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Abstract. We introduce some special operator classes and study in terms of
Berezin symbols their properties. In particular, we give some characterizations
of compact operators and Schatten-von Neumann class operators in terms of
Berezin symbols. We also consider some classes of compact operators on a
Hilbert space H, which are generalizations of the well known Schatten-von
Neumann classes of compact operators. Namely, for any number p, 0 < p <∞,
and the sequence w := (wn)n≥0 of complex numbers wn, n ≥ 0, we define the
following classes of compact operators on H:

Sw
p (H) =

{
K ∈ S∞(H) :

∞∑
n=0

(sn(K))pwp
n is convergent series

}
,

where sn(K) denotes the nth singular number of the operator K. The charac-
terizations of these classes are given in terms of Berezin symbols.

1. Introduction and background

In this paper we investigate in terms of Berezin symbols some special opera-
tor classes. Namely, we consider the following operators, which are called ”the
weighted model operators”:

Kϕ,θ,Ω := [TϕΩ, Tθ]ϕ (Mθ) ,

Lϕ,θ,Ω := [TθΩ, Tϕ]ϕ (Mθ) ,
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where Ω ∈ (Σ) ∪ {1} , ϕ ∈ H∞ (D) and θ ∈ (Σ) ; here (Σ) denotes the set of all
inner functions. When Ω = 1, we shall use the symbols Kϕ,θ and Lϕ,θ instead of
Kϕ,θ,1 and Lϕ,θ,1, respectively. Let us denote Kϕ,θ,(Σ) := {Kϕ,θ,Ω : Ω ∈ (Σ) ∪ {1}} .
Recall that the function of model operator is defined as usual by the formula

ϕ (Mθ) f = Pθϕf

for every f ∈ Kθ := H2ΘθH2, where θ is an inner function.
Here we also consider the classes Swp , 0 < p < ∞, of compact operators and

characterize these classes in terms of the boundary behavior of Berezin symbols
of the weighted shift operators on the Hardy space H2 (D) associated with s-
numbers of the compact operators in Swp .

Definition 1.1. Given 0 < p <∞ and a sequence w := {wn}n≥0 of the complex
numbers wn, we define the class Swp := Swp (H) to be space of all compact operators
K on H with the singular numbers sn(K) for which the series

∞∑
n=0

(sn(K))pwpn

is convergent.

It can be easily shown that the classes Swp , 0 < p < ∞, are vector spaces.
Also, it is obvious that for wn = 1, n ≥ 0, our space Swp coincides with the usual
Schatten-von Neumann space Sp. Generally, if {wn}n≥0 is a sequence such that

C1 ≤ |wn| ≤ C2 (n ≥ 0)

for some C1, C2 > 0, then it is easy to see that Swp = Sp.
Moreover, in this paper we give a compactness criterion for operators on a

nonstandard functional Hilbert space contained in a standard functional Hilbert
space (see Theorem 2.1).

Before giving our results, let us give the necessary notations and definitions.
By B(H) we denote the algebra of all bounded linear operators on the infinite

dimensional complex Hilbert space H.
Recall that a functional Hilbert space is the Hilbert space H = H(Ω) of

complex-valued functions on some set Ω such that:
(a) the evaluation functional f → f (λ) is continuous for each λ ∈ Ω;
(b) for any λ ∈ Ω there exists fλ ∈ H such that fλ(λ) 6= 0.
Then by the classical Riesz representation theorem for each λ ∈ Ω there exists

a unique function kH,λ ∈ H such that f(λ) = 〈f, kH,λ〉 for all f ∈ H. The function

kH,λ is called the reproducing kernel of the space H. Let k̂H,λ =
kH,λ

‖kH,λ‖ denotes

the normalized reproducing kernel of the space H (note that by (b), we surely
have kλ 6= 0). For a bounded linear operator A on the functional Hilbert space

H, its Berezin symbol Ã is defined by the formula

Ã(λ) :=
〈
Ak̂H,λ, k̂H,λ

〉
H

(λ ∈ Ω).
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It is clear that
∣∣∣Ã(λ)

∣∣∣ ≤ ‖A‖ for all λ ∈ Ω, that is Ã is a bounded function.

More informations about reproducing kernels and Berezin symbols, can be found
in Aronzajn [1], Berezin [2, 3] and Zhu [11].

A prototypical functional Hilbert space is, for example, the classical Hardy
space H2 = H2(D), which is the space of all functions analytic on the open unit
disc D = {z ∈ C : |z| < 1} having Taylor coefficients that are square summable.
It is well known that kH2,λ(z) = (1− λz)−1, λ, z ∈ D.

Throughout in the paper, for any bounded sequence Λ = {λn} of complex
numbers the symbol TΛ will denote the weighted shift operator in the Hardy
space H2 with respect to the standard orthonormal basis {zn}n≥0 of H2, i.e.,

TΛz
n = λnz

n+1, n = 0, 1, 2, ....

Recall that the series
∑∞

n=0 an is Abel convergent if
∑∞

n=0 ant
n is convergent for

each t ∈ (0, 1) and lim
t→1

∑∞
n=0 ant

n exists and is finite. Finally, note that for any ϕ ∈
L∞ (T) the corresponding Toeplitz operator on H2 = H2 (D) is defined by Tϕf :=
P+ϕf, where P+ : L2 (T) → H2 is the Riesz projection operator, T = ∂D. The
Hankel operator is defined by Hϕf = (I − P+)ϕf, f ∈ H2, where P− := I−P+ is

the orthogonal projector of L2 (T) into H2
− :=

{
f ∈ L2 (T) : f̂ (n) = 0, n > 0

}
.

2. Characterization of Some Operators

In the present section we characterize some Schatten-von Neumann operator
ideals in terms of Berezin symbols.

2.1. Compactness criterion. Following Nordgren and Rosenthal [9], we say
that a functional Hilbert space H = H (Q) is standard if the underlying set Q is
a subset of a topological space and the boundary ∂Q is non-empty and has the

property that
{
k̂H,λn

}
converges weakly to 0 as λ → ξ, for any point ξ ∈ ∂Q.

The common functional Hilbert spaces of analytic functions, including H2 (D)
(Hardy space) and L2

a (D) (Bergman space), D = {z ∈ C : |z| < 1} is a unit disc,
are standard in this sense.

For any reproducing kernel Hilbert space (RKHS) H on Q (not necessarily
standard), denote ∂HQ the subset of the boundary of Q defined by (see [4])

∂HQ :=
{
ξ ∈ ∂Q : k̂H,λn → 0 (weakly) whenever λ→ ξ

}
.

It is clear from the definitions that H is standard if and only if ∂HQ = ∂Q.
In the case where ∂HQ 6= ∅, one can obtain an analogue of the main result
of the paper by Nordgren and Rosenthal [9, Corollary 2.8], which characterizes
compact operators on the standard RKHS in terms of boundary behavior of
Berezin symbols of all unitary orbits of operator.

Namely, as is shown in [4] (which completely solves Nordgren and Rosenthal’s
questions in [9]), the hypothesis of standardness of the Hilbert space H (Q) in the
Corollary 2.8 of the paper [9] can be highly weakened.

Theorem A. (see [4, Theorem 2.2]). Let H be a RKHS on Q such that
∂HQ 6= ∅, and let T ∈ B (H). Then the following assertions are equivalent:
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(i) T is compact;
(ii) for every point ξ ∈ ∂HQ and every unitary operator U on H, we have

lim
λ→ξ

Ũ−1TU (λ) = 0;

(iii) there exists a sequence (λn)n≥1 of points in Q, converging to a point
ξ ∈ ∂HQ, such that for every unitary operator U on H, we have

lim
n→+∞

Ũ−1TU (λn) = 0.

In the following theorem compactness criterion for A is stated in terms of
Berezin symbols of unitary orbits U−1AU restricted to the subspaces U−1H.

Theorem 2.1. Let K = K (Q) be a RKHS on some set Q such that ∂KQ 6= ∅,
A : K → K be a linear bounded operator and H ⊂ K be a closed A-invariant
subspace, i.e., AH ⊂ H. Then the operator A|H is compact (i.e., A ∈ S∞ (H)) if
and only if for every ξ ∈ ∂KQ and every unitary operator U ∈ B (K) we have

lim
λ→ξ

P̃U−1H (λ) Ũ−1AU
U−1H

(λ) = 0.

Proof. Put B = APH. It is obvious for arbitrary unitary operator U ∈ B (K) that

U−1BU = U−1APHU = U−1AUU−1PHU = U−1AUPU−1H.

Since PU−1HkK,λ = kU−1H,λ for every λ ∈ Q, we have:

Ũ−1BU (λ) =
〈
U−1BUk̂K,λ, k̂K,λ

〉
=
〈
U−1AUPU−1Hk̂K,λ, k̂K,λ

〉
=

1

‖kK,λ‖2

〈
U−1AUPU−1HkK,λ, kK,λ

〉
=

1

‖kK,λ‖2

〈
U−1AUkU−1H,λ, PU−1HkK,λ + (I − PU−1H) kK,λ

〉
=

1

‖kK,λ‖2

[〈
U−1AUkU−1H,λ, kU−1H,λ

〉
+

+
〈
U−1AUkU−1H,λ, (I − PU−1H) kK,λ

〉]
=

1

‖kK,λ‖2

〈
U−1AUkU−1H,λ, kU−1H,λ

〉
=
‖kU−1H,λ‖2

‖kK,λ‖2

〈
U−1AUk̂U−1H,λ, k̂U−1H,λ

〉
=
‖kU−1H,λ‖2

‖kK,λ‖2 Ũ−1AU
U−1H

(λ) .

Thus

Ũ−1BU (λ) =
‖kU−1H,λ‖2

‖kK,λ‖2 Ũ−1AU
U−1H

(λ) (λ ∈ Q) .
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On the other hand,

‖kU−1H,λ‖2 = ‖PU−1HkK,λ‖2 = 〈PU−1HkK,λ, kK,λ〉

= ‖kK,λ‖2
〈
PU−1Hk̂K,λ, k̂K,λ

〉
= ‖kK,λ‖2 P̃U−1H (λ) .

Consequently,

‖kU−1H,λ‖2

‖kK,λ‖2 = P̃U−1H (λ) (λ ∈ Q) (2.1)

for all unitary operator U ∈ B (K) . Therefore

Ũ−1BU (λ) = P̃U−1H (λ) Ũ−1AU
U−1H

(λ) (λ ∈ Q) . (2.2)

for all unitary operator U ∈ B (K) . It is obvious that BH ⊂ H and B|H = A|H.
Therefore B ∈ S∞ (K) if and only if A ∈ S∞ (H) . Now using this fact, formula
(2.2) and Theorem A, we conclude that A is compact in H if and only if

lim
λ→ξ∈∂KQ

(
P̃U−1H (λ) Ũ−1AU

U−1H
(λ)

)
= 0

for every unitary operator U ∈ B (K) , which completes the proof. �

Corollary 2.2. Let ϕ ∈ H∞ be a nonconstant function. Then ϕ (Mθ) ∈ S∞ (Kθ)
if and only if

lim
λ→T

(
P̃U−1Kθ (λ) ˜U−1TϕU

U−1Kθ
(λ)

)
= 0

for every unitary operator U ∈ B (H2) .

Proof. Indeed, putting K = H2,H = Kθ, A = Tϕ in Theorem 2.1, and considering
that ∂H2D = T, we conclude that Tϕ|Kθ is compact operator if and only if for
every unitary operator U ∈ B (H2)

lim
λ→T

(
P̃U−1Kθ (λ) ˜U−1TϕU

U−1Kθ
(λ)

)
= 0.

It now remains only to observe that ϕ (Mθ) = (Tϕ|Kθ)
∗ ∈ S∞ (Kθ) ⇔ Tϕ|Kθ ∈

S∞ (Kθ) , consequently,

ϕ (Mθ) ∈ S∞ (Kθ)⇔ lim
λ→T

(
P̃U−1Kθ (λ) ˜U−1TϕU

U−1Kθ
(λ)

)
.

This proves the corollary. �

2.2. Sp-criteria. Before stating our next result, we introduce the following defi-
nition.

Remark 2.3. Formula (2.1), in particular, implies that if H1 = H1 (Q) is a non-
standard FHS and H2 = H2 (Q) is a standard FHS such that H1 ⊂ H2, then

lim
n→∞

P̃H1 (λn) = 0 (2.3)
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for some sequence {λn} ∈ Q tending to a point in ∂Q. In fact, since for every H1

and λ ∈ Q 〈
f, k̂H1,λ

〉
=
‖kH2,λ‖
‖kH1,λ‖

〈
f, k̂H2,λ

〉
,

we have by formula (2.1) that〈
f, k̂H1,λ

〉
=
(
P̃H1 (λ)

)−1/2 〈
f, k̂H2,λ

〉
. (2.4)

Since H1 is nonstandard, there exists f0 ∈ H1 and a sequence {λn} ∈ Q tending
to a boundary point such that

lim
n→∞

〈
f0, k̂H1,λn

〉
6= 0,

and hence, using the condition that H2 is standard, we assert from (2.4) that

limn→∞ P̃H1 (λn) = 0. Thus, (2.3) is a necessary condition for the inclusion H1 ⊂
H2.

Definition 2.4. Let H = H (Q) be a (separable) RKHS on some set Q. We say
that H posses the property (P ), if for some orthonormal sequence {en (z)}n≥1 of
the space H with infinite codimension (that is dim (HΘspan (en : n ≥ 1)) = +∞)
and for some scalar λ ∈ Q the multiplication operators M en

kH,λ
, n ≥ 1, are

bounded in H.

Since {zn}n≥0 and
{√

n+ 1zn
}
n≥0

are orthonormal bases in H2 and L2
a, respec-

tively, and kH2,λ (z) = 1
1−λz and kL2

a,λ
(z) = 1

(1−λz)
2 are the reproducing kernels of

H2 and L2
a, respectively, it is clear that the Hardy and Bergman spaces have the

property (P ) .
Our next result is a slight generalization of a result in [6, Theorem 4].

Theorem 2.5. Let H = H (Q) be a FHS with the property (P ) with respect to the
orthonormal sequence {en (z)}n≥1 and the point λ ∈ Q. Let A ∈ S∞ (H) . Then
A ∈ Sp (H) (p ≥ 1) if and only if

∞∑
n=1

∣∣∣∣[M∗
en
k̂H,λ

(
U−1AU

)
M en

k̂H,λ

]∼
(λ)

∣∣∣∣p < +∞

for every unitary operator U : H → H.

Proof. It is well-known that (see Zhu [11, Theorem 1.27]) A lies in Sp (H) (p ≥ 1)
if and only if

∞∑
n=1

|〈Aun, un〉|p < +∞

for all orthonormal sequence {un}n≥1 . It is not difficult to show that the latter is
equivalent to the assertion that∑

n≥1

|〈Avn, vn〉|p < +∞
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for all orthonormal sequences {vn}n≥1 in H with infinite codimension. Since H
possesses property (P ) with respect to the orthonormal sequence {en (z)}n≥1 , we
have that

dim (HΘspan (en (z) : n ≥ 1)) = +∞.
Then there exists a unitary operator U on H such that Uen = vn, n ≥ 1. Hence
we obtain:

∞∑
n=1

|〈Avn, vn〉|p =
∞∑
n=1

|〈AUen, Uen〉|p =
∞∑
n=1

∣∣〈U−1AUen, en
〉∣∣p

=
∞∑
n=1

∣∣∣∣∣
〈
U−1AU

en

k̂H,λ
k̂H,λ,

en

k̂H,λ
k̂H,λ

〉∣∣∣∣∣
p

=
∞∑
n=1

∣∣∣∣〈U−1AUM en
k̂H,λ

k̂H,λ,M en
k̂H,λ

k̂H,λ

〉∣∣∣∣p
=
∞∑
n=1

∣∣∣∣〈M∗
en
k̂H,λ

(
U−1AU

)
M en

k̂H,λ
k̂H,λ, k̂H,λ

〉∣∣∣∣p
=
∞∑
n=1

∣∣∣∣[M∗
en
k̂H,λ

(
U−1AU

)
M en

k̂H,λ

]∼
(λ)

∣∣∣∣p .
It now follows from the above assertion that

A ∈ Sp (H)⇔
∞∑
n=1

|〈Avn, vn〉|p < +∞⇔

⇔
∞∑
n=1

∣∣∣∣[M∗
en
k̂H,λ

(
U−1AU

)
M en

k̂H,λ

]∼
(λ)

∣∣∣∣p < +∞,

which proves the theorem, because {vn} is arbitrary, and therefore U is also
arbitrary unitary operator. �

3. Weighted model operators Kϕ,θ,Ω and Lϕ,θ,Ω
In this section we give some results concerning to the weighted model opera-

tors Kϕ,θ,Ω and Lϕ,θ,Ω. Let us start with some simple remarks concerning to the
operators Kϕ,θ,Ω, where ϕ ∈ H∞, θ ∈ (Σ) and Ω ∈ (Σ) ∪ {1} .

Proposition 3.1. (a) Each operator Kϕ,θ,Ω is a projection of the operator TϕNθ,ΩTϕ
in H2 to the subspace Kθ, i.e.,

Kϕ,θ,Ω = Pθ (TϕNθ,ΩTϕ) |Kθ, (3.1)

where Nθ,Ω := TθΩPθ is a nilpotent operator, N2
θ,Ω = 0.

(b)

dist
(
[Tθ, Tϕ] ,Γ(Σ)

)
dist

(
ϕθ,H∞

)
≥ dist

(
ϕ (Mθ) , Kϕ,θ,(Σ)

)
, (3.2)

where Γ(Σ) := {Tw : w ∈ (Σ) ∪ {1}} .
(c) If ϕ ∈ (Σ) , then the numerical range of the operator Kϕ,θ lies in the closed

disc D1/2.
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Proof. (a) Indeed, for each f ∈ Kθ we have that

Pθ (TϕNθ,ΩTϕ) f = PθTϕTθΩPθϕf

= (I − TθTθ)TϕTθΩϕ (Mθ) f

= (TϕΩTθ − TθTϕΩ)ϕ (Mθ) f

= [TϕΩ, Tθ]ϕ (Mθ) f = Kϕ,θ,Ωf,

which gives (3.1); obviously, N2
θ,Ω = 0.

(b) Since for every Ω ∈ (Σ) the operator TΩ is an isometry, we have:

‖ϕ (Mθ)−Kϕ,θ,Ω‖ = ‖ϕ (Mθ)− [TϕΩ, Tθ]ϕ (Mθ)‖
= ‖(I − [TϕΩ, Tθ])ϕ (Mθ)‖
= ‖(I − (TϕTθ − TθTϕ)TΩ)ϕ (Mθ)‖
= ‖(TΩTΩ − [Tϕ, Tθ]TΩ)ϕ (Mθ)‖
= ‖(TΩ − [Tϕ, Tθ])TΩϕ (Mθ)‖
≤ ‖TΩ − [Tϕ, Tθ]‖ ‖ϕ (Mθ)‖
= ‖(TΩ − [Tϕ, Tθ])‖ ‖ϕ (Mθ)‖ .

It follows from this that

inf
Ω∈(Σ)∪{1}

‖ϕ (Mθ)−Kϕ,θ,Ω‖ ≤ inf
Ω∈(Σ)∪{1}

‖(TΩ − [Tϕ, Tθ])‖ ‖ϕ (Mθ)‖ ,

or, by considering that ‖TΩ − [Tϕ, Tθ]‖ = ‖TΩ − [Tθ, Tϕ]‖ , we have

dist
(
ϕ (Mθ) , Kϕ,θ,(Σ)

)
≤ dist

(
[Tθ, Tϕ] ,Γ(Σ)

)
‖ϕ (Mθ)‖ .

Now the well-known formula

‖ϕ (Mθ)‖ = dist
(
ϕθ,H∞

)
implies the inequality (3.2).

(c) Using formula (3.1), we have

〈Kϕ,θf, f〉 = 〈Pθ (TϕNθTϕ) f, f〉 = 〈TϕNθTϕf, f〉
= 〈Nθϕf, ϕf〉

for every f ∈ Kθ, ‖f‖2 = 1; here Nθ := TθPθ = Tθ (I − TθTθ) . Since ϕ is an inner
function, ϕf ∈ H2 and ‖ϕf‖2 = ‖f‖2 = 1, we conclude that

〈Nθϕf, ϕf〉 ∈ W (Nθ) (numerical range of Nθ).

Now using the known result that W (Nθ) =
{
z ∈ C : |z| ≤ 1

2

}
(because N2

θ = 0,
see [7]), we complete the proof. �

Proposition 3.2. We have∣∣∣K̃ϕ,θ,Ω (λ)
∣∣∣ = o

(
1

1− |θ (λ)|2

)
as |λ| → 1−

for every Ω ∈ (Σ) ∪ {1} .
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Proof. By using (3.1) and the following well-known formulas

kλ := kH2,λ =
1

1− λz

kθ,λ := kKθ,λ =
1− θ (λ)θ

1− λz

k̂θ,λ =

√
1− |λ|2

1− |θ (λ)|2
1− θ (λ)θ

1− λz
Tfg − TfTg = H∗

f
Hg

where f, g ∈ L∞, we have:

K̃ϕ,θ,Ω (λ) =
〈
Pθ (TϕNθ,ΩTϕ) k̂θ,λ, k̂θ,λ

〉
=

1− |λ|2

1− |θ (λ)|2

〈
TθΩPθϕ

1− θ (λ)θ

1− λz
, ϕ

1− θ (λ)θ

1− λz

〉

=
1− |λ|2

1− |θ (λ)|2

〈
TθΩPθ

ϕ

1− λz
, ϕ

1− θ (λ)θ

1− λz

〉

=
1− |λ|2

1− |θ (λ)|2

(〈
TθΩ (I − TθTθ)

ϕ

1− λz
,

ϕ

1− λz

〉
−

−θ (λ)

〈
TθΩ (I − TθTϕ)

ϕ

1− λz
,

θϕ

1− λz

〉)
=

1− |λ|2

1− |θ (λ)|2

(〈
T|ϕ|2θΩ

1

1− λz
,

1

1− λz

〉
−
〈
Tϕθ2ΩTθϕ

1

1− λz
,

1

1− λz

〉
−

− θ (λ)

〈
T|ϕ|2Ω

1

1− λz
,

1

1− λz

〉
+

+θ (λ)

〈
TϕθΩTϕθ

1

1− λz
,

1

1− λz

〉)
=

1

1− |θ (λ)|2
(〈
T|ϕ|2θΩk̂λ, k̂λ

〉
−
〈
Tϕθ2ΩTθϕk̂λ, k̂λ

〉
+

+θ (λ)
〈
TϕθΩTϕθk̂λ, k̂λ

〉
− θ (λ)

〈
T|ϕ|2Ωk̂λ, k̂λ

〉)
=

1

1− |θ (λ)|2
(〈(

T|ϕ|2θΩ − Tϕθ2ΩTθϕ

)
k̂λ, k̂λ

〉
−

− θ (λ)
〈(
T|ϕ|2Ω − TϕθΩTϕθ

)
k̂λ, k̂λ

〉
=

1

1− |θ (λ)|2
(

˜H∗
ϕθ2Ω

Hϕθ (λ)− θ (λ) ˜H∗
ϕθΩ

Hϕθ (λ)
)
.

Thus

K̃ϕ,θ,Ω (λ) =
1

1− |θ (λ)|2
(

˜H∗
ϕθ2Ω

Hϕθ (λ)− θ (λ) ˜H∗
ϕθΩ

Hϕθ (λ)
)
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for every λ ∈ D. Consequently, using the fact that

lim
r→1−

H̃∗
f
Hg

(
reit
)

= 0

for almost all t ∈ [0, 2π] , where f, g ∈ L∞ (T) , we complete the proof of propo-
sition. �

Our next result characterizes compact operators Lϕ,θ (ϕ ∈ H∞, θ ∈ (Σ)).

Theorem 3.3. Lϕ,θ ∈ S∞ (Kθ) if and only if

lim
λ→T

(
U−1

(
H∗ϕHϕθ

)
U
)∼

(λ) = 0

for every unitary operator U ∈ B (H2) .

Proof. By Nikolski’s formula (see Nikolski [8])

ϕ (Mθ)Pθ = θHϕθ,

we have

Lϕ,θPθf = [Tθ, Tϕ]ϕ (Mθ)Pθf =
(
Tθϕ − TϕTθ

)
θHϕθf

= H∗ϕHθθHϕθf = H∗ϕP−θθP−ϕθf

= H∗ϕP−ϕθf = H∗ϕHϕθf

for each f ∈ H2. Thus,

Lϕ,θPθ = H∗ϕHϕθ. (3.3)

It follows from formula (3.3) that Lϕ,θ ∈ S∞ (Kθ) if and only ifH∗ϕHϕθ ∈ S∞ (H2) .
Thus, since ∂H2D = T, Theorem A and Theorem 2.5 together with the formula
(3.3) yield the statement of the theorem, as desired. �

4. Characterization of the classes Swp , 0 < p <∞

The main result of the present section is the following theorem, which gives
necessary and sufficient conditions for belonging A to the classes Swp , 0 < p <∞.
Its proof uses some arguments of the papers [6, 10].

Theorem 4.1. Let H be an infinite dimensional complex Hilbert space, A ∈ B(H)
be a compact operator with nonincreasing sequence of s-numbers sn(A), n ≥ 0,
w := {wn}n≥0 be a bounded sequence of complex numbers, and let 0 < p < ∞.
Then the following assertions are hold:

(i) if A ∈ Swp (H), then T̃Λ(
√
t)√
t

= O(1−t) as t→ 1, where Λ = ((sn(A))pwpn)n≥0;

(ii) if T̃Λ(
√
t)√
t

= O(1 − t) as t → 1 and sn(A)wn = O
(
n−

1
p

)
as n → ∞, then

A ∈ Swp (H).
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Proof. First, let us calculate the Berezin symbol of the weighted shift operator
TΛ acting in H2 :

T̃Λ(λ) =
〈
TΛk̂H2,λ, k̂H2,λ

〉
H2

=

〈
TΛ

(1− λz)−1∥∥(1− λz)−1
∥∥
H2

,
(1− λz)−1∥∥(1− λz)−1

∥∥
H2

〉
H2

=

〈
TΛ

(1− λz)−1

(1− |λ|2)−
1
2

,
(1− λz)−1

(1− |λ|2)−
1
2

〉
H2

= (1− |λ|2)

〈
TΛ

∞∑
n=0

λ
n
zn,

∞∑
n=0

λ
n
zn

〉
H2

= (1− |λ|2)

〈
∞∑
n=0

λ
n
TΛz

n,
∞∑
n=0

λ
n
zn

〉
H2

= (1− |λ|2)

〈
∞∑
n=0

λ
n
sn(A)pwpnz

n+1,
∞∑
n=0

λ
n
zn

〉
H2

= (1− |λ|2)
∞∑
n=0

sn(A)pwpnλ
n
λn+1

= λ(1− |λ|2)
∞∑
n=0

sn(A)pwpn |λ|
2n ,

i.e.,

T̃Λ(λ) = λ(1− |λ|2)
∞∑
n=0

sn(A))pwpn |λ|
2n

for all λ ∈ D. In particular,

T̃Λ(
√
t) =

√
t(1− t)

∞∑
n=0

sn(A)pwpnt
n,

or
T̃Λ(
√
t)√
t

= (1− t)
∞∑
n=0

sn(A)pwpnt
n (4.1)

for each t ∈ (0, 1) .
Formula (4.1), in particular, shows that Abel convergence of the series

∑∞
n=0 sn(A)pwpn

is equivalent to the assertion that T̃Λ(
√
t)√
t

= O(1− t) as t→ 1.

(i) Now, if A ∈ Swp , then the series
∑∞

n=0 sn(A)pwpn is convergent. Then by the
classical Abel theorem (see, for example, Hardy [5]) it is Abel convergent, that
is, a finite limit lim

t→1

∑∞
n=0 sn(A)pwpnt

n exists. Therefore, it follows from (4.1) that

T̃Λ(
√
t)√
t

= O(1− t) as t→ 1.

(ii) Conversely, if the conditions in (ii) of the theorem are satisfied, then it follows
again from the formula (4.1) that the series

∑∞
n=0 sn(A)pwpn is summable by the
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Abel method. On the other hand, since sn(A)wn = O
(
n−

1
p

)
as n → ∞, obvi-

ously, (sn(A)wn)p = O( 1
n
) as n→∞. Then, by applying the classical Tauberian

theorem of Hardy and Littlewood [5] we deduce that the series
∑∞

n=0 sn(A)pwpn
is convergent, which implies that A belongs to the class Swp . The proof of the
theorem is completed. �
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