Theorem 2.3. The mazimal ideal space M ((B.y,®)) of the Banach algebra
(Bw, ®) consists of the one homomorphism, the evaluation at the origin: h (f) =

f(0).

Proof. Indeed, by Lemma 2.1, B,,, is a (commutative) Banach algebra under the
Duhamel multiplication ®, and by Lemma 2.2, the maximal ideals in (B,,, ®)
have the form

{f € B.y: f |zw:O: 0}7
which shows that o (f) = {f(0)}, that is the spectrum of every element f €
(B.w, ®) consists of the sole point f (0). This shows that the maximal ideal space
M ((B,y, ®)) of (B, ®) consists of the sole homomorphism, namely, evaluation
at the origin, and the Gelfand transform is trivial. The theorem is proved. [

3. REMARKS ON THE INVARIANT SUBSPACE AND CYCLICITY OF THE HARDY
TYPE OPERATOR

In the present section, we consider the Hardy type operator H defined on the
Lebesgue space LP([0,1] x [0,1]), (1 < p < +0o0) by

(Hf) (z,y) == my]y/f(t, T)drdt.

It is easy to see that if E is a measurable subset of the unit square [0, 1] x [0, 1],
which satisfies the condition

(x,y) € E=[0,2] x [0,y] C E,
then the subspace
Mg :={f e LP([0,1] x [0,1]) : f(z,y) =0 a.e. on E}

is an invariant subspace for H, that is H My C Mpg. These subspace are in a sense
analogous to the invariant subspaces of the classical Volterra integration operator

V, V f(z) = [ f(t)dt; however, there are many other invariant subspaces:
0

M, :={f e LP([0,1] x [0,1]) : f(z,y) = f(y,x) a.e. on [0,1] x [0,1]}
M_:={feLP(0,1] x [0,1]) : f(z,y) = —f(y,x) a.e. on [0,1] x [0,1]}.
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Recall that a set G C LP([0,1] x [0, 1]) is said to be a cyclic set for the operator
A: LP([0,1] x [0,1]) — LP([0,1] x [0,1]), if

span{A"G :n=0,1,2,---} = closLinhull {A"G : n=0,1,2,---}
= LP([0,1] x [0,1]).
The spectral multiplicity p(A) of the operator A is defined by
((A) :=min{cardG : G is a cyclic set forA} .
A vector f € LP([0,1] x [0,1]) is a cyclic vector for A, if
span{A"f:n=0,1,2,---} = LP([0,1] x [0, 1]).

In this case, obviously u(A) =1, and A is said to be a cyclic operator.

If G is any finite subset of L?([0,1] x [0,1]), then by the result of Atzmon and
Manos [1, Theorem 1], we get below:

span {W"f: f€ G, n=0,1,2,---} # L*([0,1] x [0,1]),

that is span {W"f : f € G, n > 0} is a proper invariant subspace of the double
integration operator W defined on L?([0,1] x [0,1]) by

Wf(x,y):= 77f(t, T)dtdr.

This result of Atzmon and Manos shows that p(WW) = +oo while (V) = 1.
Now it follows from this result that

span {H"f: f € G, n=0,1,2,---} # L*([0,1] x [0, 1])

for any finite subset G of L%([0,1] x [0,1]), that is u(H) = +oo. In particular,
if G consists of the single function f(z,y) = 1, then it is easily verified that the
subspace

By = span{H"f : n > 0}

consists of all g in L?([0,1] x [0, 1]), which are of the form g(z,y) = h(zy), where
h is a measurable function on [0, 1].

These examples indicate that the Hardy type operator H has a very rich and
varied supply of invariant subspaces, and a characterization of all of them might
be a hopeless task (For more informations about invariant subspaces of the double
integration operator W on L?([0,1] x [0,1]), see Atzmon and Manos [1]).

Here we will consider restriction of the Hardy type operator H to its invariant
subspaces By, :

H,, = H|B,,,

Y
that is Hyyh(z,y) = zy [ [h(tT)drdt (Vh € Byy).
00
We will show that p(H,,) = 1, that is H,, is a cyclic operator.
Proposition 3.1. It is true that p(H,,) = 1.
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Proof. Indeed, let us calculate H 1 for any n > 0. Obviously, Hgyl =1. Also
H,,1 = (zy)” and

Y

T Y T Y
Hiylzxy// (Hyyl) dtdr = :cy//72t2d7dt
00 00
x Yy
= :Ey/ /7‘2d7' t2dt
o \o
T 3 4
Y o0 (zy)
= —tdt = .
W/3 3
0

By induction it can be easily verified that

2n
Hg1:lﬂiﬁyn:QLzu-
(2n —1)
Therefore, by the Miintz approximation theorem we deduce that
- _ (z9)™" _
span {nyl ‘n > 0} =span{ ———= :n >0, = By,
(2n —1)

that is 1 is a cyclic vector for H,,, which means that pu(H,,) = 1. The proposition

is proved. 0
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