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GEOMETRIC PROPERTIES RELATED TO ROTUNDITY AND
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Abstract. We study the notions of acs, luacs and uacs Banach spaces which
were introduced by Kadets et al. and form common generalisations of the usual
rotundity and smoothness properties of Banach spaces. In particular, we are
interested in (mainly infinite) absolute sums of such spaces. We also introduce
some new classes of spaces that lie inbetween those of acs and uacs spaces and
study their behaviour under the formation of absolute sums as well.

1. Introduction

First let us fix some notation. Where not otherwise stated, X denotes a real
Banach space, X∗ its dual, BX its unit ball and SX its unit sphere.

Since we will deal with various generalisations of rotundity and smoothness
properties for Banach spaces, we start by recalling the most important of these
notions.

Definition 1.1. A Banach space X is called

(i) rotund (R in short) if for any two elements x, y ∈ SX the equality ∥x+ y∥ =
2 implies x = y,

(ii) locally uniformly rotund (LUR in short) if for every x ∈ SX the implication

∥xn + x∥ → 2 ⇒ ∥xn − x∥ → 0
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holds for every sequence (xn)n∈N in SX ,

(iii) weakly locally uniformly rotund (WLUR in short) if for every x ∈ SX and
every sequence (xn)n∈N in SX we have

∥xn + x∥ → 2 ⇒ xn → x weakly,

(iv) uniformly rotund (UR in short) if for any two sequences (xn)n∈N and (yn)n∈N
in SX the following implication holds:

∥xn + yn∥ → 2 ⇒ ∥xn − yn∥ → 0,

(v) weakly uniformly rotund (WUR in short) if for any two sequences (xn)n∈N
and (yn)n∈N the following implication holds:

∥xn + yn∥ → 2 ⇒ xn − yn → 0 weakly.

UR spaces where introduced by Clarkson in [4], LUR spaces by Lovaglia in [22].
The obvious implications between all these notions are summarised in the chart
below and no other implications are valid in general, as is shown by the examples
in [26].

..UR

.WUR

.LUR

.WLUR .R
Fig. 1

Note that, by standard normalisation arguments, X is UR iff for all bounded
sequences (xn)n∈N and (yn)n∈N in X which fulfil the conditions ∥xn + yn∥−∥xn∥−
∥yn∥ → 0 and ∥xn∥ − ∥yn∥ → 0 we have that ∥xn − yn∥ → 0 and further that
the two conditions ∥xn + yn∥ − ∥xn∥ − ∥yn∥ → 0 and ∥xn∥ − ∥yn∥ → 0 can be
replaced by the single equivalent condition 2 ∥xn∥2 + 2 ∥yn∥2 − ∥xn + yn∥2 → 0.
Similar remarks apply to the definitions of LUR, WUR and WLUR spaces. Also,
for a finite-dimensional space X all the above notions coincide (by compactness
of the unit ball).

Recall also that the modulus of convexity of the space X is defined by δX(ε) =
inf {1− 1/2 ∥x+ y∥ : x, y ∈ BX and ∥x− y∥ ≥ ε} for every ε in the interval ]0, 2].
Then X is UR iff δX(ε) > 0 for all 0 < ε ≤ 2.

Concerning notions of smoothness, the space X is called smooth (S in short) if
its norm is Gâteaux-differentiable at every non-zero point (equivalently at ev-
ery point of SX), which is the case iff for every x ∈ SX there is a unique
functional x∗ ∈ SX∗ with x∗(x) = 1 (cf. [14, Lemma 8.4 (ii)]). X is called
Fréchet-smooth (FS in short) if the norm is Frécht-differentiable at every non-zero
point. Finally, X is called uniformly smooth (US in short) if limτ→0 ρX(τ)/τ =
0, where ρX denotes the modulus of smoothness of X defined by ρX(τ) =
sup {1/2(∥x+ τy∥+ ∥x− τy∥ − 2) : x, y ∈ SX} for every τ > 0.
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Obviously, FS implies S and from [14, Fact 9.7] it follows that US implies FS.
It is also well known that X is US iff X∗ is UR and X is UR iff X∗ is US (cf. [14,
Theorem 9.10]).

There is yet another notion of smoothness, namely the norm of the space X is
said to be uniformly Gâteaux-differentiable (UG in short) if for each y ∈ SX the
limit limτ→0 (∥x+ τy∥ − 1) /τ exists uniformly in x ∈ SX . The property UG lies
between US and S. It is known (cf. [9, Theorem II.6.7]) that X∗ is UG iff X is
WUR and X is UG iff X∗ is WUR∗ (which means that X∗ fulfils the definition
of WUR with weak- replaced by weak*-convergence).

In [18] the following notions were introduced.

Definition 1.2. A Banach space X is called

(i) alternatively convex or smooth (acs in short) if for every x, y ∈ SX with
∥x+ y∥ = 2 and every x∗ ∈ SX∗ with x∗(x) = 1 we have x∗(y) = 1 as well,

(ii) locally uniformly alternatively convex or smooth (luacs in short) if for every
x ∈ SX , every sequence (xn)n∈N in SX and every functional x∗ ∈ SX∗ we
have

∥xn + x∥ → 2 and x∗(xn) → 1 ⇒ x∗(x) = 1,

(iii) uniformly alternatively convex or smooth (uacs in short) if for all sequences
(xn)n∈N, (yn)n∈N in SX and (x∗n)n∈N in SX∗ we have

∥xn + yn∥ → 2 and x∗n(xn) → 1 ⇒ x∗n(yn) → 1.

Clearly, R and S both imply acs, WLUR implies luacs and UR and US both
imply uacs. Again by standard normalisation arguments one can easily check
that X is uacs iff for all bounded sequences (xn)n∈N, (yn)n∈N in X and (x∗n)n∈N
in X∗ with x∗n(xn) − ∥x∗n∥ ∥xn∥ → 0, ∥xn + yn∥ − ∥xn∥ − ∥yn∥ → 0 and ∥xn∥ −
∥yn∥ → 0 (or equivalently 2 ∥xn∥2 + 2 ∥yn∥2 − ∥xn + yn∥2 → 0) we also have
x∗n(yn) − ∥x∗n∥ ∥yn∥ → 0 and a similar characterisation holds for luacs spaces.
Note also that, again by compactness, in the case dimX <∞ the notions of acs,
luacs and uacs spaces coincide.

The acs, luacs and uacs spaces were originally introduced in [18] to obtain
geometric characterisations of the so called Anti-Daugavet property, which was
introduced in the same paper. We will briefly recall this property and the con-
nection to the geometric notions.

Firstly, it is well-known and easy to see that a bounded linear operator T on
any Banach space X with ∥T∥ ∈ σ(T ) satisfies the so called Daugavet–equation
∥id+T∥ = 1+∥T∥ (here, σ(T ) denotes the spectrum of T ). In fact, the following
more general statement holds (this is surely known as well, but a proof is included
here since the author was not able to find it explicitly in the literature).

Lemma 1.3. For any (real) Banach space X and every T ∈ L(X) the inequality

∥id + T∥ ≥ 1 + ∥T∥ − d(∥T∥, σ(T ))

holds, where d(∥T∥, σ(T )) denotes the distance of ∥T∥ to σ(T ).
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Proof. If the claim was not true, there would be λ ∈ σ(T ) such that |∥T∥ − λ| <
1 + ∥T∥ − ∥id + T∥, hence ∥id + T∥ < 1 + λ. Consequently, the operator S :=
(1 + λ)−1(id + T ) has norm less than 1, so id − S is invertible. But then the
operator (1 + λ)(id − S) = λid − T would be invertible as well, contradicting
λ ∈ σ(T ). �

Now X is said to have the Anti-Daugavet property with respect to some class
M ⊆ L(X) of operators, if the implication

∥id + T∥ = 1 + ∥T∥ ⇒ ∥T∥ ∈ σ(T )

holds for every T ∈M .
The results from [18] then read as follows: X has the Anti-Daugavet property

for rank-1-operators iff X has the Anti-Daugavet property for compact operators
iff X is luacs (see [18, Theorem 4.3]); if X is even uacs, then it has the Anti-
Daugavet property with respect to all operators (see [18, Theorem 4.5], it is not
known whether the converse of this stament is true). For more information about
the Daugavet–equation, the reader is referred to [18] and [27].

Let us now discuss the acs spaces and their relatives a little further. First note
the following reformulation of the definition of acs spaces, which was observed in
[18]: A Banach space X is acs iff whenever x, y ∈ SX such that ∥x+ y∥ = 2 then
the norm of span{x, y} is Gâteaux-differentiable at x and y.

Recall that a Banach spaceX is said to be uniformly non-square if there is some
δ > 0 such that for all x, y ∈ BX we have ∥x+ y∥ ≤ 2(1−δ) or ∥x− y∥ ≤ 2(1−δ).
It is easily seen that uacs spaces are uniformly non-square and hence by a well-
known theorem of James (cf. [2, p.261]) they are superreflexive, as was observed
in [18, Lemma 4.4].

Actually, to prove the superreflexivity of uacs spaces it is not necessary to
employ the rather deep theorem of James, as we will see in the next section.

In [24] it is shown by Sirotkin that for every 1 < p < ∞ and every measure
space (Ω,Σ, µ) the Lebesgue–Bochner space Lp(Ω,Σ, µ;X) is uacs (resp. luacs,
resp. acs) whenever X is an uacs (resp. luacs, resp. acs) Banach space. To get
this result, Sirotkin first proves the following characterisation of uacs spaces.

Proposition 1.4 (Sirotkin, cf. [24]). A Banach space X is uacs iff for any two
sequences (xn)n∈N and (yn)n∈N in SX and every sequence (x∗n)n∈N in SX∗ we have

∥xn + yn∥ → 2 and x∗n(xn) = 1 ∀n ∈ N ⇒ x∗n(yn) → 1.

Instead of repeating the proof from [24] here, we shall give a slightly different
proof below (see Proposition 2.1), which—unlike Sirotkin’s proof—does not use
any reflexivity arguments (but see also the proof of Lemma 2.10).

Now with this characterisation we can define a kind of ‘uacs-modulus’ of a
given Banach space.

Definition 1.5. For a Banach space X we define

DX(ε) = {(x, y) ∈ SX × SX : ∃x∗ ∈ SX∗ x∗(x) = 1 and x∗(y) ≤ 1− ε}

and δXuacs(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : (x, y) ∈ DX(ε)

}
∀ε ∈]0, 2].
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Then by Proposition 1.4 X is uacs iff δXuacs(ε) > 0 for every ε ∈]0, 2] and we clearly
have δX(ε) ≤ δXuacs(ε) for each ε ∈]0, 2]. For the connection to the modulus of
smoothness see Lemma 2.6. The characterisation of uacs spaces given above
coincides with the notion of U -spaces introduced by Lau in [20] and our modulus
δXuacs is the same as the modulus of u-convexity from [15]. Also, the notion of
u-spaces which was introduced in [11] coincides with the notion of acs spaces.
The interested reader may also have a look at [13], where two notions of local
U -convexity are introduced and studied quantitatively. The U -spaces (= uacs
spaces) are of particular interest, because they possess normal structure (cf. [16,
Theorem 3.2] or [24, Theorem 3.1]) and hence (since they are also reflexive)
they enjoy the fixed point property (the reader is referred to [17, Section 2] for
definitions and background).

It seems natural to introduce two more notions related to uacs spaces, namely
the following.

Definition 1.6. A Banach space X is called

(i) strongly locally uniformly alternatively convex or smooth (sluacs in short) if
for every x ∈ SX and all sequences (xn)n∈N in SX and (x∗n)n∈N in SX∗ we
have

∥xn + x∥ → 2 and x∗n(xn) → 1 ⇒ x∗n(x) → 1,

(ii) weakly uniformly alternatively convex or smooth (wuacs in short) if for any
two sequences (xn)n∈N, (yn)n∈N in SX and every functional x∗ ∈ SX∗ we have

∥xn + yn∥ → 2 and x∗(xn) → 1 ⇒ x∗(yn) → 1.

With these definitions we get the following implication chart.

..uacs

.wuacs

.sluacs

.luacs .acs

Fig. 2

Including the rotundity properties finally leaves us with the diagram below.

..UR

.WUR

.LUR

.WLUR .R

.uacs

.wuacs

.sluacs

.luacs .acs

Fig. 3

Let us further remark that every space whose norm is UG is also sluacs, thus we
have the following diagram illustrating the connection to smoothness properties.
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.

.US .UG .S

.uacs .sluacs .acs
Fig. 4

In the next section we collect some general results on uacs spaces and their
relatives.

2. Some general facts

We start with the promised alternative proof of Proposition 1.4 which does not
rely on reflexivity. Instead, we shall employ the Bishop–Phelps–Bollobás theorem
(cf. [3, Chap. 8, Theorem 11]), an argument that will also work for the case of
sluacs spaces. This idea was suggested to the author by Dirk Werner.

Proposition 2.1. A Banach space X is uacs iff for any two sequences (xn)n∈N,
(yn)n∈N in SX and every sequence (x∗n)n∈N in SX∗ we have

∥xn + yn∥ → 2 and x∗n(xn) = 1 ∀n ∈ N ⇒ x∗n(yn) → 1. (2.1)

X is sluacs iff for every x ∈ SX and all sequences (xn)n∈N, (x
∗
n)n∈N in SX resp.

SX∗ we have

∥xn + x∥ → 2 and x∗n(xn) = 1 ∀n ∈ N ⇒ x∗n(x) → 1. (2.2)

Proof. We only prove the statement for uacs spaces, the proof for the sluacs case
is completely analogous. Furthermore, only the ‘if’ part of the stated equiva-
lence requires proof. So suppose (2.1) holds for any two sequences in SX and all
sequences in SX∗ .

Now if (xn)n∈N and (yn)n∈N are sequences in SX and (x∗n)n∈N is a sequence in
SX∗ such that ∥xn + yn∥ → 2 and x∗n(xn) → 1 we can choose a strictly increasing
sequence (nk)k∈N in N such that x∗nk

(xnk
) > 1 − 2−2k−2 holds for all k ∈ N.

By the already cited Bishop–Phelps–Bollobás theorem we can find sequences
(x̃k)k∈N in SX and (x̃∗k)k∈N in SX∗ such that x̃∗k(x̃k) = 1, ∥x̃k − xnk

∥ ≤ 2−k and∥∥x̃∗k − x∗nk

∥∥ ≤ 2−k for all k ∈ N.
It follows that ∥x̃k − xnk

∥ → 0 and
∥∥x̃∗k − x∗nk

∥∥ → 0 and since ∥xn + yn∥ → 2
we get that ∥x̃k + ynk

∥ → 2.
But then we also have x̃∗k(ynk

) → 1, by our assumption, which in turn implies
x∗nk

(ynk
) → 1.

In the same way we can show that every subsequence of (x∗n(yn))n∈N has another
subsequence that tends to one and hence x∗n(yn) → 1 which completes the proof.

�

Next we would like to give characterisations of acs/sluacs/uacs spaces that do
not explicitly involve the dual space. As mentioned before, a Banach space X is
acs iff x and y are smooth points of the unit ball of the two-dimensional subspace
span{x, y} whenever x, y ∈ SX are such that ∥x+ y∥ = 2.

It is possible to reformulate and refine this statement in the following way.
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Proposition 2.2. For any Banach space X the following assertions are equiva-
lent:

(i) X is acs.

(ii) For all x, y ∈ SX with ∥x+ y∥ = 2 we have

lim
t→0+

∥x+ ty∥+ ∥x− ty∥ − 2

t
= 0.

(iii) For all x, y ∈ SX with ∥x+ y∥ = 2 we have

lim
t→0+

∥x− ty∥ − 1

t
= −1.

(iv) For all x, y ∈ SX with ∥x+ y∥ = 2 there is some 1 ≤ p <∞ such that

lim
t→0+

∥x+ ty∥p + ∥x− ty∥p − 2

tp
= 0.

(v) For all x, y ∈ SX with ∥x+ y∥ = 2 there is some 1 ≤ p <∞ such that

lim
t→0+

(1 + t)p + ∥x− ty∥p − 2

tp
= 0.

The analogous characterisation for sluacs spaces reads as follows.

Proposition 2.3. For any Banach space X the following assertions are equiva-
lent:

(i) X is sluacs.

(ii) For every ε > 0 and every y ∈ SX there is some δ > 0 such that for all
t ∈ [0, δ] and each x ∈ SX with ∥x+ y∥ ≥ 2(1− t) we have

∥x+ ty∥+ ∥x− ty∥ ≤ 2 + εt.

(iii) For every ε > 0 and every y ∈ SX there is some δ > 0 such that for all
t ∈ [0, δ] and each x ∈ SX with ∥x+ y∥ ≥ 2− tδ we have

∥x− ty∥ ≤ 1 + t(ε− 1).

(iv) For every y ∈ SX there is some 1 ≤ p < ∞ such that for every ε > 0 there
exists δ > 0 such that for all t ∈ [0, δ] and each x ∈ SX with ∥x+y∥ ≥ 2(1−t)
we have

∥x+ ty∥p + ∥x− ty∥p ≤ 2 + εtp.

(v) For every y ∈ SX there is some 1 ≤ p < ∞ such that for every ε > 0 there
exists δ > 0 such that for all t ∈ [0, δ] and each x ∈ SX with ∥x+y∥ ≥ 2− tδ
we have

(1 + t)p + ∥x− ty∥p ≤ 2 + εtp.

Finally, we have the following characterisation for uacs spaces.

Proposition 2.4. For any Banach space X the following assertions are equiva-
lent:

(i) X is uacs.
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(ii) For every ε > 0 there exists some δ > 0 such that for every t ∈ [0, δ] and all
x, y ∈ SX with ∥x+ y∥ ≥ 2(1− t) we have

∥x+ ty∥+ ∥x− ty∥ ≤ 2 + εt.

(iii) For every ε > 0 there exists some δ > 0 such that for every t ∈ [0, δ] and all
x, y ∈ SX with ∥x+ y∥ ≥ 2− δt we have

∥x− ty∥ ≤ 1 + t(ε− 1).

(iv) There exists some 1 ≤ p <∞ such that for every ε > 0 there is some δ > 0
such that for all t ∈ [0, δ] and all x, y ∈ SX with ∥x+ y∥ ≥ 2(1− t) we have

∥x+ ty∥p + ∥x− ty∥p ≤ 2 + εtp.

(v) There exists some 1 ≤ p <∞ such that for every ε > 0 there is some δ > 0
such that for all t ∈ [0, δ] and all x, y ∈ SX with ∥x+ y∥ ≥ 2− tδ we have

(1 + t)p + ∥x− ty∥p ≤ 2 + εtp.

Proof. We will only explicitly prove the characterisation for uacs spaces. First
we show (i) ⇒ (ii). So suppose X is uacs and fix ε > 0. Then there exists some

δ̃ > 0 such that for all x, y ∈ SX and x∗ ∈ SX∗ we have

∥x+ y∥ ≥ 2(1− δ̃) and x∗(x) ≥ 1− δ̃ ⇒ x∗(y) ≥ 1− ε.

Now if we put δ = δ̃/2 and take t ∈ [0, δ] and x, y ∈ SX such that ∥x+y∥ ≥ 2(1−t)
then we can find a functional x∗ ∈ SX∗ such that x∗(x − ty) = ∥x − ty∥ and
conclude that

x∗(x) = ∥x− ty∥+ tx∗(y) ≥ 1− t− t = 1− 2t ≥ 1− δ̃.

By the choice of δ̃ this implies x∗(y) ≥ 1− ε and hence

∥x+ ty∥+ ∥x− ty∥ = ∥x+ ty∥+ x∗(x− ty) ≤ 1 + t+ 1− tx∗(y) ≤ 2 + tε.

Now let us prove (ii) ⇒ (iii). For a given ε > 0 choose δ > 0 to the value ε/2
according to (ii). We may assume δ ≤ min{1, ε/2}.

Then if t ∈ [0, δ] and x, y ∈ SX such that ∥x + y∥ ≥ 2 − δt we in particular
have ∥x+ y∥ ≥ 2(1− t) and hence

∥x+ ty∥+ ∥x− ty∥ ≤ 2 + t
ε

2
.

But on the other hand

∥x+ ty∥ ≥ ∥x+ y∥ − (1− t)∥y∥ ≥ 2− δt− 1 + t = 1− δt+ t ≥ 1− ε

2
t+ t.

It follows that ∥x− ty∥ ≤ 1 + t(ε− 1).
Next we prove that (iii) ⇒ (i). Fix sequences (xn)n∈N and (yn)n∈N in SX

such that ∥xn + yn∥ → 2 and a sequence (x∗n)n∈N of norm-one functionals with
x∗n(xn) → 1. Also, for every n ∈ N we fix y∗n ∈ SX∗ such that y∗n(yn) = 1.

For given ε > 0 we choose δ > 0 according to (iii). For sufficiently large n we
have ∥xn + yn∥ ≥ 2− δ2 and x∗n(xn) ≥ 1− εδ and hence

(y∗n − x∗n)(δyn) = x∗n(xn − δyn)− x∗n(xn) + δ ≤ ∥xn − δyn∥+ δ − x∗n(xn)

≤ ∥xn − δyn∥+ δ − 1 + εδ ≤ 1 + δ(ε− 1) + δ − 1 + εδ = 2δε,
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where the last inequality holds because of ∥xn+ yn∥ ≥ 2− δ2 and the choice of δ.
It follows that x∗n(yn) ≥ y∗n(yn)− 2ε = 1− 2ε for sufficiently large n.
The implications (ii) ⇒ (iv) and (iii) ⇒ (v) are clear. To prove (iv) ⇒ (ii)

recall the inequalities

(a+ b)p ≤ 2p−1(ap + bp) ∀a, b ≥ 0, ∀p ∈ [1,∞[

(a+ b)α ≤ aα + bα ∀a, b ≥ 0, ∀α ∈]0, 1].

They imply that for all x, y ∈ SX , every t > 0 and each 1 ≤ p <∞ one has

∥x+ ty∥+ ∥x− ty∥ − 2

t
≤ (2p−1 (∥x+ ty∥p + ∥x− ty∥p))1/p − 2

t

≤
(
2p−1 (∥x+ ty∥p + ∥x− ty∥p)− 2p

tp

)1/p

= 21−1/p

(
∥x+ ty∥p + ∥x− ty∥p − 2

tp

)1/p

,

which shows (iv) ⇒ (ii). If we replace ∥x+ ty∥ by 1 + t in the above calculation,
we also obtain a proof for (v) ⇒ (iii). �

If we define the modulus ρXuacs by

ρXuacs(τ) = sup {1/2(∥x+ τy∥+ ∥x− τy∥)− 1 : (x, y) ∈ SX(τ)} ,

where τ > 0 and SX(τ) = {(x, y) ∈ SX × SX : ∥x+ y∥ ≥ 2(1− τ)} then because
of the equivalence of (i) and (ii) in Proposition 2.4X is uacs iff limτ→0 ρ

X
uacs(τ)/τ =

0 and obviously ρXuacs(τ) ≤ ρX(τ).
Let us also define

δ̃Xuacs(ε) = inf

{
max

{
1− 1

2
∥x+ y∥, 1− x∗(x)

}
: x, y ∈ SX , x

∗ ∈ Aε(y)

}
,

where 0 < ε ≤ 2 and Aε(y) = {x∗ ∈ SX∗ : x∗(y) ≤ 1− ε}.
From the very definition of the uacs spaces it follows thatX is uacs iff δ̃Xuacs(ε) >

0 for every 0 < ε ≤ 2.
Examining the proof of the implication (i) ⇒ (ii) in Proposition 2.4 we see that

the following holds.

Lemma 2.5. If X is a Banach space and 0 < ε ≤ 2 such that δ̃Xuacs(ε) > 0 then

for every τ > 0 with 2τ < δ̃Xuacs(ε) we have 2ρXuacs(τ) ≤ τε.

The reverse connection between ρXuacs and δ
X
uacs is given by the following lemma.

Lemma 2.6. Let X be any Banach space and τ > 0 as well as 0 < ε ≤ 2. Then
the inequality

δXuacs(ε) ≥
ετ − 2ρXuacs(τ)

2(τ + 1)
.

holds.
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Proof. We may assume ετ − 2ρXuacs(τ) > 0, because otherwise the inequality is
trivially satisfied. Let us put R = (ετ − 2ρXuacs(τ))(2(τ +1))−1 and take x, y ∈ SX

and x∗ ∈ SX∗ such that x∗(x) = 1 and ∥x+ y∥ > 2(1−R).
Then we can find z∗ ∈ SX∗ with z∗(x+y) > 2(1−R) and hence z∗(x) > 1−2R

and z∗(y) > 1− 2R.
It follows that

(z∗ − x∗)(τy) = z∗(x+ τy) + x∗(x− τy)− x∗(x)− z∗(x)

≤ ∥x+ τy∥+ ∥x− τy∥ − 1− z∗(x) ≤ 2ρXuacs(τ) + 1− z∗(x)

≤ 2(ρXuacs(τ) +R).

Hence

x∗(y) ≥ z∗(y)− 2

τ

(
ρXuacs(τ) +R

)
> 1− 2R− 2

τ

(
ρXuacs(τ) +R

)
= 1− ε

and we are done. �
Now we turn to the proof of the superreflexivity of uacs spaces without us-

ing James’s result on uniformly non-square Banach spaces. A key ingredient to
James’s proof is the following lemma of his, which may be found in [2, p.51].

Lemma 2.7. A Banach space X is not reflexive iff for every 0 < θ < 1 there
is a sequence (xk)k∈N in BX and a sequence (x∗n)n∈N in BX∗ such that for every
n ∈ N we have

x∗n(xk) =

{
θ if n ≤ k

0 if n > k.

Even armed with this lemma it is still difficult to prove the superreflexivity of
uniformly non-square Banach spaces, but it easily yields the result for uacs spaces.
We can even prove a stronger result: it is a well known fact that a Banach space
X is reflexive if it satisfies lim inft→0+ ρX(t)/t < 1/2 (cf. [25, Theorem 2]).1 We
will see that the same holds if we replace ρX by ρXuacs, even a bit more is true.

Proposition 2.8. If there is some 0 < t such that ρXuacs(t) < t/2, then X is
superreflexive (actually, it is uniformly non-square).

Proof. Put θ = 2ρXuacs(t)/t < 1 and choose ε > 0 such that θ + ε < 1. Also, put
η = min {tε/5, ε/5}.

If x, y ∈ SX such that ∥x+ y∥ ≥ 2(1− η) and x∗ ∈ SX∗ with x∗(x) ≥ 1− η fix
y∗ ∈ SX∗ such that y∗(x+ y) ≥ 2(1− η). Then y∗(x) ≥ 1− 2η and y∗(y) ≥ 1− 2η
and hence

(y∗ − x∗)(ty) = y∗(x+ ty) + x∗(x− ty)− x∗(x)− y∗(x)

≤ ∥x+ ty∥+ ∥x− ty∥ − 2 + 3η ≤ 2ρXuacs(t) + 3η = tθ + 3η ≤ (θ +
3

5
ε)t.

Consequently, x∗(y) ≥ y∗(y)−θ− 3
5
ε ≥ 1−2η−θ− 3

5
ε ≥ 1− 2

5
ε−θ− 3

5
ε = 1−(θ+ε).

Next we fix 0 < τ < 1/2 such that τ(1 + (1 − 2τ)−1) ≤ η and put β =
1− (1− τ)(1− 2τ)(1− θ − ε). Then 0 < β < 1.

1Note that the definition of ρX given there differs from our definition by a factor 1/2.
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Claim. If x, y ∈ BX such that ∥x + y∥ ≥ 2(1 − τ) and x∗ ∈ BX∗ such that
x∗(x) ≥ 1− τ then x∗(y) ≥ 1− β.

To see this, take x, y and x∗ as above and observe ∥x∥, ∥y∥ ≥ 1− 2τ . Hence∥∥∥∥ x

∥x∥
+

y

∥y∥

∥∥∥∥ ≥ ∥x+ y∥
∥x∥

−
∣∣∣∣ 1

∥x∥
− 1

∥y∥

∣∣∣∣ ∥y∥
≥ ∥x+ y∥ −

∣∣∣∣ 1

∥x∥
− 1

∥y∥

∣∣∣∣ ≥ 2(1− τ)− 2τ

1− 2τ
≥ 2(1− η)

and moreover, since ∥x∗∥, ∥x∥ ≤ 1,

x∗

∥x∗∥

(
x

∥x∥

)
≥ 1− τ ≥ 1− η.

Thus by our previous considerations we must have

x∗(y) ≥ ∥x∗∥∥y∥(1− θ − ε) ≥ (1− τ)(1− 2τ)(1− θ − ε) = 1− β.

From the above claim together with the fact that β < 1 it could be easily deduced
that X is uniformly non-square and hence superreflexive, but if we just want to
prove the superreflexivity an application of Lemma 2.7 is enough. For if X was
not reflexive then by said Lemma we could find sequences (xk)k∈N in BX and
(x∗n)n∈N in BX∗ such that x∗n(xk) = 0 for n > k and x∗n(xk) = 1− τ for n ≤ k.

We only need the first two members of the sequences to derive a contradiction,
namely we have ∥x1 + x2∥ ≥ x∗1(x1) + x∗1(x2) = 2(1− τ) and x∗2(x2) = 1− τ but
x∗2(x1) = 0 < 1− β contradicting our just established claim.

Thus X must be reflexive and to prove the superreflexivity it only remains to
show that for every Banach space Y which is finitely representable in X there
exists 0 < t′ such that ρYuacs(t

′) < t′/2 which we will do in the next Lemma. �
Lemma 2.9. If there is some 0 < t such that ρXuacs(t) < t/2 and Y is finitely
representable in X then there is 0 < t′ such that ρYuacs(t

′) < t′/2.

Proof. Let θ, ε, η, τ and β be as in the previous proof. Put ν = τ/4.

Claim. If x, y ∈ BX such that ∥x+y∥ ≥ 2(1−ν) then ∥x+νy∥+∥x−νy∥ ≤ 2+νβ.

To establish this, take x, y ∈ BX as above and also fix x∗ ∈ SX∗ such that
x∗(x − νy) = ∥x − νy∥. Observe as before that ∥x∥, ∥y∥ ≥ 1 − τ/2. Hence we
have

x∗(x) = ∥x− νy∥+ x∗(νy) ≥ ∥x∥ − ν∥y∥+ νx∗(y) ≥ ∥x∥ − 2ν ≥ 1− τ.

The claim we established in the previous proof now gives us x∗(y) ≥ 1 − β. It
follows that

∥x+ νy∥+ ∥x− νy∥ = ∥x+ νy∥+ x∗(x− νy) ≤ 2 + ν(1− x∗(y)) ≤ 2 + νβ.

Next fix β < α < 1 and 0 < η̃ < ν such that (βν + 3η̃)(ν − η̃)−1 < α. Put
t′ = ν − η̃. Finally, choose ε̃ > 0 such that (1 − t′)(1 + ε̃)−1 > 1 − ν and
(1 + ε̃)(2 + νβ) ≤ 2 + νβ + η̃.

Now take y1, y2 ∈ SY with ∥y1+y2∥ ≥ 2(1−t′) and put F = span {y1, y2}. Since
Y is finitely representable in X there is a subspace E ⊆ X and an isomorphism
T : F → E such that ∥T∥ = 1 and ∥T−1∥ ≤ 1 + ε̃. Let xi = Tyi for i = 1, 2.
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It easily follows that ∥x1 + x2∥ ≥ 2(1− t′)(1 + ε̃)−1 > 2(1− ν), whence ∥x1 +
νx2∥+∥x1−νx2∥ ≤ 2+νβ which implies ∥y1+νy2∥+∥y1−νy2∥ ≤ (1+ ε̃)(2+νβ).
Thus we have

∥y1 + t′y2∥+ ∥y1 − t′y2∥ ≤ ∥y1 + νy2∥+ ∥y1 − νy2∥+ 2 |ν − t′|
≤ (1 + ε̃)(2 + νβ) + 2η̃ ≤ 2 + νβ + 3η̃ ≤ 2 + α(ν − η̃) = 2 + αt′.

So we have proved 2ρYuacs(t
′)/t′ ≤ α < 1. �

We remark that the uniform non-squareness of a spaceX satisfying 2ρXuacs(t) < t
for some 0 < t could also be deduced from our Lemma 2.6 and [15, Theorem 2],
where it is observed that δXuacs(1) > 0 is sufficient to ensure that X is uniformly
non-square.

Now let us have a look at the quantitative connection between the moduli δXuacs
and δ̃Xuacs.

Lemma 2.10. If X is uacs then

δ̃Xuacs(ε) ≥ δXucas
(
δXuacs(ε)

)
for every 0 < ε ≤ 2.

Proof. Here we can adopt Sirotkin’s idea from the proof of Proposition 1.4 in [24].
Put δ = δXuacs

(
δXuacs(ε)

)
and take x, y ∈ SX and x∗ ∈ SX∗ such that ∥x + y∥ >

2(1− δ) and x∗(x) > 1− δ.
Since X is reflexive, there is some z ∈ SX with x∗(z) = 1. It follows that

∥x+ z∥ ≥ x∗(x+ z) > 2(1− δ).
Now fix y∗ ∈ SX∗ such that y∗(x) = 1. Then by the definition of δ we must have

y∗(z) > 1− δXuacs(ε) and y
∗(y) > 1− δXuacs(ε) and hence ∥y + z∥ > 2(1− δXuacs(ε)).

Because of x∗(z) = 1 this implies x∗(y) > 1− ε and the proof is finished. �

It is claimed in [10, Lemma 3.10] that the modulus of U -convexity, which
coincides with our modulus δXuacs, is continuous on ]0, 2[, but it seems that the
proof given there only works in the case ε < 1 (this is not a major drawback
since one is usually interested in small values of ε). We wish to point out that for
values between 0 and 1 even more is true, namely δXuacs is Lipschitz continuous on
[a, 1[ for every 0 < a < 1.

Lemma 2.11. For every Banach space X and all 0 < ε, ε′ < 1 we have∣∣δXuacs(ε)− δXuacs(ε
′)
∣∣ ≤ |ε− ε′|

min {ε, ε′}
.

In particular, δXuacs is Lipschitz continuous on [a, 1[ for all 0 < a < 1.

Proof. Let 0 < ε < 1 and 0 < β < 1− ε. Put τ = β/(ε + β) and take x, y ∈ SX

and x∗ ∈ SX∗ such that x∗(x) = 1 and x∗(y) ≤ 1− ε. Let z = (y− τx)/∥y− τx∥.
Note that, since ∥y − τx∥ ≥ 1− τ and ε+ τ < 1, we have

x∗(z) ≤ 1− ε− τ

1− τ
= 1− ε

(
1 +

τ

1− τ

)
= 1− (ε+ β)
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and hence

1−
∥∥∥∥x+ z

2

∥∥∥∥ ≥ δXuacs(ε+ β).

Furthermore, we have

∥y − z∥ ≤ ∥(∥y − τx∥ − 1)y + τx∥
1− τ

≤ 2τ

1− τ
=

2β

ε
.

It follows that

1−
∥∥∥∥x+ y

2

∥∥∥∥ ≥ δXuacs(ε+ β)− β

ε
.

Thus we have

δXuacs(ε+ β) ≥ δXuacs(ε) ≥ δXuacs(ε+ β)− β

ε

for all 0 < ε < 1 and every 0 < β < 1− ε, which finishes the proof. �

Next we will deal with some duality results. In [20, Theorem 2.4] a proof of the
fact that a Banach space X is a U -space iff its dual X∗ is a U -space is proposed
and in [13, Theorem 2.6] the stronger statement that the moduli of u-convexity
of X and X∗ coincide is claimed. Both proofs make use of the following claim
from [20, Remark after Definition 2.2]:

Claim. X is a U -space iff for every ε > 0 there is some δ > 0 such that whenever
x, y ∈ SX and x∗, y∗ ∈ SX∗ with x∗(x) = 1 = y∗(y) and ∥x + y∥ > 2(1− δ) then
∥x∗ + y∗∥ > 2(1− ε).

A U -space certainly has the above property. However, the converse need not be
true, not even in a two-dimensional space.

To see this, first note that if X is finite-dimensional then by an easy com-
pactness argument the condition of the claim is equivalent to the following one:
whenever x, y ∈ SX and x∗, y∗ ∈ SX∗ with x∗(x) = 1 = y∗(y) and ∥x+ y∥ = 2 we
also have ∥x∗ + y∗∥ = 2.

Therefore, if X is finite-dimensional it fulfils the condition of the claim if for
each x, y ∈ SX with ∥x+y∥ = 2 at least one of the two points x and y is a smooth
point of the unit ball. But as we have mentioned before, a two-dimensional space
is acs (equivalently a U -space) iff whenever x, y ∈ SX with ∥x+ y∥ = 2 then both
points x and y are smooth points of the unit ball.

Taking all this into account, we see that the space R2 endowed with the norm
whose unit ball is sketched below will be an example of a space which fulfils the
condition of the claim but is not a U -space.
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.

Fig. 5

However, it is possible to modify the proof from [20, Theorem 2.4] to show that
the desired self-duality result is true nonetheless.

Proposition 2.12. Let X be a Banach space whose dual X∗ is uacs. Then we
have

δXuacs(ε) ≥ δX
∗

uacs

(
δX

∗

uacs(ε)
)
∀ε ∈]0, 2].

In particular, X is also uacs.

Proof. Take any ε ∈]0, 2] and put δ = δX
∗

uacs(ε) and δ̃ = δX
∗

uacs(δ).

Now if x, y ∈ SX and x∗ ∈ SX∗ with x∗(x) = 1 and ∥x+ y∥ > 2(1− δ̃) choose
y∗, z∗ ∈ SX∗ such that y∗(y) = 1 and z∗(x+ y) = ∥x+ y∥.

Then we must have z∗(x) > 1 − 2δ̃ and z∗(y) > 1 − 2δ̃. It follows that

(z∗ + x∗)(x) > 2− 2δ̃ and (z∗ + y∗)(y) > 2− 2δ̃ and hence∥∥∥∥z∗ + x∗

2

∥∥∥∥ > 1− δ̃ and

∥∥∥∥z∗ + y∗

2

∥∥∥∥ > 1− δ̃. (2.3)

Next we pick any z∗∗ ∈ SX∗∗ with z∗∗(z∗) = 1. Then from (2.3) and the definition

of δ̃ we get that z∗∗(x∗) > 1− δ and z∗∗(y∗) > 1− δ.
It follows that ∥x∗ + y∗∥ > 2(1−δ) and because of y∗(y) = 1 and the definition

of δ this implies x∗(y) > 1−ε and thus we have shown δXuacs(ε) ≥ δ̃ = δX
∗

uacs

(
δX

∗
uacs(ε)

)
.

�
Taking into account that uacs spaces are reflexive we finally get that being uacs

is a self-dual property.

Corollary 2.13. A Banach space X is uacs iff X∗ is uacs.

The author does not know whether the equality δXuacs = δX
∗

uacs that was claimed
in [13, Theorem 2.6] is actually true.

Alternatively, we could also derive the self-duality from the following lemma (cf.
the proof of [14, Lemma 9.9]). The modulus ρ̃Xuacs is defined exactly as ρXuacs except
that one replaces SX by BX . The argument that X is uacs iff limτ→0 ρ̃

X
uacs(τ)/τ =

0 is analogous to the one for ρXuacs.

Lemma 2.14. If X is any Banach space then for every τ > 0 and every 0 < ε ≤ 2
the following inequalities hold:

(i) δXuacs(ε) + ρX
∗

uacs(τ) ≥ τ ε
2
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(ii) δX
∗

uacs(ε) + ρ̃Xuacs(τ) ≥ τ ε
2

Proof. We only prove the slightly more difficult inequality (ii). To this end, fix
x∗, y∗ ∈ SX∗ and x∗∗ ∈ SX∗∗ such that x∗∗(x∗) = 1 and x∗∗(y∗) ≤ 1− ε.

If ∥x∗ + y∗∥ ≤ 2(1− τ) then we certainly have 2− ∥x∗ + y∗∥ ≥ τε− 2ρ̃Xuacs(τ).
If ∥x∗ + y∗∥ > 2(1 − τ) then take an arbitrary 0 < α < ∥x∗ + y∗∥ − 2(1 − τ).

By Goldstine’s theorem there is some x ∈ BX such that

|x∗∗(x∗)− x∗(x)| ≤ α

2
and |x∗∗(y∗)− y∗(x)| ≤ α

2
.

Now choose y ∈ SX such that (x∗ + y∗)(y) > ∥x∗ + y∗∥ − α/2. It follows that
(x∗ + y∗)(y) > 2(1− τ) + α/2 and hence x∗(y), y∗(y) > 1− 2τ + α/2.

Thus we have

∥x+ y∥ ≥ x∗(x+ y) ≥ x∗∗(x∗)− α

2
+ 1− 2τ +

α

2
= 2(1− τ)

and hence

2ρ̃Xuacs(τ) ≥ ∥y + τx∥+ ∥y − τx∥ − 2 ≥ x∗(y + τx) + y∗(y − τx)− 2

= (x∗ + y∗)(y) + τ(x∗(x)− y∗(x))− 2

≥ ∥x∗ + y∗∥ − α

2
+ τ (x∗∗(x∗)− x∗∗(y∗)− α)− 2

≥ ∥x∗ + y∗∥ − α

2
+ τ(ε− α)− 2.

For α→ 0 we get 2− ∥x∗ + y∗∥ ≥ τε− 2ρ̃Xuacs(τ) and we are done. �
There are also some duality result on acs, luacs, sluacs and wuacs spaces which

we will treat in the following. The proof of the first statement is very easy and
will therefore be omitted.

Proposition 2.15. A Banach space X is acs iff for all x∗, y∗ ∈ SX∗ and all
x, y ∈ SX the implication

(x∗ + y∗)(x) = 2 and x∗(y) = 1 ⇒ y∗(y) = 1

holds. In particular, if X∗ is acs then so is X and the converse is true if X is
reflexive.

We will say that a dual space X∗ is luacs∗ resp. wuacs∗ if it fulfils the definition
of an luacs resp. wuacs space with for all weak*-continuous functionals on X∗.
With this terminology the following is valid.

Proposition 2.16. For any Banach space X we have the following implications.

(i) X∗ luacs∗ ⇐⇒ X luacs
(ii) X∗ wuacs∗ ⇐⇒ X sluacs
(iii) X∗ sluacs ⇐⇒ X wuacs

Proof. We only prove (iii). Let us first assume that X∗ is sluacs and take se-
quences (xn)n∈N, (yn)n∈N in SX and a functional x∗ ∈ SX∗ such that ∥xn + yn∥ →
2 and x∗(xn) → 1.

Choose a sequence (x∗n)n∈N in SX∗ with x∗n(xn + yn) = ∥xn + yn∥ for every n.
It follows that x∗n(xn) → 1 and x∗n(yn) → 1.



310 J.-D. HARDTKE

From x∗(xn) → 1 and x∗n(xn) → 1 we get ∥x∗n + x∗∥ → 2. Together with
x∗n(yn) → 1 and the fact that X∗ is sluacs this implies x∗(yn) → 1 and we are
done.

Now assume X is wuacs and fix a sequence (x∗n)n∈N in SX∗ and x∗ ∈ SX∗ such
that ∥x∗n + x∗∥ → 2 as well as a sequence (x∗∗n )n∈N in SX∗∗ with x∗∗n (x∗n) → 1.

Because of ∥x∗n + x∗∥ → 2 we can find a sequence (xn)n∈N in SX such that
x∗n(xn) → 1 and x∗(xn) → 1.

By Goldstine’s theorem we can also find a sequence (yn)n∈N in BX which sat-
isfies

|x∗n(yn)− x∗∗n (x∗n)| ≤
1

n
and |x∗(yn)− x∗∗n (x∗)| ≤ 1

n
∀n ∈ N.

So we have x∗n(xn + yn) → 2 and hence ∥xn + yn∥ → 2. Since X is wuacs and
x∗(xn) → 1 we must also have x∗(yn) → 1 and consequently x∗∗n (x∗) → 1. �

If X is reflexive then by (i) and (ii) of the preceding proposition X∗ is luacs
(resp. wuacs) iff X is luacs (resp. sluacs). Next we would like to give necessary
and sufficient conditions for a dual space to be acs resp. luacs resp. wuacs that
do not explicitly involve the bidual space. We start with the acs case. The
characterisation is inspired by [28, Proposition 3].

Proposition 2.17. Let X be any Banach space. The dual space X∗ is acs iff
for all sequences (xn)n∈N and (yn)n∈N in BX and all functionals x∗, y∗ ∈ SX∗ the
implication

x∗(xn + yn) → 2 and y∗(xn) → 1 ⇒ y∗(yn) → 1

holds.

Proof. To prove the necessity, assume that X∗ is acs and take two sequences
(xn)n∈N, (yn)n∈N and functionals x∗, y∗ as above. It follows that ∥x∗ + y∗∥ = 2.
By the weak*-compactness of BX∗∗ we can find for an arbitrary subsequence
(ynk

)k∈N a subnet (ynϕ(i)
)i∈I that weak*-converges to some y∗∗ ∈ BX∗∗ . It follows

that y∗∗(x∗) = 1 and since X∗ is acs we must also have y∗∗(y∗) = 1. Thus
y∗(ynϕ(i)

) → 1 and the proof of the necessity is finished.
Now assume that X∗ fulfils the above condition and take x∗, y∗ ∈ SX∗ and

x∗∗ ∈ SX∗∗ such that ∥x∗+y∗∥ = 2 and x∗∗(x∗) = 1. Then we can find a sequence
(xn)n∈N in BX such that x∗(xn) → 1 and y∗(xn) → 1.

By Goldstine’s theorem there is a sequence (yn)n∈N in BX such that x∗(yn) →
x∗∗(x∗) = 1 and y∗(yn) → x∗∗(y∗).

Thus we have x∗(xn + yn) → 2 and y∗(xn) → 1 and hence by our assumption
we get y∗(yn) → 1, so x∗∗(y∗) = 1. �

The characterisations for the dual space to be luacs resp. wuacs are a bit more
complicated. They read as follows.

Proposition 2.18. Let X be a Banach space.

(i) X∗ is luacs iff for every x∗ ∈ SX∗ and all sequences (x∗n)n∈N and (xk)k∈N in
SX∗ and BX respectively, the implication

∥x∗ + x∗n∥ → 2 and x∗n(xk)
k,n→∞−−−−→
k≥n

1 ⇒ x∗(xk) → 1
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holds.
(ii) X∗ is wuacs iff for all sequences (x∗n)n∈N, (y

∗
n)n∈N in SX∗ and (xk)k∈N in BX

the implication

∥x∗n + y∗n∥ → 2 and x∗n(xk)
k,n→∞−−−−→
k≥n

1 ⇒ lim
n→∞

sup
k≥n

y∗n(xk) = 1.

holds.

Proof. To prove (ii) we first assume that X∗ is wuacs and fix sequences (x∗n)n∈N
and (y∗n)n∈N in SX∗ as well as (xk)k∈N in BX as above. Since BX∗∗ is weak*-
compact there is a subnet (xϕ(i))i∈I that is weak*-convergent to some x∗∗ ∈ BX∗∗ .
We will show that x∗∗(x∗n) → 1.

Given any ε > 0 by our assumption on (x∗n)n∈N and (xk)k∈N we can find an
N ∈ N such that

|x∗n(xk)− 1| ≤ ε ∀k ≥ n ≥ N.

For every n ≥ N it is possible to find an index i ∈ I with ϕ(i) ≥ n and∣∣x∗n(xϕ(i))− x∗∗(x∗n)
∣∣ ≤ ε. It follows that |x∗∗(y∗n)− 1| ≤ 2ε and the convergence

is proved.
So we have ∥x∗n + y∗n∥ → 2 and x∗∗(x∗n) → 1. Since X∗ is wuacs this im-

plies x∗∗(y∗n) → 1. Thus for any δ > 0 there is some n0 ∈ N such that
|x∗∗(y∗n)− 1| ≤ δ for all n ≥ n0 and for any such n we find j ∈ I with ϕ(j) ≥ n
and

∣∣y∗n(xϕ(i))− x∗∗(y∗n)
∣∣ ≤ δ. Hence

∣∣y∗n(xϕ(i))− 1
∣∣ ≤ 2δ and we have shown

supk≥n y
∗
n(xk) ≥ 1− 2δ for all n ≥ n0.

Now let us prove the converse. We take sequences (x∗n)n∈N, (y
∗
n)n∈N in SX∗ such

that ∥x∗n + y∗n∥ → 2 and a functional x∗∗ ∈ SX∗∗ with x∗∗(x∗n) → 1.
By means of Goldstine’s theorem we find a sequence (xk)k∈N in BX that satisfies

|x∗n(xk)− x∗∗(x∗n)| ≤
1

k
and |y∗n(xk)− x∗∗(y∗n)| ≤

1

k
∀n ≤ k.

It is then easy to see that (x∗n(xk))k≥n tends to 1 and hence our assumption gives
us limn→∞ supk≥n y

∗
n(xk) = 1.

Thus for any ε > 0 there exists N ∈ N with supk≥n y
∗
n(xk) > 1− ε and 1/n ≤ ε

for each n ≥ N .
If we fix n ≥ N we find k ≥ n with y∗n(xk) ≥ 1−ε and because of the inequality

|x∗∗(y∗n)− y∗n(xk)| ≤ 1/k ≤ ε it follows that x∗∗(y∗n) ≥ 1 − 2ε and the proof is
finished. Part (i) is proved similarly. �

One can also give some more characterisations of acs, luacs and sluacs spaces
by apparently stronger properties.

Proposition 2.19. For a Banach space X, the following assertions are equiva-
lent:

(i) X is acs.

(ii) For all sequences (x∗n)n∈N, (y
∗
n)n∈N in BX∗ and all x, y ∈ SX the implication

(x∗n + y∗n)(x) → 2 and y∗n(y) → 1 ⇒ x∗n(y) → 1

holds.
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(iii) For every sequence (x∗n)n∈N in SX∗ and all x, y ∈ SX the implication

∥x+ y∥ = 2 and x∗n(x) → 1 ⇒ x∗n(y) → 1

holds.

Proof. (i) ⇒ (ii) follows from Proposition 2.15 together with the fact that BX∗ is
weak*-compact, the implication (iii) ⇒ (i) is trivial and (ii) ⇒ (iii) is also quite
easy to see. �

By means of Goldstine’s theorem one can also prove the following characterisation
of luacs spaces (we omit the details).

Proposition 2.20. A Banach space X is luacs if and only if for every sequence
(x∗∗n )n∈N in SX∗∗, every x ∈ SX and each x∗ ∈ SX∗ the implication

∥x∗∗n + x∥ → 2 and x∗∗n (x∗) → 1 ⇒ x∗(x) = 1.

holds.

Let us denote by X(k) the k-th dual of X. Then X resp. X∗ naturally embeds
into X(2k) resp. X(2k+1) for each k. For sluacs spaces we have the following
stronger result.

Proposition 2.21. A Banach space X is sluacs iff for every k ∈ N, for every
sequence (zn)n∈N in BX(2k), every x ∈ SX and each sequence (z∗n)n∈N in BX(2k+1)

the implication

∥zn + x∥ → 2 and z∗n(zn) → 1 ⇒ z∗n(x) → 1

holds.

Proof. The sufficiency is obvious. To prove the necessity, we first take sequences
(x∗∗n )n∈N in BX∗∗ and (x∗∗∗n )n∈N in BX∗∗∗ as well as an element x ∈ SX such that
∥x∗∗n + x∥ → 2 and x∗∗∗n (x∗∗n ) → 1. Then we can find a sequence (y∗n)n∈N in SX∗

such that x∗∗n (y∗n) → 1 and y∗n(x) → 1.
By Goldstine’s theorem (applied to X∗) there is a sequence (x∗n)n∈N in BX∗

such that x∗∗∗n (x∗∗n )− x∗∗n (x∗n) → 0 and x∗∗∗n (x)− x∗n(x) → 0. Hence x∗∗n (x∗n) → 1.
Again by Goldstine’s theorem (now applied to X) there exists a sequence

(xn)n∈N in BX such that x∗∗n (x∗n) − x∗n(xn) → 0 and x∗∗n (y∗n) − y∗n(xn) → 0. It
follows that x∗n(xn) → 1 and y∗n(xn) → 1.

Taking into account that y∗n(x) → 1 we get ∥xn + x∥ → 2. Since X is sluacs it
follows x∗n(x) → 1 and hence x∗∗∗n (x) → 1.

Thus we have proved our claim for k = 1. Continuing by induction with the
above argument we can show it for all k ∈ N. �

If we use the preceding proposition and the technique of proof from Proposition
2.4 we see that the following holds.

Proposition 2.22. For a Banach space X the following assertions are equivalent:

(i) X is sluacs.
(ii) For every k ∈ N, every ε > 0 and every y ∈ SX there is some δ > 0 such

that for all t ∈ [0, δ] and each z ∈ SX(2k) with ∥z + y∥ ≥ 2(1− t) we have

∥z + ty∥+ ∥z − ty∥ ≤ 2 + εt.



SOME PROPERTIES RELATED TO ROTUNDITY AND SMOOTHNESS 313

(iii) For every k ∈ N, every ε > 0 and every y ∈ SX there is some δ > 0 such
that for all t ∈ [0, δ] and each z ∈ SX(2k) with ∥z + y∥ ≥ 2− tδ we have

∥z − ty∥ ≤ 1 + t(ε− 1).

Finally, let us consider quotient spaces. If U is a closed subpace of X then
(X/U)∗ is isometrically isomorphic to U⊥ (the annihilator of U in X∗). Using
this together with Corollary 2.13 and the obvious fact that closed subspaces of
uacs spaces are again uacs, one immediately gets that quotients of uacs spaces are
uacs as well. An analogous argument using part (iii) of Proposition 2.16 works
for wuacs spaces, so in the summary we have the following proposition.

Proposition 2.23. Let U be a closed subspace of the Banach space X. If X is
uacs (resp. wuacs) then X/U is also uacs (resp. wuacs).

As for quotients of acs, luacs and sluacs spaces we have the following result
which is an analogue of [19, Proposition 3.2].

Proposition 2.24. If U is a reflexive subspace of the Banach space X then the
properties acs, luacs and sluacs pass from X to X/U .

Proof. Let ω : X → X/U be the canonical quotient map. As was observed in the
proof of [19, Proposition 3.2] the reflexivity of U implies ω(BX) = BX/U .

Now suppose that X is sluacs and take a sequence (zn)n∈N in SX/U and an
element z ∈ SX/U such that ∥zn + z∥ → 2. Further, take a sequence (ψn)n∈N in
S(X/U)∗ with ψn(zn) → 1.

Since ω(BX) = BX/U we can find a sequence (xn)n∈N in SX and a point x ∈ SX

such that zn = ω(xn) for every n and z = ω(x).
It easily follows from ∥zn + z∥ → 2 that we also have ∥xn + x∥ → 2.
We put x∗n := ψn ◦ω ∈ SU⊥ for every n and observe that x∗n(xn) = ψn(zn) → 1.

Since X is sluacs this implies x∗n(x) = ψn(z) → 1.
The proofs for acs and luacs spaces are analogous. �
Using again the relation (X/U)∗ ∼= U⊥ for every closed subspace U of X we

can derive the following from Propositions 2.15 and 2.16.

Proposition 2.25. If U is a closed subspace of the Banach space X the following
implications hold.

(i) X∗ acs ⇒ X/U acs
(ii) X∗ luacs ⇒ X/U luacs
(iii) X∗ wuacs ⇒ X/U sluacs

It is known (cf. [8, p.145]) that for any Banach space X the dual X∗ is R (resp.
S) iff every quotient space of X is S (resp. R) iff every two-dimensional quotient
space of X is S (resp. R). By an analogous argument we can get the following
result.

Proposition 2.26. For a Banach space X the following assertions are equivalent.

(i) X∗ is acs.
(ii) X/U is acs for every closed subspace U of X.
(iii) X/U is acs for every closed subspace U of X with dimX/U = 2.
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Proof. (i) ⇒ (ii) holds according to Proposition 2.25 and (ii) ⇒ (iii) is triv-
ial, so it only remains to prove (iii) ⇒ (i). Obviously it suffices to show that
every two-dimensional subspace of X∗ is acs, so let us take such a subspace
V = span {x∗, y∗}. Then V = U⊥ = (X/U)∗, where U = kerx∗∩ker y∗. The quo-
tient space X/U is two-dimensional and hence by our assumption it is acs. Since
X/U is in particular reflexive it follows from Proposition 2.16 that (X/U)∗ = V
is also acs. �

By [19, Proposition 3.4] there is an equivalent norm ∥·∥ on ℓ1 such that (ℓ1, ∥·∥)
is R and every separable Banach space is isometrically isomorphic to a quotient
space of (ℓ1, ∥·∥), so in particular ℓ1 is a quotient of (ℓ1, ∥·∥). Thus quotients of
acs spaces are in general not acs and it also follows (in view of Proposition 2.26)
that the fact that X is acs is not sufficient to ensure that X∗ is acs.

There is also an analogue of Proposition 2.26 for uacs spaces which reads as
follows. (The corresponding result for UR spaces was proved by Day (cf. [7,
Theorem 5.5]).)

Proposition 2.27. For a Banach space X let S(X) denote the set of all closed
subspaces of X and S2(X) the set of all closed subspaces U of X such that
dimX/U ≤ 2. Then the following assertions are equivalent:

(i) X is uacs.

(ii) inf
{
δ
X/U
uacs (ε) : U ∈ S(X)

}
> 0 ∀ε ∈]0, 2].

(iii) inf
{
δ
X/U
uacs (ε) : U ∈ S2(X)

}
> 0 ∀ε ∈]0, 2].

Proof. (i) ⇒ (ii) Let X be uacs. If U ∈ S(X) then (X/U)∗ ∼= U⊥, hence

δ
(X/U)∗
uacs (ε) ≥ δX

∗
uacs(ε) ≥ δXuacs

(
δXuacs(ε)

)
by Proposition 2.12 and the reflexivity

of X.
Using again Proposition 2.12 (now applied to X/U) and the monotonicity of

the uacs modulus we obtain

δX/U
uacs (ε) ≥ δXuacs

(
δXuacs

(
δXuacs

(
δXuacs(ε)

)))
> 0,

which finishes our argument.
Since (ii) ⇒ (iii) is obvious it only remains to prove (iii) ⇒ (i). Denote the

infimum in (iii) by δ(ε) and take sequence (x∗n)n∈N, (y
∗
n)n∈N in SX∗ such that

∥x∗n + y∗n∥ → 2 and a sequence (x∗∗n )n∈N in SX∗∗ with x∗∗n (x∗n) → 1.
We put Vn = span {x∗n, y∗n} and Un = kerx∗n ∩ ker y∗n for every n. Then Vn =

U⊥
n = (X/Un)

∗. Again by Proposition 2.12 (and reflexivity of X/Un) we get that

δVn
uacs(ε) ≥ δ

X/Un
uacs

(
δ
X/Un
ucas (ε)

)
≥ δ (δ(ε)).

Let φn denote the restriction of x∗∗n to Vn and fix any ε0 > 0. Because of
∥x∗n + y∗n∥ → 2 we have 1 − 2−1∥x∗n + y∗n∥ < δ (δ(ε0)) ≤ δVn

uacs(ε0) for sufficiently
large n.

Since φn(x
∗
n) = 1 this implies that we eventually have φn(y

∗
n) = x∗∗n (y∗n) ≥ 1−ε0.

Thus we have shown that X∗ is uacs and by Proposition 2.12 X is uacs as
well. �
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In the next section we will study absolute sums of uacs spaces and their rel-
atives, but first we have to introduce two more definitions that will be needed,
namely “symmetrised” versions of the notions of luacs and sluacs spaces.

Definition 2.28. A Banach space X is called

(i) a luacs+ space if for every x ∈ SX , every sequence (xn)n∈N in SX with
∥xn + x∥ → 2 and all x∗ ∈ SX∗ we have

x∗(xn) → 1 ⇐⇒ x∗(x) = 1,

(ii) a sluacs+ space if for every x ∈ SX , every sequence (xn)n∈N in SX with
∥xn + x∥ → 2 and all sequences (x∗n)n∈N in SX∗ we have

x∗n(xn) → 1 ⇐⇒ x∗n(x) → 1.

If we include these two properties in our implication chart we get the following.

..UR

.WUR

.LUR

.WLUR .R

.uacs

.wuacs

.sluacs+

.luacs+

.acs

.sluacs

.luacs
Fig. 6

Let us mention that Proposition 2.24 also holds for luacs+ and sluacs+ spaces
(with the same argument). Also, Propositions 2.20 resp. 2.21 hold accordingly
for luacs+ resp. sluacs+ spaces.

In analogy to Proposition 2.4 one can prove that for any Banach space X the
following conditions are equivalent:

(i) For all sequences (xn)n∈N in SX , (x
∗
n)n∈N in SX∗ and every x ∈ SX with

∥xn + x∥ → 2 and x∗n(x) → 1 one has x∗n(xn) → 1.

(ii) For every x ∈ SX and every ε > 0 there exists a δ > 0 such that

∥x+ ty∥+ ∥x− ty∥ ≤ 2 + εt

whenever t ∈ [0, δ] and y ∈ SX with ∥x+ y∥ ≥ 2(1− t).

In particular, every FS space fulfils (i) and hence a space which is FS and sluacs
is sluacs+. In the context of FS spaces we also have the following proposition.

Proposition 2.29. If X is FS and X∗ is acs then X is luacs+. In particular,
every reflexive FS space is luacs+.

Proof. By our previous considerations we only have to show that X is luacs.
Take a sequence (xn)n∈N in SX and a point x ∈ SX with ∥xn + x∥ → 2 as well

as a functional x∗ ∈ SX∗ with x∗(xn) → 1. Choose a sequence (y∗n)n∈N in SX∗



316 J.-D. HARDTKE

such that y∗n(xn + x) = ∥xn + x∥ for every n ∈ N. It follows that y∗n(xn) → 1 and
y∗n(x) → 1.

Because of ∥y∗n+x∗∥ ≥ y∗n(xn)+x∗(xn) for every n it follows that ∥y∗n+x∗∥ →
2. If y∗ ∈ SX∗ is the Fréchet-derivative of ∥ . ∥ at x then y∗n(x) → 1 implies
∥y∗n − y∗∥ → 0. Hence we get ∥x∗ + y∗∥ = 2 and y∗(x) = 1.

Since X∗ is acs we can conclude that x∗(x) = 1. �
We conclude this section with a simple lemma that will be frequently used in

the sequel. It is the generalisation of [1, Lemma 2.1] to sequences, while the proof
remains virtually the same.

Lemma 2.30. Let (xn)n∈N and (yn)n∈N be sequences in the (real or complex)
normed space X such that ∥xn + yn∥ − ∥xn∥ − ∥yn∥ → 0.

Then for any two bounded sequences (αn)n∈N, (βn)n∈N of non-negative real num-
bers we also have ∥αnxn + βnyn∥ − αn ∥xn∥ − βn ∥yn∥ → 0.

Proof. Let n ∈ N be arbitrary. If αn ≥ βn then

∥αnxn + βnyn∥ ≥ αn ∥xn + yn∥ − (αn − βn) ∥yn∥
= αn (∥xn + yn∥ − ∥xn∥ − ∥yn∥) + αn ∥xn∥+ βn ∥yn∥

and hence

∥αnxn + βnyn∥ − αn ∥xn∥ − βn ∥yn∥ ≥ αn (∥xn + yn∥ − ∥xn∥ − ∥yn∥) .
Analogously one can show that

∥αnxn + βnyn∥ − αn ∥xn∥ − βn ∥yn∥ ≥ βn (∥xn + yn∥ − ∥xn∥ − ∥yn∥)
if αn < βn. Since (αn)n∈N and (βn)n∈N are bounded we obtain the desired con-
clusion. �

3. Absolute sums

We begin by recalling some preliminaries on absolute sums. Let I be a non-
empty set, E a subspace of RI with ei ∈ E for all i ∈ I and ∥ . ∥E a complete
norm on E (here ei denotes the characteristic function of {i}).
The norm ∥ . ∥E is called absolute if the following holds

(ai)i∈I ∈ E, (bi)i∈I ∈ RI and |ai| = |bi| ∀i ∈ I

⇒ (bi)i∈I ∈ E and ∥(ai)i∈I∥E = ∥(bi)i∈I∥E .
The norm is called normalised if ∥ei∥ = 1 for every i ∈ I.

Standard examples of subspaces of RI with absolute normalised norm are the
spaces ℓp(I) for 1 ≤ p ≤ ∞.

We have the following important lemma on absolute normalised norms, whose
proof can be found for example in [21, Remark 2.1].

Lemma 3.1. Let (E, ∥ . ∥E) be a subspace of RI with an absolute normalised
norm. Then the following is true.

(ai)i∈I ∈ E, (bi)i∈I ∈ RI and |bi| ≤ |ai| ∀i ∈ I

⇒ (bi)i∈I ∈ E and ∥(bi)i∈I∥E ≤ ∥(ai)i∈I∥E .
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Furthermore, the inclusions ℓ1(I) ⊆ E ⊆ ℓ∞(I) hold and the respective inclusion
mappings are contractive.

For a given subspace (E, ∥ . ∥E) of RI endowed with an absolute normalised
norm we put

E ′ :=

{
(ai)i∈I ∈ RI : sup

(bi)i∈I∈BE

∑
i∈I

|aibi| <∞

}
.

It is easy to check that E ′ is a subspace of RI and that

∥(ai)i∈I∥E′ := sup
(bi)i∈I∈BE

∑
i∈I

|aibi| ∀(ai)i∈I ∈ E ′

defines an absolute normalised norm on E ′.
The map T : E ′ → E∗ defined by

T ((ai)i∈I)((bi)i∈I) :=
∑
i∈I

aibi ∀(ai)i∈I ∈ E ′, ∀(bi)i∈I ∈ E

is easily seen to be an isometric embedding. Moreover, if span {ei : i ∈ I} is dense
in E then T is onto, so in this case we can identify E∗ and E ′.

Now if (Xi)i∈I is a family of (real or complex) Banach spaces we put[⊕
i∈I

Xi

]
E
:=

{
(xi)i∈I ∈

∏
i∈I

Xi : (∥xi∥)i∈I ∈ E

}
.

It is not hard to see that this defines a subspace of the product space
∏

i∈I Xi

which becomes a Banach space when endowed with the norm

∥(xi)i∈I∥E := ∥(∥xi∥)i∈I∥E ∀(xi)i∈I ∈
[⊕

i∈I

Xi

]
E
.

We call this Banach space the absolute sum of the family (Xi)i∈I with respect to
E. Again, the map

S :
[⊕

i∈I

X∗
i

]
E′

→
[⊕

i∈I

Xi

]∗
E

S((x∗i )i∈I)((xi)i∈I) :=
∑
i∈I

x∗i (xi)

is an isometric embedding and it is onto if span {ei : i ∈ I} is dense in E.
We also mention the following well-known fact, which will be needed later.

Lemma 3.2. If E is a subspace of RI endowed with an absolute normalised norm
and span {ei : i ∈ I} is dense in E then E contains no isomorphic copy of ℓ1 iff
span {ei : i ∈ I} is dense in E ′.

If not otherwise stated, we shall henceforth assume E to be a subspace of RI

with an absolute normalised norm such that span {ei : i ∈ I} is dense in E.
Now let us first have a look at absolute sums of acs spaces.

Proposition 3.3. If (Xi)i∈I is a family of acs spaces and E is acs then
[⊕

i∈I X
]
E

is also acs.
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Proof. Let x = (xi)i∈I and y = (yi)i∈I be elements of the unit sphere of
[⊕

i∈I Xi

]
E

and x∗ = (x∗i )i∈I an element of the dual unit sphere such that ∥x+ y∥E = 2 and
x∗(x) = 1. We then have

1 = x∗(x) =
∑
i∈I

x∗i (xi) ≤
∑
i∈I

∥x∗i ∥∥xi∥ ≤ ∥x∗∥E′∥x∥E = 1

and hence

x∗i (xi) = ∥x∗i ∥∥xi∥ ∀i ∈ I and
∑
i∈I

∥x∗i ∥∥xi∥ = 1. (3.1)

Moreover, by Lemma 3.1 we have

2 = ∥x+ y∥E = ∥(∥xi + yi∥)i∈I∥E ≤ ∥(∥xi∥+ ∥yi∥)i∈I∥E
≤ ∥x∥E + ∥y∥E = 2

and thus

∥(∥xi∥+ ∥yi∥)i∈I∥E = 2. (3.2)

Since E is acs (3.2) and the second part of (3.1) imply that∑
i∈I

∥x∗i ∥∥yi∥ = 1. (3.3)

Another application of Lemma 3.1 shows

∥(∥xi + yi∥+ ∥xi∥+ ∥yi∥)i∈I∥E = 4. (3.4)

Again, since E is acs we get from (3.4), (3.3) and the second part of (3.1) that∑
i∈I

∥x∗i ∥∥xi + yi∥ = 2

which together with (3.1) and (3.3) implies

∥x∗i ∥ (∥xi∥+ ∥yi∥ − ∥xi + yi∥) = 0 ∀i ∈ I. (3.5)

Next we claim that

x∗i (yi) = ∥x∗i ∥∥yi∥ ∀i ∈ I. (3.6)

To see this, fix any i0 ∈ I with x∗i0 ̸= 0 and yi0 ̸= 0. Define ai = ∥x∗i ∥ for all
i ∈ I \ {i0} and ai0 = 0. Then (ai)i∈I ∈ BE′ , because of Lemma 3.1.

If xi0 = 0 it would follow that
∑

i∈I ai∥xi∥ =
∑

i∈I∥x∗i ∥∥xi∥ = 1 and hence
(because of (3.2) and since E is acs) we would also have

∑
i∈I ai ∥yi∥ = 1. But by

(3.3) this would imply ∥yi0∥∥x∗i0∥ =
∑

i∈I∥yi∥ (∥x∗i ∥ − ai) = 0, a contradiction.
Thus xi0 ̸= 0. From (3.5) and Lemma 2.30 we get that∥∥∥∥ xi0

∥xi0∥
+

yi0
∥yi0∥

∥∥∥∥ = 2.

Taking into account the first part of (3.1) and the fact that Xi0 is acs we get
x∗i0(yi0) = ∥x∗i0∥∥yi0∥, as desired.

Now from (3.6) and (3.3) it follows that x∗(y) = 1 and we are done. �
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We remark that the special case of finitely many summands in the above
proposition has already been treated in [11] (for two summand) and [23] (for
finitely many summands) in the context of u-spaces and the so called ψ-direct
sums.

Before we can get on, we have to introduce another technical definition.

Definition 3.4. The space E is said to have the property (P ) if for every sequence
(an)n∈N in SE and every a ∈ SE we have

∥an + a∥E → 2 ⇒ an → a pointwise.

If E is WLUR then it obviously has property (P ). The converse is true if E
contains no isomorphic copy of ℓ1 by Lemma 3.2.

With this notion we can formulate the following proposition.

Proposition 3.5. If (Xi)i∈I is a family of sluacs (resp. luacs) spaces and E is
sluacs (resp. luacs) and has the property (P ) then

[⊕
i∈I Xi

]
E

is sluacs (resp.
luacs) as well.

Proof. We only prove the sluacs case. The argument for luacs spaces is analogous.
So let (xn)n∈N be a sequence in the unit sphere of

[⊕
i∈I Xi

]
E
and x = (xi)i∈I

another element of norm one such that ∥xn + x∥E → 2 and let (x∗n)n∈N be a
sequence in the dual unit sphere such that x∗n(xn) → 1.

Write xn = (xn,i)i∈I and x∗n = (x∗n,i)i∈I for each n. We then have

x∗n(xn) =
∑
i∈I

x∗n,i(xn,i) ≤
∑
i∈I

∥x∗n,i∥∥xn,i∥ ≤ ∥x∗n∥E′∥xn∥E = 1

which gives us

lim
n→∞

∑
i∈I

∥x∗n,i∥∥xn,i∥ = 1 (3.7)

and

lim
n→∞

(
x∗n,i(xn,i)− ∥x∗n,i∥∥xn,i∥

)
= 0 ∀i ∈ I. (3.8)

Applying Lemma 3.1 we also get

∥xn + x∥E ≤ ∥(∥xn,i∥+ ∥xi∥)i∈I∥E ≤ ∥xn∥E + ∥x∥E = 2

and hence

lim
n→∞

∥(∥xn,i∥+ ∥xi∥)i∈I∥E = 2. (3.9)

Since E has property (P ) this implies

lim
n→∞

∥xn,i∥ = ∥xi∥ ∀i ∈ I. (3.10)

Because E is sluacs we get from (3.7) and (3.9) that

lim
n→∞

∑
i∈I

∥x∗n,i∥∥xi∥ = 1. (3.11)

If we apply Lemma 3.1 again we arrive at

lim
n→∞

∥(∥xn,i + xi∥+ ∥xn,i∥+ ∥xi∥)i∈I∥E = 4. (3.12)
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We further have

∥xn + x∥E + 1 ≥ ∥(∥xn,i + xi∥+ ∥xn,i∥)i∈I∥E
≥ ∥(∥xn,i + xi∥+ ∥xn,i∥+ ∥xi∥)i∈I∥E − 1

and thus it follows from (3.12) that

lim
n→∞

∥(∥xn,i + xi∥+ ∥xn,i∥)i∈I∥E = 3. (3.13)

Analogously one can shown

lim
n→∞

∥(∥xn,i + xi∥+ ∥xi∥)i∈I∥E = 3. (3.14)

But because of Lemma 3.1 we also have

∥(∥xn,i + xi∥+ ∥xn,i∥)i∈I∥E + 3

≥ ∥(∥xn,i + xi∥+ ∥xn,i∥+ 3∥xi∥)i∈I∥E
≥ 2 ∥(∥xn,i + xi∥+ ∥xi∥)i∈I∥E

and thus (3.14) and (3.13) imply

lim
n→∞

∥(∥xn,i + xi∥+ ∥xn,i∥+ 3∥xi∥)i∈I∥E = 6. (3.15)

Since E has property (P ) it follows from (3.13) and (3.15) (and some standard
normalisation arguments) that

lim
n→∞

(∥xn,i + xi∥+ ∥xn,i∥) = 3∥xi∥ ∀i ∈ I

which together with (3.10) gives us

lim
n→∞

∥xn,i + xi∥ = 2∥xi∥ ∀i ∈ I. (3.16)

Because each Xi is sluacs it follows from (3.10), (3.16) and (3.8) (and again some
standard normalisation arguments) that

lim
n→∞

(
x∗n,i(xi)− ∥x∗n,i∥∥xi∥

)
= 0 ∀i ∈ I. (3.17)

Now take any ε > 0. Then there is a finite subset J ⊆ I such that∥∥∥∥∥∑
i∈J

∥xi∥ei − (∥xi∥)i∈I

∥∥∥∥∥
E

≤ ε. (3.18)

By (3.17) we can find an index n0 ∈ N such that∣∣∣∣∣∑
i∈J

(
x∗n,i(xi)− ∥x∗n,i∥∥xi∥

)∣∣∣∣∣ ≤ ε ∀n ≥ n0. (3.19)
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Then for all n ≥ n0 we have∣∣∣∣∣x∗n(x)−∑
i∈I

∥x∗n,i∥∥xi∥

∣∣∣∣∣ =
∣∣∣∣∣∑
i∈I

(
x∗n,i(xi)− ∥x∗n,i∥∥xi∥

)∣∣∣∣∣
≤

∣∣∣∣∣∑
i∈J

(
x∗n,i(xi)− ∥x∗n,i∥∥xi∥

)∣∣∣∣∣+
∣∣∣∣∣∣
∑
i∈I\J

(
x∗n,i(xi)− ∥x∗n,i∥∥xi∥

)∣∣∣∣∣∣
(3.19)

≤ ε+ 2
∑
i∈I\J

∥x∗n,i∥∥xi∥ ≤ ε+ 2

∥∥∥∥∥∑
i∈J

∥xi∥ei − (∥xi∥)i∈I

∥∥∥∥∥
E

(3.18)

≤ 3ε.

Thus we have shown x∗n(x) −
∑

i∈I∥x∗n,i∥∥xi∥ → 0 which together with (3.11)
leads to x∗n(x) → 1 finishing the proof. �

In our next result we shall see that instead of supposing that E possesses the
property (P ) we can also assume that E is sluacs+ (resp. luacs+) to come to the
same conclusion.

Proposition 3.6. If (Xi)i∈I is a family of sluacs (resp. luacs) spaces and E is
sluacs+ (resp. luacs+) then

[⊕
i∈I Xi

]
E
is also sluacs (resp. luacs).

Proof. Again we only show the sluacs case, the luacs case being analogous.
So fix a sequence (xn)n∈N, a point x and a sequence (x∗n)n∈N of functionals just

like in the proof of the preceding proposition.
As in this very proof we can show

lim
n→∞

∑
i∈I

∥x∗n,i∥∥xn,i∥ = 1 (3.20)

and

lim
n→∞

(
x∗n,i(xn,i)− ∥x∗n,i∥∥xn,i∥

)
= 0 ∀i ∈ I (3.21)

as well as

lim
n→∞

∥(∥xn,i∥+ ∥xi∥)i∈I∥E = 2 (3.22)

and

lim
n→∞

∑
i∈I

∥x∗n,i∥∥xi∥ = 1. (3.23)

Also as in the proof of Proposition 3.5 we can see

lim
n→∞

∥(∥xn,i + xi∥+ ∥xn,i∥)i∈I∥E = 3 (3.24)

and

lim
n→∞

∥(∥xn,i + xi∥+ ∥xn,i∥+ 3∥xi∥)i∈I∥E = 6. (3.25)

Since E is sluacs+ it follows from (3.24), (3.25) and (3.23) (with the usual nor-
malisation arguments) that

lim
n→∞

∑
i∈I

∥x∗n,i∥ (∥xn,i + xi∥+ ∥xn,i∥) = 3.
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Together with (3.20) we get

lim
n→∞

∑
i∈I

∥x∗n,i∥ (∥xn,i + xi∥ − ∥xn,i∥ − ∥xi∥) = 0

and hence

lim
n→∞

∥x∗n,i∥ (∥xn,i + xi∥ − ∥xn,i∥ − ∥xi∥) = 0 ∀i ∈ I. (3.26)

Next we show that

lim
n→∞

(
x∗n,i(xi)− ∥x∗n,i∥∥xi∥

)
= 0 ∀i ∈ I. (3.27)

To see this we fix i0 ∈ I with xi0 ̸= 0. If ∥x∗n,i0∥ → 0 the statement is clear.
Otherwise there is some ε > 0 such that ∥x∗n,i0∥ ≥ ε for infinitely many n.
Without loss of generality we may assume that this inequality holds for every
n ∈ N.

For each n ∈ N we put an,i = ∥x∗n,i∥ for i ∈ I \ {i0} and an,i0 = 0. Then
(an,i)i∈I ∈ BE′ for every n.

It is |
∑

i∈I(an,i − ∥x∗n,i∥)∥xn,i∥| = ∥x∗n,i0∥∥xn,i0∥ ≤ ∥xn,i0∥.
So if ∥xn,i0∥ → 0 then by (3.20) we would also have limn→∞

∑
i∈I an,i∥xn,i∥ = 1.

But since E is a sluacs+ space this together with (3.22) would also imply
limn→∞

∑
i∈I an,i∥xi∥ = 1, which in turn implies (because of (3.23)) ∥x∗n,i0∥∥xi0∥ =

|
∑

i∈I(an,i−∥x∗n,i∥)∥xi∥| → 0, where on the other hand ∥x∗n,i0∥∥xi0∥ ≥ ε∥xi0∥ > 0
for all n ∈ N, a contradiction.

So we must have ∥xn,i0∥ ̸→ 0 and hence there is some δ > 0 such that ∥xn,i0∥ ≥ δ
for infinitely many (say for all) n ∈ N.

Now since (∥x∗n,i0∥)n∈N is bounded away from zero (3.26) gives us that

lim
n→∞

(∥xn,i0 + xi0∥ − ∥xn,i0∥ − ∥xi0∥) = 0.

Because (∥xn,i0∥)n∈N is bounded away from zero as well, this together with Lemma
2.30 tells us that

lim
n→∞

∥∥∥∥ xn,i0
∥xn,i0∥

+
xi0

∥xi0∥

∥∥∥∥ = 2.

Using (3.21) and the fact that Xi0 is sluacs we now get the desired conclusion.
Now that we have established (3.27), the rest of the proof can be carried out

exactly as in Proposition 3.5. �

The next two propositions deal with sums of luacs+ and sluacs+ spaces.

Proposition 3.7. If (Xi)i∈I is a family of luacs+ spaces and E is luacs+ and has
the property (P ) then

[⊕
i∈I Xi

]
E
is also a luacs+ space.

Proof. By Proposition 3.6 (or Proposition 3.5) we already know that the space[⊕
i∈I Xi

]
E
is luacs.

Now take a sequence (xn)n∈N and an element x = (xi)i∈I in the unit sphere of[⊕
i∈I Xi

]
E
such that ∥xn + x∥ → 2 and a functional x∗ = (x∗i )i∈I of norm one

with x∗(x) = 1. Write xn = (xn,i)i∈I for al n ∈ N.



SOME PROPERTIES RELATED TO ROTUNDITY AND SMOOTHNESS 323

As in the proof of Proposition 3.3 it follows from x∗(x) = 1 that

x∗i (xi) = ∥x∗i ∥∥xi∥ ∀i ∈ I and
∑
i∈I

∥x∗i ∥∥xi∥ = 1 (3.28)

and as in the proof of Proposition 3.5 one can show that

lim
n→∞

∥(∥xn,i∥+ ∥xi∥)i∈I∥E = 2. (3.29)

Since E is luacs+ it follows from (3.29) and the second part of (3.28) that we also
have

lim
n→∞

∑
i∈I

∥x∗i ∥∥xn,i∥ = 1. (3.30)

Because E has property (P ) it also follows from (3.29) that

lim
n→∞

∥xn,i∥ = ∥xi∥ ∀i ∈ I. (3.31)

Exactly as in the proof of Proposition 3.5 we can see

lim
n→∞

∥xn,i + xi∥ = 2∥xi∥ ∀i ∈ I. (3.32)

Since each Xi is luacs+ we infer from (3.32), (3.31) and the first part of (3.28)
that

lim
n→∞

x∗i (xn,i) = ∥x∗i ∥∥xi∥ ∀i ∈ I. (3.33)

Now take an arbitrary ε > 0 and fix a finite subset J ⊆ I such that∥∥∥∥∥∑
i∈J

∥xi∥ei − (∥xi∥)i∈I

∥∥∥∥∥
E

≤ ε. (3.34)

From (3.28), (3.30) and (3.31) it follows that

lim
n→∞

∑
i∈I\J

∥x∗i ∥∥xn,i∥ =
∑
i∈I\J

∥x∗i ∥∥xi∥

and by (3.33) we also have

lim
n→∞

∑
i∈J

x∗i (xn,i) =
∑
i∈J

∥x∗i ∥∥xi∥.

Hence there is some n0 ∈ N such that∣∣∣∣∣∑
i∈J

(x∗i (xn,i)− ∥x∗i ∥∥xi∥)

∣∣∣∣∣ ≤ ε and (3.35)∣∣∣∣∣∣
∑
i∈I\J

∥x∗i ∥ (∥xn,i∥ − ∥xi∥)

∣∣∣∣∣∣ ≤ ε ∀n ≥ n0. (3.36)
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But then we have for every n ≥ n0

|x∗(xn)− 1| (3.28)
=

∣∣∣∣∣∑
i∈I

(x∗i (xn,i)− ∥x∗i ∥∥xi∥)

∣∣∣∣∣
(3.35)

≤ ε+

∣∣∣∣∣∣
∑
i∈I\J

(x∗i (xn,i)− ∥x∗i ∥∥xi∥)

∣∣∣∣∣∣
≤ ε+

∑
i∈I\J

∥x∗i ∥ (∥xn,i∥+ ∥xi∥)

(3.36)

≤ 2ε+ 2
∑
i∈I\J

∥x∗i ∥∥xi∥
(3.34)

≤ 4ε.

Thus we have x∗(xn) → 1 and the proof is finished. �

Proposition 3.8. If (Xi)i∈I is a family of sluacs+ (resp. luacs+) spaces and E
is sluacs+ then

[⊕
i∈I Xi

]
E
is sluacs+ (resp. luacs+) as well.

Proof. Suppose all theXi and E are sluacs+. Then by Proposition 3.6
[⊕

i∈I Xi

]
E

is sluacs.
Now take sequences (xn)n∈N and (x∗n)n∈N in the unit sphere and in the dual

unit sphere of
[⊕

i∈I Xi

]
E
respectively, as well as another element x = (xi)i∈I in[⊕

i∈I Xi

]
E
of norm one such that ∥xn + x∥E → 2 and x∗n(x) → 1.

As usual we write xn = (xn,i)i∈I and x∗n = (x∗n,i)i∈I for every n ∈ N.
Much as we have done before we can show that

lim
n→∞

(
x∗n,i(xi)− ∥x∗n,i∥∥xi∥

)
= 0 ∀i ∈ I and lim

n→∞

∑
i∈I

∥x∗n,i∥∥xi∥ = 1 (3.37)

as well as

lim
n→∞

∥(∥xn,i∥+ ∥xi∥)i∈I∥E = 2. (3.38)

It follows from (3.38), the second part of (3.37), and the fact that E is sluacs+

that

lim
n→∞

∑
i∈I

∥x∗n,i∥∥xn,i∥ = 1. (3.39)

As in the proof of Proposition 3.6 we see that

lim
n→∞

∥x∗n,i∥ (∥xn,i + xi∥ − ∥xn,i∥ − ∥xi∥) = 0 ∀i ∈ I. (3.40)

Now using an argument analogous to that in the proof of Proposition 3.6 shows

lim
n→∞

(
x∗n,i(xn,i)− ∥x∗n,i∥∥xn,i∥

)
= 0 ∀i ∈ I. (3.41)
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Put bJ = (∥xi∥)i∈I −
∑

i∈J∥xi∥ei and cn,J =
∑

i∈J∥x∗n,i∥ei for every n ∈ N and
every finite subset J ⊆ I. Then for every n and J we have

|cn,J((∥xi∥)i∈I)− 1| =

∣∣∣∣∣∑
i∈J

∥x∗n,i∥∥xi∥ − 1

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i∈I\J

∥x∗n,i∥∥xi∥

∣∣∣∣∣∣+
∣∣∣∣∣∑
i∈I

∥x∗n,i∥∥xi∥ − 1

∣∣∣∣∣
≤ ∥bJ∥E +

∣∣∣∣∣∑
i∈I

∥x∗n,i∥∥xi∥ − 1

∣∣∣∣∣ . (3.42)

Now take any ε > 0. Because E is sluacs+ there is some δ > 0 such that

a ∈ SE, g ∈ BE∗ with ∥a+ (∥xi∥)i∈I∥E ≥ 2− δ

and g((∥xi∥)i∈I) ≥ 1− δ ⇒ g(a) ≥ 1− ε. (3.43)

Fix a finite subset J0 ⊆ I such that ∥bJ0∥E ≤ δ/2 and also fix an index n0 such
that

∣∣∑
i∈I∥x∗n,i∥∥xi∥ − 1

∣∣ ≤ δ/2 and ∥(∥xn,i∥+ ∥xi∥)i∈I∥E ≥ 2− δ for all n ≥ n0

(which is possible because of (3.37) and (3.38)).
Then (3.42) and (3.43) give us

cn,J0((∥xn,i∥)i∈I) =
∑
i∈J0

∥x∗n,i∥∥xn,i∥ ≥ 1− ε ∀n ≥ n0. (3.44)

By (3.41) we may also assume that∣∣∣∣∣∑
i∈J0

(
x∗n,i(xn,i)− ∥x∗n,i∥∥xn,i∥

)∣∣∣∣∣ ≤ ε ∀n ≥ n0. (3.45)

Then for every n ≥ n0 we have∣∣∣∣∣x∗n(xn)−∑
i∈I

∥x∗n,i∥∥xn,i∥

∣∣∣∣∣ =
∣∣∣∣∣∑
i∈I

(
x∗n,i(xn,i)− ∥x∗n,i∥∥xn,i∥

)∣∣∣∣∣
(3.45)

≤ ε+

∣∣∣∣∣∣
∑

i∈I\J0

(
x∗n,i(xn,i)− ∥x∗n,i∥∥xn,i∥

)∣∣∣∣∣∣
≤ ε+ 2

∑
i∈I\J0

∥x∗n,i∥∥xn,i∥
(3.44)

≤ 3ε.

Thus x∗n(xn)−
∑

i∈I∥x∗n,i∥∥xn,i∥ → 0 which together with (3.39) implies x∗n(xn) →
1.

The proof for the luacs+ case can be done in a very similar fashion. �

In our next result we consider sums of wuacs and luacs+ spaces for the case
that E does not contain ℓ1.
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Proposition 3.9. If (Xi)i∈I is a family of wuacs (resp. luacs+) spaces and if
E is wuacs (resp. luacs+) and does not contain an isomorphic copy of ℓ1 then[⊕

i∈I Xi

]
E
is also wuacs (resp. luacs+).

Proof. Let us suppose that E and all the Xi are wuacs and fix two sequences
(xn)n∈N and (yn)n∈N in the unit sphere of

[⊕
i∈I Xi

]
E

as well as a norm one

functional x∗ = (x∗i )i∈I on
[⊕

i∈I Xi

]
E
such that ∥xn+yn∥E → 2 and x∗(xn) → 1.

Write xn = (xn,i)i∈I and yn = (yn,i)i∈I for each n.
As we have often done before we deduce

lim
n→∞

(x∗i (xn,i)− ∥x∗i ∥∥xn,i∥) = 0 ∀i ∈ I and lim
n→∞

∑
i∈I

∥x∗i ∥∥xn,i∥ = 1 (3.46)

and
lim
n→∞

∥(∥xn,i∥+ ∥yn,i∥)i∈I∥E = 2 (3.47)

as well as
lim
n→∞

∥(∥xn,i + yn,i∥+ ∥xn,i∥+ ∥yn,i∥)i∈I∥E = 4. (3.48)

Since E is wuacs (3.47) and the second part of (3.46) imply

lim
n→∞

∑
i∈I

∥x∗i ∥∥yn,i∥ = 1. (3.49)

Applying again the fact that E is wuacs together with (3.48), (3.49) and the
second part of (3.46) gives us

lim
n→∞

∑
i∈I

∥x∗i ∥ (∥xn,i∥+ ∥yn,i∥ − ∥xn,i + yn,i∥) = 0

and hence

lim
n→∞

∥x∗i ∥ (∥xn,i∥+ ∥yn,i∥ − ∥xn,i + yn,i∥) = 0 ∀i ∈ I. (3.50)

Now we can show

lim
n→∞

(x∗i (yn,i)− ∥x∗i ∥∥yn,i∥) = 0 ∀i ∈ I. (3.51)

The argument for this is similar to what we have done before but we state it here
for the sake of completeness. Fix i0 ∈ I with x∗i0 ̸= 0 and yn,i0 ̸→ 0. Then there
is τ > 0 such that ∥yn,i0∥ ≥ τ for infinitely many (without loss of generality for
all) n ∈ N.

Put ai0 = 0 and ai = ∥x∗i ∥ for every i ∈ I \ {i0}. If ∥xn,i0∥ → 0 then because
of the second part of (3.46) it would follow that limn→∞

∑
i∈I ai∥xn,i∥ = 1.

Since E is wuacs this together with (3.47) would imply that we also have
limn→∞

∑
i∈I ai∥yn,i∥ = 1 which because (3.49) would give us ∥x∗i0∥∥yn,i0∥ → 0, a

contradiction.
Hence there must be some δ > 0 such that ∥xn,i0∥ ≥ δ for infinitely many (say

for every) n ∈ N.
Now since the sequences (∥xn,i0∥)n∈N and (∥yn,i0∥)n∈N are bounded away from

zero it follows from (3.46), (3.50) and Lemma 2.30 that

lim
n→∞

∥∥∥∥ xn,i0
∥xn,i0∥

+
yn,i0

∥yn,i0∥

∥∥∥∥ = 2 and lim
n→∞

x∗i0
∥x∗i0∥

(
xn,i0

∥xn,i0∥

)
= 1.
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Since Xi0 is wuacs this implies our desired conclusion.
Now we fix any ε > 0. Because ℓ1 ̸⊆ E by Lemma 3.2 there must be some

finite set J ⊆ I such that∥∥∥∥∥(∥x∗i ∥)i∈I −∑
i∈J

∥x∗i ∥ei

∥∥∥∥∥
E′

≤ ε. (3.52)

By (3.51) we can find some n0 ∈ N such that∣∣∣∣∣∑
i∈J

(x∗i (yn,i)− ∥x∗i ∥∥yn,i∥)

∣∣∣∣∣ ≤ ε ∀n ≥ n0. (3.53)

We then have for every n ≥ n0∣∣∣∣∣x∗(yn)−∑
i∈I

∥x∗i ∥∥yn,i∥

∣∣∣∣∣ (3.53)

≤ ε+

∣∣∣∣∣∣
∑
i∈I\J

(x∗i (yn,i)− ∥x∗i ∥∥yn,i∥)

∣∣∣∣∣∣
≤ ε+ 2

∑
i∈I\J

∥x∗i ∥∥yn,i∥
(3.52)

≤ 3ε.

So we have x∗(yn) −
∑

i∈I∥x∗i ∥∥y∗n,i∥ → 0. From (3.49) it now follows that
x∗(yn) → 1.

The luacs+ case is proved analogously. �

Note that the above Proposition especially applies to the case that E is WUR
because a WUR space cannot contain an isomorphic copy of ℓ1 (cf. [29, Remark
4]). Frankly, the author does not know whether a wuacs space can contain an
isomorphic copy of ℓ1 at all, but at least it cannot contain particularly “good”
copies of ℓ1 in the following sense (introduced in [12]).

Definition 3.10. A Banach space X is said to contain an asymptotically iso-
metric copy of ℓ1 if there is a sequence (xn)n∈N in BX and a decreasing sequence
(εn)n∈N in [0, 1[ with εn → 0 such that for each m ∈ N and all scalars a1, . . . , am
we have

m∑
i=1

(1− εi)|ai| ≤

∥∥∥∥∥
m∑
i=1

aixi

∥∥∥∥∥ ≤
m∑
i=1

|ai|.

Likewise, X is said to contain an asymptotically isomorphic copy of c0 if there
are two such sequences (xn)n∈N and (εn)n∈N which fulfil

max
i=1,...,m

(1− εi)|ai| ≤

∥∥∥∥∥
m∑
i=1

aixi

∥∥∥∥∥ ≤ max
i=1,...,m

|ai|

for each m ∈ N and all scalars a1, . . . , am.

We then have the following observation.

Proposition 3.11. If the Banach space X is wuacs then it does not contain an
asymptotically isometric copy of ℓ1.
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Proof. Suppose that X contains an asymptotically isometric copy of ℓ1. Then fix
two sequences (xn)n∈N and (εn)n∈N as in the above definition.

We can find α > 1 such that αεn < 1 for every n ∈ N. Put x̃n = (1−αεn)
−1xn

for each n. Then for every finite sequence (ai)
m
i=1 of scalars we have∥∥∥∥∥

m∑
i=1

aix̃i

∥∥∥∥∥ =

∥∥∥∥∥
m∑
i=1

ai
1− αεi

xi

∥∥∥∥∥ ≥
m∑
i=1

1− εi
1− αεi

|ai| ≥
m∑
i=1

|ai|. (3.54)

In other words, the operator T : ℓ1 → X defined by T ((an)n∈N) =
∑∞

n=1 anx̃n is
an isomorphism onto its range U = ranT with ∥T−1∥ ≤ 1.

Define (bn)n∈N ∈ ℓ∞ = (ℓ1)∗ by bn = 1 if n is even and bn = 0 if n is odd. Then
u∗ = (T−1)∗((bn)n∈N) ∈ BU∗ . Take a Hahn-Banach extension x∗ of u∗ to X.

Note that because of (3.54) we have in particular ∥x̃n∥ ≥ 1 for every n and on
the other hand ∥x̃n∥ ≤ (1− αεn)

−1 and εn → 0, hence ∥x̃n∥ → 1. Again because
of (3.54) we have ∥x̃n + x̃n+1∥ ≥ 2 for every n. It follows that ∥x̃n + x̃n+1∥ → 2
and thus in particular ∥x̃2n + x̃2n+1∥ → 2.

But we also have x∗(x̃2n) = u∗(x̃2n) = b2n = 1 and likewise x∗(x̃2n+1) = b2n+1 =
0 for every n and hence X cannot be a wuacs space. �

If the space X contains an asymptotically isometric copy of c0 then by [12,
Theorem 2] X∗ contains an asymptotically isometric copy of ℓ1 and thus we get
the following corollary.

Corollary 3.12. If X is a Banach space whose dual X∗ is wuacs then X does
not contain an asymptotically isometric copy of c0.

We also remark that since ℓp(I) is UR for every 1 < p <∞ we can obtain the
following corollary from our above results.

Corollary 3.13. If (Xi)i∈I is a family of Banach space such that each Xi is acs
resp. luacs resp. luacs+ resp. sluacs resp. sluacs+ resp. wuacs then

[⊕
i∈I Xi

]
p

is also acs resp. luacs resp. luacs+ resp. sluacs resp. sluacs+ resp. wuacs for
every 1 < p <∞.

Now we turn to sums of uacs spaces. We first consider sums of finitely many
spaces. In fact, this has been done before in [11] (for two summands) and in
[23] (for finitely many summands) in the context of U -spaces and the so called
ψ-direct sums. However, we include a sketch of our own slightly different proof
here, for the sake of completeness.

Proposition 3.14. If I is a finite set, (Xi)i∈I a family of uacs Banach spaces
and ∥ . ∥E is an absolute normalized norm on RI such that E := (RI , ∥ . ∥E) is acs
then

[⊕
i∈I Xi

]
E
is also a uacs space.

Proof. First note that since E is finite-dimensional it is actually uacs. Now if
we take two sequences (xn)n∈N and (yn)n∈N in the unit sphere of

[⊕
i∈I Xi

]
E

and a sequence (x∗n)n∈N in the dual unit sphere such that ∥xn + yn∥E → 2 and
x∗n(xn) → 1 then we can show just as we have done before that

lim
n→∞

∑
i∈I

∥x∗n,i∥∥xn,i∥ = 1 (3.55)
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and
lim
n→∞

(
x∗n,i(xn,i)− ∥x∗n,i∥∥xn,i∥

)
= 0 ∀i ∈ I (3.56)

as well as
lim
n→∞

∥(∥xn,i∥+ ∥yn,i∥)i∈I∥E = 2 (3.57)

and
lim
n→∞

∥(∥xn,i + yn,i∥+ ∥xn,i∥+ ∥yn,i∥)i∈I∥E = 4. (3.58)

Since E is uacs it follows from (3.55) and (3.57) that

lim
n→∞

∑
i∈I

∥x∗n,i∥∥yn,i∥ = 1. (3.59)

Again, since E is uacs it follows from (3.55), (3.59) and (3.58) that

lim
n→∞

∥x∗n,i∥ (∥xn,i∥+ ∥yn,i∥ − ∥xn,i + yn,i∥) = 0 ∀i ∈ I. (3.60)

Now using (3.60), Lemma 2.30, (3.55), (3.59), (3.56), the fact that each Xi is
uacs and an argument similar the one used in the proof of Proposition 3.9 we can
infer that

lim
n→∞

(
x∗n,i(yn,i)− ∥x∗n,i∥∥yn,i∥

)
= 0 ∀i ∈ I.

Since I is finite it follows that x∗n(yn)−
∑

i∈I∥x∗n,i∥∥yn,i∥ → 0 which together with
(3.59) gives us x∗n(yn) → 1 and the proof is over. �

Before we can come to the study of absolute sums of infinitely many uacs spaces
we have to introduce one more definition.

Definition 3.15. The space E is said to have the property (u+) if for every ε > 0
there is some δ > 0 such that for all (ai)i∈I , (bi)i∈I ∈ SE and each (ci)i∈I ∈ SE′ =
SE∗ we have∑

i∈I

aici = 1 and ∥(ai + bi)i∈I∥E ≥ 2(1− δ) ⇒
∑
i∈I

|ci||ai − bi| ≤ ε.

Clearly, if E is UR then it has property (u+) and the property (u+) in turn
implies that E is uacs. Unfortunately, the author does not know whether these
impliactions are strict.

Now we can formulate and prove the following theorem, which is an analogue
of Day’s results on sums of UR spaces from [5, Theorem 3] (for the ℓp-case) and
[6, Theorem 3] (for the general case). Also, its proof is just a slight modification
of Day’s technique.

Theorem 3.16. If (Xi)i∈I is a family of Banach spaces such that for every 0 <
ε ≤ 2 we have δ(ε) := infi∈I δ

Xi
uacs(ε) > 0 and if the space E has the property (u+)

then
[⊕

i∈I Xi

]
E
is also uacs.

Proof. As in [5] and [6] the proof is divided into two steps. In the first step we
show that for every 0 < ε ≤ 2 there is some η > 0 such that for any two elements
x = (xi)i∈I and y = (yi)i∈I of the unit sphere of

[⊕
i∈I Xi

]
E
with ∥xi∥ = ∥yi∥

for every i ∈ I and each functional x∗ = (x∗i )i∈I with ∥x∗∥E′ = x∗(x) = 1 and
x∗(y) < 1− ε we have ∥x+ y∥E ≤ 2(1− η).
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So let 0 < ε ≤ 2 be arbitrary. Since E is uacs there exists some η > 0 such
that

a, b ∈ BE, l ∈ BE∗ , l(a) = 1 and l(b) < 1− ε

4
δ
(ε
2

)
⇒ ∥a+ b∥E ≤ 2(1− η). (3.61)

We claim that this η fulfils our requirement. To show this, fix x, y and x∗ as
above and put βi = ∥xi∥ = ∥yi∥, νi = ∥x∗i ∥ and γi = νiβi − x∗i (yi) for each i ∈ I.
Then we have

0 ≤ γi ≤ 2βiνi ∀i ∈ I. (3.62)

From x∗(x) = 1 = ∥x∗∥E′ = ∥x∥E we get∑
i∈I

νiβi = 1 and x∗i (xi) = νiβi ∀i ∈ I. (3.63)

Next we define

αi =

{
1
2
δ
(

γi
νiβi

)
if γi > 0

0 if γi = 0.
(3.64)

From the definition of the δXi
uacs and the second part of (3.63) it easily follows that

∥xi + yi∥ ≤ 2(1− αi)βi ∀i ∈ I. (3.65)

By (3.62) and the first part of (3.63) we have
∑

i∈I γi ≤ 2 and further it is

ε < 1− x∗(y) = x∗(x− y) =
∑
i∈I

x∗i (xi − yi) ≤
∑
i∈I

γi

thus
ε <

∑
i∈I

γi ≤ 2. (3.66)

Now put A = {i ∈ I : 2γi > ενiβi} and B = I \ A. Then we get∑
i∈B

γi ≤
ε

2

∑
i∈B

νiβi ≤
ε

2

∑
i∈I

νiβi
(3.63)
=

ε

2
. (3.67)

From (3.66) and (3.67) it follows that∑
i∈A

γi =
∑
i∈I

γi −
∑
i∈B

γi >
ε

2
. (3.68)

Using (3.62) and (3.68) we now get∑
i∈A

νiβi >
ε

4
. (3.69)

Write t = (βiχB(i))i∈I and t′ = (βiχA(i))i∈I , where χB and χA denote the char-
acteristic function of B and A respectively. Then t, t′ ∈ BE (by Lemma 3.1)
and t + t′ = (βi)i∈I . We also put t′′ = (1 − δ(ε/2))t′. Again by Lemma 3.1 we
have ∥t + t′′∥E ≤ ∥t + t′∥E = 1. Further, l = (νi)i∈I defines an element of SE∗

such that l(t + t′) =
∑

i∈I νiβi = 1 (by (3.63)) and l(t + t′′) = 1 − δ(ε/2)l(t′) =
1− δ(ε/2)

∑
i∈A νiβi and hence (by (3.69))

l(t+ t′′) < 1− ε

4
δ
(ε
2

)
.
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Thus we can apply (3.61) to deduce

1

2
∥2t+ t′ + t′′∥E =

∥∥∥∥t+ (
1− 1

2
δ
(ε
2

))
t′
∥∥∥∥
E

≤ 1− η. (3.70)

Since δ is obviously an increasing function we also have

αi ≥
1

2
δ
(ε
2

)
∀i ∈ A. (3.71)

Now we can conclude (with the aid of Lemma 3.1)

∥x+ y∥E = ∥(∥xi + yi∥)i∈I∥E
(3.65)

≤ 2 ∥((1− αi)βi)i∈I∥E
(3.71)

≤ 2

∥∥∥∥((1− 1

2
δ
(ε
2

))
βiχA(i) + βiχB(i)

)
i∈I

∥∥∥∥
E

= 2

∥∥∥∥(1− 1

2
δ
(ε
2

))
t′ + t

∥∥∥∥
E

(3.70)

≤ 2(1− η),

finishing the first step of the proof. Note that so far we have only used the fact
that E is uacs and not the property (u+).

Now for the second step we fix 0 < ε ≤ 2 and choose an η > 0 to the value ε/2
according to step one. Then we take 0 < ν < 2η/3. Since E is uacs we can find
τ > 0 such that

a, b ∈ BE, l ∈ BE∗ , l(a) ≥ 1− τ and ∥a+ b∥E ≥ 2(1− τ)

⇒ l(b) ≥ 1− ν. (3.72)

Next we fix 0 < α < min {ε/2, 2τ, ν}. Now we can find a number τ̃ > 0 to the
value α according to the definition of the property (u+) (Definition 3.15). Finally,
we take 0 < ξ < min {τ, τ̃}.

Now suppose x = (xi)i∈I and y = (yi)i∈I are elements of the unit sphere of[⊕
i∈I Xi

]
E

and x∗ = (x∗i )i∈I is an element of the dual unit sphere such that
∥x+ y∥E ≥ 2(1− ξ) and x∗(x) = 1. We will show that x∗(y) > 1− ε.

To do so, we define

zi =

{
∥xi∥
∥yi∥yi if yi ̸= 0

xi if yi = 0.
(3.73)

Then we have

∥zi∥ = ∥xi∥ and ∥zi − yi∥ = |∥xi∥ − ∥yi∥| ∀i ∈ I. (3.74)

As before we can see that
∑

i∈I∥x∗i ∥∥xi∥ = 1 and further we have 2(1 − τ̃) ≤
2(1− ξ) ≤ ∥x+ y∥E ≤ ∥(∥xi∥+ ∥yi∥)i∈I∥E.

Thus we get from the choice of τ̃ that∑
i∈I

∥x∗i ∥∥zi − yi∥
(3.74)
=

∑
i∈I

∥x∗i ∥ |∥xi∥ − ∥yi∥| ≤ α. (3.75)

Further, we have

∥(∥xi∥+ ∥yi∥+ ∥xi + yi∥)i∈I∥E ≥ 2∥x+ y∥E ≥ 4(1− ξ) ≥ 4(1− τ)
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and ∑
i∈I

∥x∗i ∥ (∥xi∥+ ∥yi∥) = 1 +
∑
i∈I

∥x∗i ∥∥yi∥

≥ 1 +
∑
i∈I

∥x∗i ∥∥xi∥ −
∑
i∈I

∥x∗i ∥ |∥xi∥ − ∥yi∥|

= 2−
∑
i∈I

∥x∗i ∥ |∥xi∥ − ∥yi∥|
(3.75)

≥ 2− α ≥ 2(1− τ).

Hence we can conclude from (3.72) that∑
i∈I

∥x∗i ∥∥xi + yi∥ ≥ 2(1− ν). (3.76)

Using (3.75) and (3.76) we get

∥x+ z∥E ≥
∑
i∈I

∥x∗i ∥∥xi + zi∥ ≥
∑
i∈I

∥x∗i ∥∥xi + yi∥ −
∑
i∈I

∥x∗i ∥∥yi − zi∥

≥ 2(1− ν)− α > 2(1− η)

and thus the choice of η implies x∗(z) ≥ 1− ε/2. But from (3.75) it also follows
that |x∗(y)− x∗(z)| ≤ α and hence x∗(y) ≥ 1− ε/2− α > 1− ε. �

Because of the uniform rotundity of ℓp(I) for 1 < p <∞ we have the following
corollary.

Corollary 3.17. If (Xi)i∈I is a family of Banach spaces such that for every
0 < ε ≤ 2 we have infi∈I δ

Xi
uacs(ε) > 0 then

[⊕
i∈I Xi

]
p
is also uacs for every

1 < p <∞.

We can also get a more general corollary for a US space E.

Corollary 3.18. If (Xi)i∈I is a family of Banach spaces such that for every
0 < ε ≤ 2 we have δ(ε) := infi∈I δ

Xi
uacs(ε) > 0 and if E is US then

[⊕
i∈I Xi

]
E
is

also a uacs space.

Proof. Since E is US it is reflexive and hence it cannot contain an isomorpic copy
of ℓ1. Thus by Lemma 3.2 span {ei : i ∈ I} is dense in E ′.

Further, since E is US the dual space E∗ = E ′ is UR, as already mentioned
in the introduction. Because the spaces Xi are uacs they are also reflexive
and hence Proposition 2.12 and the monotonicity of the functions δXi

uacs gives

us infi∈I δ
X∗

i
uacs(ε) ≥ δ(δ(ε)) > 0 for every 0 < ε ≤ 2. So by Theorem 3.16 the

space
[⊕

i∈I X
∗
i

]
E′ =

[⊕
i∈I Xi

]∗
E
is uacs and hence

[⊕
i∈I Xi

]
E
is also uacs by

Proposition 2.12. �

Finally, we summarise all the results on absolute sums we have obtained in this
section in the following table.
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Table 1. Summary of the results

E Xi

[⊕
i∈I Xi

]
E

acs acs acs

luacs + (P ) luacs luacs

luacs+ luacs luacs

luacs+ + (P ) luacs+ luacs+

luacs+ + ℓ1 ̸⊆ E luacs+ luacs+

sluacs + (P ) sluacs sluacs

sluacs+ sluacs sluacs

sluacs+ luacs+ luacs+

sluacs+ sluacs+ sluacs+

wuacs + ℓ1 ̸⊆ E wuacs wuacs

acs + I finite uacs uacs

(u+) infi∈I δ
Xi
uacs > 0 uacs

US infi∈I δ
Xi
uacs > 0 uacs

References

1. Y.A. Abramovich, C.D. Aliprantis and O. Burkinshaw, The Daugavet Equation in Uni-
formly Convex Banach Spaces, J. Funct. Anal. 97 (1991), 215–230

2. B. Beauzamy, Introduction to Banach Spaces and their Geometry, 2nd ed., North-Holland,
Amsterdam–New York–Oxford, 1983

3. B. Bollobás, Linear Analysis, Cambridge University Press, Cambridge–New York–Port
Chester–Melbourne–Sydney, 1990

4. J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414
5. M.M. Day, Some more uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), no. 6,

504–507
6. M.M. Day, Uniform Convexity III, Bull. Amer. Math. Soc. 49 (1943), no. 10, 745–750
7. M.M. Day, Uniform Convexity in Factor and Conjugate Sapces, Ann. of Math. 45 (1944),

no. 2, 375–385
8. M.M. Day, Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenz-gebiete, 21,

3rd ed., Springer, Berlin–Heidelberg–New York, 1973
9. R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Pit-

man Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific
& Technical, 1993

10. S. Dhompongsa, A. Kaewkhao and S. Tasena, On a generalized James constant, J. Math.
Anal. Appl. 285 (2003), 419–435

11. S. Dhompongsa, A. Kaewkhao and S. Saejung, Uniform smoothness and U -convexity of
ψ-direct sums, J. Nonlinear Convex Anal. 6 (2005), no. 2, 327–338

12. P.N. Dowling, W.B. Johnson, C.J. Lennard and B. Turett, The optimality of James’s dis-
tortion theorems, Proc. Amer. Math. Soc. 125 (1997), 167–174

13. S. Dutta and B.L. Lin, Local U -Convexity, Journal of Convex Analysis 18 (2011), no. 3,
811–821



334 J.-D. HARDTKE
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