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Abstract. In this paper, we consider the problem of isometric extension in
the unit sphere of the space sp(α, H). We obtain that Lamperti isometric map-
ping of the unit sphere S(sp(α, H)) into itself can be extended to an isometry
on the whole space sp(α, H).

1. Introduction

Let E and F be normed spaces. A mapping V : E → F is called an isometry
if ||V x− V y|| = ||x− y|| for all x1, x2 ∈ E (see, e.g., [10]). The classical Mazur-
Ulam theorem in [11] describes the relation between isometry and linearity and
states that every onto isometry V between two normed spaces with V (0) = 0 is
linear. So far, this has been generalized in several directions (see, e.g., [14]). One
of them is the study of the isometric extension problem.

Mankiewicz in [9] showed that an isometry which maps a connected subset of a
normed space X onto an open subset of another normed space Y can be extended
to an affine isometry from X to Y . In 1987, Tingley [17] posed the problem of
extending an isometry between unit spheres as follows.

Let E and F be two real Banach spaces. Suppose that V0 is a
surjective isometry between the two unit spheres S1(E) and S1(F ).
Is V0 necessarily a restriction of a linear or affine transformation
to S1(E)?
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It is very difficult to answer this question, even in two dimensional cases. In
the same paper, Tingley proved that if E and F are finite-dimensional Banach
spaces and V0 : S1(E) → S1(F ) is a surjective isometry, then V0(x) = −V0(−x)
for all x ∈ S1(E). In [3], Ding gave an affirmative answer to Tingley problem,
when E and F are Hilbert spaces. In the case when E and F are some metric
vector spaces, the corresponding extension problem was investigated in [1, 5] .
See also [6, 7, 8, 12, 15, 17] for some related results.

By sp(α), 1 ≤ p < ∞, p 6= 2, α ≥ 0, is denoted the discrete analogue of the
classical Sobolev space, which is the linear space of all real or complex sequences
x = (x(k))k∈N for which

||x|| =
( ∞∑

k=1

|x(k)|p + α

∞∑
k=1

|x(k + 1)− x(k)|p
) 1

p

< ∞. (1.1)

It is clear that sp(0) = lp. If α > 0, then since

‖x‖lp ≤ ||x|| ≤ (1 + 2pα)1/p‖x‖lp ,

where ||x||lp is the standard lp norm, it follows that sp(α) is isomorphic to lp, but
these spaces are not isometric.

If an isometry on sp(α) preserves both sums in formula (1.1), then it is called the
Lamperti isometry (see [2]). From the definition we see that Lamperti isometry
is independent of α for the space sp(α).

Define sp(α, H) (1 ≤ p < ∞, p 6= 2, α ≥ 0) to be the collection of all element
sequences in the Hilbert space H such that

||x|| =
( ∞∑

k=1

||x(k)||p + α
∞∑

k=1

||x(k + 1)− x(k)||p
) 1

p

< ∞. (1.2)

If an isometry on sp(α, H) preserves both sums in formula (1.2), then it is
called the Lamperti isometry. From the definition we see that Lamperti isometry
is independent of α for the space sp(α, H).

Define lp(H) (1 ≤ p < ∞, p 6= 2) to be the collection of all element sequences
in the Hilbert space H such that

||x|| =
( ∞∑

k=1

||x(k)||p
) 1

p

< ∞. (1.3)

In [4], Fleming and Jamison proved that for 1 < p < ∞, α > 0, α 6= 1,
the only surjective isometries on sp(α) are scalar multiples of the identity. In
[2], it is shown that there are no Lamperti isometries of finite codimension that
are not surjective, and two distinct examples are given. In this paper, we study
the problem of isometric extension in the unit sphere of the space sp(α, H). We
prove that if V0 is an isometric mapping on the unit sphere of the subspace E of
sp(α, H):

suppE = {k(n) : k(n + 1)− k(n) > 1, n ∈ N} (1.4)
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and

ex(n) = (o, · · · , x(n), o, · · · )︸ ︷︷ ︸
n−th place

∈ E, (1.5)

then it can be extended to an isometry on the whole space E. Also, we prove
that Lamperti isometric mapping on the unit sphere S(sp(α, H)) into itself can
be extended to an isometry on the whole space sp(α, H).

2. Main results

In this section, we give our main results. For this purpose, we need some
lemmas that will be used in the proofs of our main results. We begin with the
following result.

Lemma 2.1. If V0 is an isometric mapping from the unit sphere S(sp(α, H)) into
S(sp(α, H)), then

V0(−x) = −V0(x), for all x ∈ S(sp(α, H)).

Proof. It is easy to see that the space sp(α, H) is strictly convex , since sp(α) and
the Hilbert space H are strictly convex spaces(in fact, from [4], sp(α) is uniformly
convex and smooth). That is, if ||u + v|| = ||u|| + ||v||, then u = cv for some
c > 0. , From this and since

||V0(−x)− V0(x)|| = || − x− x|| = 2 = ||V0(−x)||+ || − V0(x)||,

we have that V0(−x) = −cV0(x) for some c > 0. This implies |c| = 1, from which
the lemma follows. �

Lemma 2.2. If x, y ∈ lp(H) (1 ≤ p < ∞, p 6= 2), then

||x + y||p + ||x− y||p = 2(||x||p + ||y||p) ⇔ supp x ∩ supp y = ∅ ,

where supp x = {n : x(n) 6= 0, n ∈ N}.

Proof. The sufficiency is trivial. Following, we prove the necessity.
Suppose that x = {x(n)} and y = {y(n)} are elements in lp(H). Since H is a

Hilbert space, we have

||x(n) + y(n)||2 + ||x(n)− y(n)||2 = 2(||x(n)||2 + ||y(n)||2). (2.1)

We will divide the proof into two steps.
Firstly, we prove if 0 < p < 2

||x(n) + y(n)||p + ||x(n)− y(n)||p ≤ 2(||x(n)||p + ||y(n)||p), (2.2)

while if p > 2

||x(n) + y(n)||p + ||x(n)− y(n)||p ≥ 2(||x(n)||p + ||y(n)||p) (2.3)

and the equality holds if and only if ||x(n)||||y(n)|| = 0.
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Indeed, if 0 < p < 2, the function ϕ(u) = u
p
2 (u ≥ 0) satisfies the following

inequality

ϕ(α + β) ≤ ϕ(α) + ϕ(β) (2.4)

and the equality holds if and only if αβ = 0.
Since ϕ is concave on [0,∞), it follows from (2.1) and (2.4) that

1

2

(
||x(n) + y(n)||p + ||x(n)− y(n)||p

)
=

1

2

(
ϕ(||x(n) + y(n)||2) + ϕ(||x(n)− y(n)||2)

)
≤ ϕ

( ||x(n) + y(n)||2 + ||x(n)− y(n)||2

2

)
= ϕ

(
||x(n)||2 + ||y(n)||2

)
≤ ϕ

(
||x(n)||2

)
+ ϕ

(
||y(n)||2

)
= ||x(n)||p + ||y(n)||p. (2.5)

The equality holds if and only if ||x(n)||||y(n)|| = 0.
For the case p > 2, ϕ is convex on [0,∞). All the reverse inequalities hold in

(2.4) and (2.5).
Then, we can prove the necessity of Lemma 2.2 by the definition of norm in

the space lp(H) and the result from the first step. �

Lemma 2.3. Let V0 be an isometric mapping from the unit sphere S(lp(H)) into
S(lp(H)) (1 < p < ∞, p 6= 2). Then

(supp x) ∩ (supp y) = ∅ ⇔ (supp V0(x)) ∩ (supp V0(y)) = ∅.

Proof. By the assumption of V0, we have

||V0(x)− V0(y)|| = ||x− y||. (2.6)

Since lp(H) is strictly convex, it follows from the proof of Lemma 2.1 that,

V0(−x) = −V0(x)

and thus

||V0(x) + V0(y)|| = ||V0(x)− V0(−y)|| = ||x + y||. (2.7)

Notice that (2.6) and(2.7) assure that

||x + y||p + ||x− y||p = 2(||x||p + ||y||p)
and

||V0(x) + V0(y)||p + ||V0(x)− V0(y)||p = 2(||V0(x)||p + ||V0(y)||p)
hold simultaneously. According to Lemma 2.2, we obtain

(supp x) ∩ (supp y) = ∅ ⇔ (supp V0(x)) ∩ (supp V0(y)) = ∅.
�

The following result is similar to that in [4].
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Lemma 2.4. Let V0 be an isometric mapping from the unit sphere S(sp(α, H))
into S(sp(α, H)) and R be the right-translation operator, that is,

Rx = (0, x(1), x(2), · · · , x(n), · · · ), ∀x = {x(n)} ∈ sp(α, H).

If  supp x ∩ supp y = ∅
supp x ∩ supp R(y) = ∅
supp R(x) ∩ supp y = ∅,

(2.8)

then  supp V0(x) ∩ supp V0(y) = ∅
supp V0(x) ∩ supp R(V0(y)) = ∅
supp R(V0(x)) ∩ supp V0(y) = ∅.

Remark 2.5. By the definition of the norm in the space sp(α, H) and the condition
of (2.8), it is easy to see that,

||x + y||p = ||x||p + ||y||p

and

||V0(x) + V0(y)||p = ||V0(x)||p + ||V0(y)||p

for every x, y ∈ S(E). Where, E is a subspace of the space sp(α, H) in which for
every x and y of E if supp x ∩ supp y = ∅ then above relation (2.8) hold.

Lemma 2.6. Let E be a subspace of the space sp(α, H) in which for every x and
y of E if supp x ∩ supp y = ∅ then above relation (2.8) hold. Suppose that V0

is an isometric mapping on the unit sphere S(E) into itself. If x and y are two
disjoint elements of S(E), ξ and η are real numbers and z = ξx + ηy ∈ S(E),
then

V0(z) = ξV0(x) + ηV0(y).

Proof. By the hypothesis of the subspace E of sp(α, H), we have above relation
(2.8). Hence, if we put

A = supp V0(x), B = supp V0(y),

Remark 2.5 implies that

||V0(z)|A||p + ||V0(z)|B||p = ||V0(z)|A∪B||p ≤ ||V0(z)|Ω||p = 1, (2.9)

where Ω =
⋃

x∈E

supp x.

If ξ = 0 then η = 1 or η = −1, so the relation V0(z) = ηV0(y) follows directly
or by Lemma 2.1. The case when η = 0 is dual.

Now assume that ξ 6= 0 and η 6= 0. From Lemma 2.1, Remark 2.5 and the
hypothesis of x and y, we obtain
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∥∥∥V0(z) +
ξ

|ξ|
V0(x)

∥∥∥p

=
∥∥∥z +

ξ

|ξ|
x
∥∥∥p

=
∥∥∥ξx +

ξ

|ξ|
x
∥∥∥p

+ ||ηy‖p

=
∥∥∥ ξ

|ξ|
(1 + |ξ|)x

∥∥∥p

+ ||ηy||p

= (1 + |ξ|)p + 1− |ξ|p, (2.10)

where in the last equality we have used the the following identity

1p = ||z||p = ||ξx + ηy||p = ||ξx||p + ||ηy||p = |ξ|p + |η|p, (2.11)

which follows from the assumption supp x ∩ supp y = ∅ and Remark 2.5.
Similarly, we also have∥∥∥V0(z) +

η

|η|
V0(y)

∥∥∥p

= (1 + |η|)p + 1− |η|p. (2.12)

On the other hand, we have∥∥∥V0(z) +
ξ

|ξ|
V0(x)

∥∥∥p

=
∥∥∥(

V0(z) +
ξ

|ξ|
V0(x)

)∣∣∣
A

+
(
V0(z) +

ξ

|ξ|
V0(x)

)∣∣∣
Ω−A

∥∥∥p

.

Notice the hypothesis of the subspace E of sp(α, H) and the definition of the
norm of sp(α, H), along with Remark 2.5, imply∥∥∥(

V0(z) + ξ
|ξ|V0(x)

)∣∣∣
A

+
(
V0(z) + ξ

|ξ|V0(x)
)∣∣∣

Ω−A

∥∥∥p

=
∥∥∥(

V0(z) + ξ
|ξ|V0(x)

)∣∣∣
A

∥∥∥p

+
∥∥∥(

V0(z) + ξ
|ξ|V0(x)

)∣∣∣
Ω−A

∥∥∥p

≤
(
‖V0(z)|A||+

∥∥∥ ξ
|ξ|V0(x)

∣∣∣
A

∥∥∥)p

+ ||V0(z)|Ω−A||p

= (1 + ||V0(z)|A||)p + 1− ||V0(z)|A||p.
That is, ∥∥∥V0(z) +

ξ

|ξ|
V0(x)

∥∥∥p

≤ (1 + ||V0(z)|A||)p + 1− ||V0(z)|A||p. (2.13)

Similarly, we also obtain∥∥∥V0(z) +
η

|η|
V0(y)

∥∥∥p

≤ (1 + ||V0(z)|B||)p + 1− ||V0(z)|B||p. (2.14)

Hence, by (2.10) and ((2.13),

(1 + |ξ|)p + 1− |ξ|p ≤ (1 + ||V0(z)|A||)p + 1− ||V0(z)|A||p (2.15)

and also by (2.12) and (2.14) we have

(1 + |η|)p + 1− |η|p ≤ (1 + ||V0(z)|B||)p + 1− ||V0(z)|B||p. (2.16)

Notice that the real function ϕ(t) = (1+t)p+1−tp is strictly increasing in [0,∞),
hence (2.15) and (2.16) imply

|ξ| ≤ ||V0(z)|A|| and |η| ≤ ||V0(z)|B||. (2.17)
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By (2.9), (2.11) and (2.17), we obtain

|ξ| = ||V0(z)|A|| and |η| = ||V0(z)|B||. (2.18)

From (2.9),(2.11) and (2.18), we obtain

||V0(z)|Ω||p = ||V0(z)|A||p + ||V0(z)|B||p.
Therefore supp V0(z)|Ω−A∪B = ∅, and so

V0(z) = V0(z)|A + V0(z)|B. (2.19)

By (2.10), (2.11),(2.18) and (2.19), we have

(1 + |ξ|)p + |η|p

=
∥∥∥V0(z) + ξ

|ξ|V0(x)
∥∥∥p

≤
∥∥∥V0(z)|A + ξ

|ξ|V0(x)
∥∥∥p

+ ||V0(z)|B||p

≤ (1 + ||V0(z)|A||)p + ||V0(z)|B||p
= (1 + |ξ|)p + |η|p,

which implies ∥∥∥V0(z)|A +
ξ

|ξ|
V0(x)

∥∥∥ = ||V0(z)|A||+
∥∥∥ ξ

|ξ|
V0(x)

∥∥∥.

Since sp(α, H) is strictly convex, we have V0(z)|A = c ξ
|ξ|V0(x) for some c > 0,

and c = |ξ| because of (2.18). That is, V0(z)|A = ξV0(x). Similarly, we also have
V0(z)|B = ηV0(x). Thus we obtain V0(z) = ξV0(x) + ηV0(y). We have completed
the proof. �

Lemma 2.7. Let E be a subspace of the space sp(α, H) in which for every x and
y of E if supp x ∩ supp y = ∅ then relation (2.8) hold. Suppose that V0 is an
isometric mapping on the unit space S(E) into itself. If x1, x2, · · · , xm are mutual

disjoint elements of S(E) and
m∑

n=1

ξnxn ∈ S(E), then

V0

( m∑
n=1

ξnxn

)
=

m∑
n=1

ξnV0(xn).

Proof. We prove this by induction. Indeed, for m = 2 the result holds by Lemma
2.6. If for m = m0 − 1 the results holds. For m = m0, by using the following
equality

m0∑
n=1

ξnxn = ξ1x1 +
∥∥∥ m0∑

n=2

ξnxn

∥∥∥ · m0∑
n=2

ξn∥∥∥ m0∑
n=2

ξnxn

∥∥∥xn

and the hypothesis of the subspace E, where at least one ξn for n ≥ 2 is a non-
zero number, we get the desired result. If all ξn are zero for n ≥ 2, then |ξ1| = 1,
so V0(ξ1x1) = ξ1V0(x1) and we are done. �
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Lemma 2.8. Suppose that E is a subspace of the space sp(α, H) satisfying (1.4)
and (1.5) and that V0 is an isometric mapping from the unit sphere S(E) onto
itself. Then, for any ex(n) ∈ S(E), suppV0ex(n) is a single point set.

Proof. It is easy to see that the result of Lemma 2.3 and relation (2.8) hold for
the space E. Without loss of generality, we can assume

V0(ex(1)) = ex′(k) +
∑
i6=k

ex′(i),

where x′(k) 6= o. Let

y =
ex′(k)

||ex′(k)||
.

Since V0 is surjective, there exists u ∈ S(E) such that V0u = y. By Lemma 2.3,

(suppV0u)
⋂

(suppV0ex(n)) = (suppy)
⋂

(suppV0ex(n))

⊆ (suppV0ex(1))
⋂

(suppV0ex(n)) = ∅
holds for any n 6= 1, where x(n) 6= 0.

Applying Lemma 2.3 again,we have

(suppu)
⋂

(suppex(n)) = ∅ (n 6= 1).

This means that u = ex(1), and this implies SuppV0(ex(1)) = {k}. �

Lemma 2.9. Suppose that x1 and y1 are elements in the Hilbert space H, that
λ and µ are non - zero real numbers, that ‖λx1 ± µy1‖ = ‖λx2 ± µy2‖, that
||x1|| = ||x2|| and that ||y1|| = ||y2||. Then ||x1 − y1|| = ||x2 − y2||.

Proof. It is easy to prove that by the parallelogram law. �

Now we are in a position to state the main results and proofs in this paper.

Theorem 2.10. Suppose that E is a subspace of the space sp(α, H) satisfying
(1.4) and (1.5), that 1 /∈ SuppE and that V0 is an isometric mapping from the
unit sphere S(E) onto itself. Then V0 can be extended to an isometry on the
whole space E.

Proof. By Lemma 2.7, we see that for every x = {x(n)}n=m
n=1 ∈ S(E), we have

V0(x) =
m∑

n=1

||ex(n)||V0

( ex(n)

||ex(n)||

)
. (2.20)

If ||x(n)|| = 0, then V0

(
ex(n)

||ex(n)||

)
def
= 0.

We now define a mapping on the subspace E0 of E which consists of all elements
in which every element only has finitely many non-zero items as follows

V1

(
{x(n)}n=m

n=1

)
def
=

m∑
n=1

||ex(n)||V0

( ex(n)

||ex(n)||

)
(2.21)

for all {x(n)}n=m
n=1 ∈ E0 ⊂ E.
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Suppose that {x(n)}n=m
n=1 and {y(n)}n=m

n=1 are elements in E0. By lemma 2.8, we
can assume

V1({x(n)}n=m
n=1 ) = {x′(k(n))}n=m

n=1

and
V1({y(n)}n=m

n=1 ) = {y′(k(n))}n=m
n=1 .

To prove

‖V1({x(n)}n=m
n=1 )− V1({y(n)}n=m

n=1 )‖ = ‖{x(n)}n=m
n=1 − {y(n)}n=m

n=1 ‖. (2.22)

We proceed as follows ∥∥V0

( ex(n)

||ex(n)||

)
± V0

( ey(n)

||ey(n)||

)∥∥p

=
∥∥∥ ex(n)

||ex(n)||
±

ey(n)

||ey(n)||

∥∥∥p

= (1 + 2pα)
∥∥∥ x(n)

||ex(n)||
± y(n)

||ey(n)||

∥∥∥p

. (2.23)

On the other hand ∥∥V0

(
ex(n)

||ex(n)||

)
± V0

(
ey(n)

||ey(n)||

)∥∥p

=
∥∥∥ ex′(k(n))

||ex′(k(n))||
± ey′(k(n))

||ey′(k(n))||

∥∥∥p

= (1 + 2pα)
∥∥∥ x′(k(n))
||ex′(k(n))||

± y′(k(n))
||ey′(k(n))||

∥∥∥p

. (2.24)

If ||x(n)|| = 0, then x(n)
||ex(n)||

def
= 0 and x′(k(n))

||ex′(k(n))||
def
= 0. It follows from (2.23) and

(2.24) that ∥∥∥ x(n)

||ex(n)||
± y(n)

||ey(n)||

∥∥∥ =
∥∥∥ x′(k(n))

||ex′(k(n))||
± y′(k(n))

||ey′(k(n))||

∥∥∥. (2.25)

Notice that ||ex(n)|| = ||ex′(k(n))||, that ||ey(n)|| = ||ey′(k(n))|| and (2.25), it follows
that from Lemma 2.9 that

‖x(n)− y(n)‖ = ‖x′(k(n))− y′(k(n)‖. (2.26)

Since

‖V1({x(n)}n=m
n=1 )− V1({y(n)}n=m

n=1 )‖p =
m∑

n=1

(1 + 2pα)‖x′(k(n))− y′(k(n))‖p(2.27)

and

‖{x(n)}n=m
n=1 − {y(n)}n=m

n=1 ‖p =
m∑

n=1

(1 + 2pα)‖x(n)− y(n)‖p. (2.28)

(2.26), (2.27) and (2.28) assure (2.22) holds. That is we have obtained an isometry
on the subspace E0 of E. It is evident that E0 is dense in the space E, E is a
Banach space and V1 is isometric on E0. Hence V1 has a unique linear isometric
extension V on the whole space E. Thus V is the desired extension of V0 and the
proof is complete. �
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Theorem 2.11. Let V0 be a Lamperti isometric mapping on the unit sphere
S(sp(α, H)) into itself. Then V0 can be extended to an isometry on the whole
space sp(α, H).

Proof. We notice that, if V0 is a Lamperti isometric mapping on the subset of
the space sp(α, H), then V0 is also a isometric mapping on the same subset of
the space lp(H). By Lemmas 2.1 and 2.3, we can obtain the simple conclusion
like Lemma 2.6 as follows (and much easy because, for every disjoint x and y in
lp(H), we have that ||x + y||p = ||x||p + ||y||p).

Similarly, for every such element {x(n)}n=m
n=1 ∈ S(sp(α, H)), we have

V0

(
{x(n)}n=m

n=1

)
=

m∑
n=1

||ex(n)||V0

( ex(n)

||ex(n)||

)
. (2.29)

If ||x(n)|| = 0, then V0

(
ex(n)

||ex(n)||

)
def
= 0. Now we define a mapping on the whole

space sp(α, H) as follows

V x =

{
||x||V0

(
x
||x||

)
, if x 6= 0,

0, if x = 0.

Then it is evident that

||V (x)|| = ||x||, ∀x ∈ sp(α, H). (2.30)

By (2.29) and (2.30) for every such element x = {x(n)}n=m
n=1 ∈ sp(α, H), we have

that

V
(
{x(n)}n=m

n=1

)
= ||x||V0

( x

||x||

)
=

m∑
n=1

||ex(n)||V0

( ex(n)

||ex(n)||

)
. (2.31)

That is, we obtain an isometry on the subspace E of sp(α, H) in which every
element only has finite many non-zero items since (2.30) and (2.31) hold. Since
E is dense in sp(α, H) and V is continuous mapping on sp(α, H), we see that V
is an isometry on sp(α, H) and it is the extension of V0. �
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