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FUNCTIONS—FROM WENDEL’S AND RELATED
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MONOTONIC FUNCTIONS
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Abstract. In the survey paper, along one of several main lines of bounding
the ratio of two gamma functions, the authors retrospect and analyse Wen-
del’s double inequality, Kazarinoff’s refinement of Wallis’ formula, Watson’s
monotonicity, Gautschi’s double inequality, Kershaw’s first double inequality,
and the (logarithmically) complete monotonicity results of functions involving
ratios of two gamma or q-gamma functions obtained by Bustoz, Ismail, Lorch,
Muldoon, and other mathematicians.

1. Preliminaries

In this paper, we need some definitions, notions, and notations below.

1.1. The gamma and q-gamma functions. It is well known that the classical
Euler’s gamma function may be defined for Rez > 0 by

Γ(z) =

∫ ∞
0

tz−1e−tdt.

The logarithmic derivative of Γ(z), denoted by ψ(z) = Γ′(z)
Γ(z)

, is called psi or

digamma function, and ψ(k)(z) for k ∈ N are called polygamma functions. It is
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common knowledge that special functions Γ(z), ψ(z) and ψ(k)(z) for k ∈ N are
fundamental and important and have much extensive applications in mathemat-
ical sciences.

The q-analogues of Γ and ψ are defined [4, pp. 493–496] for x > 0 by

Γq(x) =


(1− q)1−x

∞∏
i=0

1− qi+1

1− qi+x
, 0 < q < 1

(q − 1)1−xq(
x
2)
∞∏
i=0

1− q−(i+1)

1− q−(i+x)
, q > 1

(1.1)

and

ψq(x) =
Γ′q(x)

Γq(x)
= − ln(1− q) + ln q

∞∑
k=0

qk+x

1− qk+x
(1.2)

= − ln(1− q)−
∫ ∞

0

e−xt

1− e−t
dµq(t) (1.3)

for 0 < q < 1, where dµq(t) is a discrete measure with positive masses − ln q at
the positive points −k ln q for k ∈ N, more accurately,

µq(t) =

− ln q
∞∑
k=1

δ(t+ k ln q), 0 < q < 1,

t, q = 1,

where δ denotes the Dirac delta function. See [22, p. 311]. The q-gamma function
Γq(z) meets

lim
q→1+

Γq(z) = lim
q→1−

Γq(z) = Γ(z)

and

Γq(x) = q(
x−1
2 )Γ1/q(x).

1.2. Definition and properties of completely monotonic functions. A
function f is said to be completely monotonic on an interval I if f has derivatives
of all orders on I and 0 ≤ (−1)nf (n)(x) <∞ for x ∈ I and n ≥ 0.

The class of completely monotonic functions has the following basic properties.

Theorem 1.1 ([52, p. 161]). A necessary and sufficient condition that f(x) should
be completely monotonic for 0 < x <∞ is that

f(x) =

∫ ∞
0

e−xtdα(t), (1.4)

where α(t) is nondecreasing and the integral converges for 0 < x <∞.

Theorem 1.2 ([8, p. 83]). If f(x) is completely monotonic on I, g(x) ∈ I, and
g′(x) is completely monotonic on (0,∞), then f(g(x)) is completely monotonic
on (0,∞).
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1.3. The logarithmically completely monotonic functions. A positive and
k-times differentiable function f(x) is said to be k-log-convex (or k-log-concave,
respectively) with k ≥ 2 on an interval I if and only if [ln f(x)](k) exists and
[ln f(x)](k) ≥ 0 (or [ln f(x)](k) ≤ 0, respectively) on I.

A positive function f(x) is said to be logarithmically completely monotonic on
an interval I ⊆ R if it has derivatives of all orders on I and its logarithm ln f(x)
satisfies 0 ≤ (−1)k[ln f(x)](k) <∞ for k ∈ N on I.

The notion “logarithmically completely monotonic function” was first put for-
ward in [5] without an explicit definition. This terminology was explicitly recov-
ered in the preprints of [38, 41, 43]. It has been proved once and again in the
papers [7, 17, 38] that any logarithmically completely monotonic function on an
interval I must be completely monotonic on I. It was also pointed out in [7] that
logarithmically completely monotonic functions are the same as those studied by
Horn [20] under the name “infinitely divisible completely monotonic functions”.
For more information, please refer to [7], [45, pp. 2154–2155, Remark 8], [47,
pp. 41–42, Remark 4.7] and plenty of references therein.

Recently a new concept and terminology “completely monotonic degree” was
naturally introduced and initially studied in [16].

1.4. Outline of this paper. The history of bounding the ratio of two gamma
functions is longer than six decades since the paper [51] was published in 1948.

The motivations to bound the ratio of two gamma functions are diverse, in-
cluding, for example, establishment of asymptotic relation, refinement of Wallis’
formula, approximation of π, and some needs in statistics and other mathematical
sciences.

In this survey paper, along one of several main lines of bounding the ratio of
two gamma functions, we review and analyse Wendel’s double inequality, Kazari-
noff’s refinement of Wallis’ formula, Watson’s monotonicity, Gautschi’s double
inequality, Kershaw’s first double inequality, and the complete monotonicity and
logarithmically complete monotonicity results of functions involving ratios of two
gamma or q-gamma functions by Bustoz, Ismail, Lorch, Muldoon, and other
mathematicians.

2. Inequalities for bounding the ratio of two gamma functions

In this section, we look back and analyse some related inequalities for bounding
the ratio of two gamma functions.

2.1. Wendel’s double inequality. Our starting point is the paper [51], which
is the earliest one we can search out to the best of our ability.

In order to establish the classical asymptotic relation

lim
x→∞

Γ(x+ s)

xsΓ(x)
= 1 (2.1)

for real numbers s and x, J. G. Wendel [51] elegantly proved the double inequality(
x

x+ s

)1−s

≤ Γ(x+ s)

xsΓ(x)
≤ 1 (2.2)
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for 0 < s < 1 and x > 0.

Proof of (2.1) and (2.2) by Wendel. Let 0 < s < 1, f(t) = e−(1−s)tt(1−s)x+s−1,
g(t) = e−sttsx, p = p

p−1
= 1

1−s , and p = 1
s
. Applying Hölder’s inequality∫ ∞

0

|f(t)g(t)|dt ≤
[∫ ∞

0

|f(t)|pdt
]1/p[∫ ∞

0

|g(t)|qdt
]1/q

and

Γ(x+ 1) = xΓ(x) (2.3)

leads to

Γ(x+ s) =

∫ ∞
0

e−ttx+s−1dt ≤
(∫ ∞

0

e−ttxdt

)s(∫ ∞
0

e−ttx−1dt

)1−s

= [Γ(x+ 1)]s[Γ(x)]1−s = xsΓ(x). (2.4)

Replacing s by 1− s in (2.4) results in Γ(x + 1− s) ≤ x1−sΓ(x), from which we
obtain

Γ(x+ 1) ≤ (x+ s)1−sΓ(x+ s), (2.5)

by substituting x+ s for x. Combining (2.4) and (2.5) yields

x

(x+ s)1−sΓ(x) ≤ Γ(x+ s) ≤ xsΓ(x).

Therefore, the inequality (2.2) follows.
Letting x tend to infinity in (2.2) yields (2.1) for 0 < s < 1. The extension to

all real s is immediate on repeated application of (2.3). �

Remark 2.1. The inequality (2.2) can be rewritten for 0 < s < 1 and x > 0 as

(x+ s)s−1 Γ(x+ 1)

Γ(x+ s)
≤ 1 ≤ xs−1 Γ(x+ 1)

Γ(x+ s)
.

Utilizing the relation (2.1) results in

lim
x→∞

(x+ s)s−1 Γ(x+ 1)

Γ(x+ s)
= lim

x→∞
xs−1 Γ(x+ 1)

Γ(x+ s)
= 1 (2.6)

which hints us that the functions

(x+ s)s−1 Γ(x+ 1)

Γ(x+ s)
and xs−1 Γ(x+ 1)

Γ(x+ s)
, (2.7)

or

(x+ s)

[
Γ(x+ 1)

Γ(x+ s)

]1/(s−1)

and x

[
Γ(x+ 1)

Γ(x+ s)

]1/(s−1)

,

are possibly increasing and decreasing in x respectively.

Remark 2.2. In [1, p. 257, 6.1.46], the limit

lim
x→∞

[
xb−a

Γ(x+ a)

Γ(x+ b)

]
= 1 (2.8)
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for real numbers a and b was listed. Since

xt−s
Γ(x+ s)

Γ(x+ t)
=

Γ(x+ s)

xsΓ(x)
· x

tΓ(x)

Γ(x+ t)
,

the limits (2.1) and (2.8) are equivalent to each other. Hence, the limit (2.8)
should be presumedly called Wendel’s limit in the literature.

Remark 2.3. Due to unknown reasons, Wendel’s paper [51] was seemingly ne-
glected by nearly all mathematicians for more than fifty years, until it was men-
tioned in [31], to the best of our knowledge.

2.2. Kazarinoff’s double inequality. Stimulated by

1√
π(n+ 1/2)

<
(2n− 1)!!

(2n)!!
<

1√
πn

, n ∈ N, (2.9)

one form of the celebrated formula of John Wallis, which had been quoted for
more than a century before 1950s by writers of textbooks, D. K. Kazarinoff proved
in [23] that the sequence θ(n) defined by

(2n− 1)!!

(2n)!!
=

1√
π[n+ θ(n)]

(2.10)

satisfies 1
4
< θ(n) < 1

2
for n ∈ N, that is,

1√
π(n+ 1/2)

<
(2n− 1)!!

(2n)!!
<

1√
π(n+ 1/4)

, n ∈ N. (2.11)

Remark 2.4. It was said in [23] that it is unquestionable that inequalities similar
to (2.11) can be improved indefinitely but at a sacrifice of simplicity, which is
why the inequality (2.9) had survived so long.

Remark 2.5. Kazarinoff’s proof of (2.11) is based upon the property

[lnφ(t)]′′ − {[lnφ(t)]′}2 > 0, (2.12)

where

φ(t) =

∫ π/2

0

sint xdx =

√
π

2
· Γ((t+ 1)/2)

Γ((t+ 2)/2)

for −1 < t < ∞. The inequality (2.12) was proved by making use of Legendre’s
formula

ψ(x) = −γ +

∫ 1

0

tx−1 − 1

t− 1
dt

for x > 0 and by estimating the integrals∫ 1

0

xt

1 + x
dx and

∫ 1

0

xt lnx

1 + x
dx,

where γ = 0.57721566 · · · is Euler-Mascheroni’s constant. Since (2.12) is equiv-
alent to the statement that the reciprocal of φ(t) has an everywhere negative
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second derivative, therefore φ(t) for any positive t is less than the harmonic mean
of φ(t− 1) and φ(t+ 1), this implies

Γ((t+ 1)/2)

Γ((t+ 2)/2)
<

2√
2t+ 1

, t > −1

2
. (2.13)

As a subcase of this result, the right-hand side inequality in (2.11) is established.

Remark 2.6. Replacing t by 2t in (2.13) and rearranging yield

Γ(t+ 1)

Γ(t+ 1/2)
>

√
t+

1

4
⇐⇒

(
t+

1

4

)1/2−1
Γ(t+ 1)

Γ(t+ 1/2)
> 1

for t > −1
4
. From (2.1), it follows that

lim
x→∞

[(
t+

1

4

)1/2−1
Γ(t+ 1)

Γ(t+ 1/2)

]
= 1.

This suggests that the function(
t+

1

4

)1/2−1
Γ(t+ 1)

Γ(t+ 1/2)
or

(
t+

1

4

)[
Γ(t+ 1)

Γ(t+ 1/2)

]1/(1/2−1)

is perhaps decreasing, more strongly, logarithmically completely monotonic.

Remark 2.7. The inequality (2.12) may be reorganized as

ψ′
(
t+ 1

2

)
− ψ′

(
t+ 2

2

)
>

[
ψ

(
t+ 1

2

)
− ψ

(
t+ 2

2

)]2

for t > −1. This inequality is a special case of the complete monotonicity of a
function involving divided differences of the di- and tri-gamma functions, which
may be recited as the following theorem.

Theorem 2.8 ([15, Theorem 1] and [39, Theorem 1.2]). Let s and t be real
numbers and α = min{s, t}. Then the function

∆s,t(x) =


[
ψ(x+ t)− ψ(x+ s)

t− s

]2

+
ψ′(x+ t)− ψ′(x+ s)

t− s
, s 6= t

[ψ′(x+ s)]2 + ψ′′(x+ s), s = t

(2.14)

for |t − s| < 1 and −∆s,t(x) for |t − s| > 1 are completely monotonic in x ∈
(−α,∞).

2.3. Watson’s monotonicity. In 1959, motivated by the result in [23] men-
tioned in Section 2.2, G. N. Watson [49] observed that

1

x
· [Γ(x+ 1)]2

[Γ(x+ 1/2)]2
= 2F1

(
−1

2
,−1

2
;x; 1

)
= 1 +

1

4x
+

1

32x(x+ 1)
+
∞∑
r=3

[(−1/2) · (1/2) · (3/2) · (r − 3/2)]2

r!x(x+ 1) · · · (x+ r − 1)
(2.15)
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for x > −1
2
, which implies that the much general function

θ(x) =

[
Γ(x+ 1)

Γ(x+ 1/2)

]2

− x (2.16)

for x > −1
2
, whose special case is the sequence θ(n) for n ∈ N defined in (2.10),

is decreasing and satisfies

lim
x→∞

θ(x) =
1

4
and lim

x→(−1/2)+
θ(x) =

1

2
.

This implies apparently the sharp inequalities

1

4
< θ(x) <

1

2
(2.17)

for x > −1
2
,√

x+
1

4
<

Γ(x+ 1)

Γ(x+ 1/2)
≤

√
x+

1

4
+

[
Γ(3/4)

Γ(1/4)

]2

=
√
x+ 0.36423 · · · (2.18)

for x ≥ −1
4
, and, by using Wallis cosine formula in [50],

1√
π(n+ 4/π − 1)

≤ (2n− 1)!!

(2n)!!
<

1√
π(n+ 1/4)

, n ∈ N. (2.19)

Remark 2.9. In [49], an alternative proof of the double inequality (2.17) was also
provided.

Remark 2.10. It is clear that the inequality (2.18) extends and improves (2.2) for
s = 1

2
.

Remark 2.11. The left-hand side inequality in (2.19) is better than the corre-
sponding one in (2.11).

Remark 2.12. The formula (2.15) implies complete monotonicity of the function
θ(x) defined by (2.16) on

(
−1

2
,∞
)
.

2.4. Gautschi’s double inequalities. The first result of the paper [13] was the
double inequality

(xp + 2)1/p − x
2

< ex
p

∫ ∞
x

e−t
p

dt ≤ cp

[(
xp +

1

cp

)1/p

− x
]

(2.20)

for x ≥ 0 and p > 1, where

cp =

[
Γ

(
1 +

1

p

)]p/(p−1)

or cp = 1. By an easy transformation, the inequality (2.20) was written in terms
of the complementary gamma function

Γ(a, x) =

∫ ∞
x

e−tta−1dt
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as
p[(x+ 2)1/p − x1/p]

2
< exΓ

(
1

p
, x

)
≤ pcp

[(
x+

1

cp

)1/p

− x1/p

]
(2.21)

for x ≥ 0 and p > 1. In particular, if letting p→∞, the double inequality

1

2
ln

(
1 +

2

x

)
≤ exE1(x) ≤ ln

(
1 +

1

x

)
for the exponential integral E1(x) = Γ(0, x) with x > 0 was derived from (2.21),
in which the bounds exhibit the logarithmic singularity of E1(x) at x = 0. As
a direct consequence of the inequality (2.21) for p = 1

s
, x = 0, and cp = 1, the

following simple inequality for the gamma function was deduced:

2s−1 ≤ Γ(1 + s) ≤ 1, 0 ≤ s ≤ 1. (2.22)

The second result of the paper [13] was a sharper and more general inequality

e(s−1)ψ(n+1) ≤ Γ(n+ s)

Γ(n+ 1)
≤ ns−1 (2.23)

for 0 ≤ s ≤ 1 and n ∈ N than (2.22). This inequality was obtained by proving
that the function

f(s) =
1

1− s
ln

Γ(n+ s)

Γ(n+ 1)

is monotonically decreasing for 0 ≤ s < 1. Since ψ(n) < lnn, it was derived from
the inequality (2.23) that(

1

n+ 1

)1−s

≤ Γ(n+ s)

Γ(n+ 1)
≤
(

1

n

)1−s

, 0 ≤ s ≤ 1, (2.24)

which was also rewritten as

n!(n+ 1)s−1

(s+ 1)(s+ 2) · · · (s+ n− 1)
≤ Γ(1 + s) ≤ (n− 1)!ns

(s+ 1)(s+ 2) · · · (s+ n− 1)
, (2.25)

and so a simple proof of Euler’s product formula in the segment 0 ≤ s ≤ 1 was
shown by letting n→∞ in (2.25).

Remark 2.13. The double inequalities (2.23) and (2.24) can be rearranged as

n1−s ≤ Γ(n+ 1)

Γ(n+ s)
≤ exp((1− s)ψ(n+ 1)) (2.26)

and

n1−s ≤ Γ(n+ 1)

Γ(n+ s)
≤ (n+ 1)1−s (2.27)

for n ∈ N and 0 ≤ s ≤ 1. Furthermore, the inequality (2.27) can be rewritten as

n1−sΓ(n+ s)

Γ(n+ 1)
≤ 1 ≤ (n+ 1)1−sΓ(n+ s)

Γ(n+ 1)
(2.28)

or

n

[
Γ(n+ s)

Γ(n+ 1)

]1/(1−s)

≤ 1 ≤ (n+ 1)

[
Γ(n+ s)

Γ(n+ 1)

]1/(1−s)

. (2.29)
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This supplies us some possible clues to see that the sequences at the very ends of
the inequalities (2.28) and (2.29) are monotonic.

Remark 2.14. The left-hand side inequality in (2.2) and the upper bound in (2.26)
have the following relations:

(1) For 0 ≤ s ≤ 1
2

and n ∈ N,

(n+ s)1−s ≤ exp((1− s)ψ(n+ 1)); (2.30)

(2) For s > e1−γ − 1 = 0.52620 · · · , the inequality (2.30) reverses.

These relations can be derived from the decreasing monotonicity of the function

Q(x) = eψ(x+1) − x
on (−1,∞) and the limit

lim
x→∞

Q(x) =
1

2
.

Hence, Wendel’s double inequality (2.2) and Gautschi’s first double inequal-
ity (2.26) are not included each other, but both of them contain Gautschi’s second
double inequality (2.27).

Remark 2.15. In reviews on the paper [13] by Mathematical Reviews and Zentral-
blatt MATH, there is no a word to comment on inequalities in (2.26) and (2.27).
However, these two double inequalities later became a major source and origin of
a large amount of study on bounding the ratio of two gamma functions.

2.5. Kershaw’s first double inequality. Inspired by the inequality (2.24),
among other things, D. Kershaw presented in [24] the following double inequality(

x+
s

2

)1−s

<
Γ(x+ 1)

Γ(x+ s)
<

[
x− 1

2
+

(
s+

1

4

)1/2]1−s

(2.31)

for 0 < s < 1 and x > 0. In the literature, it is called as Kershaw’s first double
inequality for the ratio of two gamma functions.

Kershaw’s proof of (2.31). Define the function gβ by

gβ(x) =
Γ(x+ 1)

Γ(x+ s)
(x+ β)s−1

for x > 0 and 0 < s < 1, where the parameter β is to be determined. It is not
difficult to show, with the aid of (2.1), that limx→∞ gβ(x) = 1. Define

G(x) =
gβ(x)

gβ(x+ 1)
=
x+ s

x+ 1

(
x+ β + 1

x+ β

)1−s

.

Then
G′(x)

G(x)
=

(1− s)[(β2 + β − s) + (2β − s)x]

(x+ 1)(x+ s)(x+ β)(x+ β + 1)
.

This will leads to

(1) if β = s
2
, then G′(x) < 0 for x > 0;

(2) if β = −1
2

+
(
s+ 1

4

)1/2
, then G′(x) > 0 for x > 0.

Further by standard arguments, the double inequality (2.31) follows. �
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Remark 2.16. It is easy to see that the inequality (2.31) refines and extends
inequalities (2.2) and (2.27).

Remark 2.17. The inequality (2.31) may be rearranged as[
x− 1

2
+

(
s+

1

4

)1/2]s−1
Γ(x+ 1)

Γ(x+ s)
< 1 <

(
x+

s

2

)s−1
Γ(x+ 1)

Γ(x+ s)

for x > 0 and 0 < s < 1. By virtue of (2.1) or (2.8), it is easy to see that

lim
x→∞

[
x− 1

2
+

(
s+

1

4

)1/2]s−1
Γ(x+ 1)

Γ(x+ s)
= lim

x→∞

(
x+

s

2

)s−1
Γ(x+ 1)

Γ(x+ s)
= 1.

This suggests us the monotonicity, more strongly, the logarithmically complete
monotonicity, of the functions[

x− 1

2
+

(
s+

1

4

)1/2]s−1
Γ(x+ 1)

Γ(x+ s)
and

(
x+

s

2

)s−1
Γ(x+ 1)

Γ(x+ s)
or [

x− 1

2
+

(
s+

1

4

)1/2][
Γ(x+ 1)

Γ(x+ s)

]1/(s−1)

and

(
x+

s

2

)[
Γ(x+ 1)

Γ(x+ s)

]1/(s−1)

.

Remark 2.18. Some more inequalities with the type of (2.31) were constructed
and applied in [25, 28, 53] and related references therein.

3. Some completely monotonic functions involving ratios of two
gamma or q-gamma functions

In this section, we review and analyse complete monotonicity of functions in-
volving ratios of two gamma or q-gamma functions.

3.1. Ismail-Lorch-Muldoon’s monotonicity results. Motivated by work on
inequalities for the ratio of two gamma functions in [24, 25, 28] and [53, p. 155],
M. E. H. Ismail, L. Lorch and M. E. Muldoon pointed out at the beginning of [21]
that simple monotonicity of the ratio of two gamma functions are useful.

In [33, pp. 118–119], the asymptotic formula

zb−a
Γ(z + a)

Γ(z + b)
∼ 1 +

(a− b)(a+ b− 1)

2z
+ · · · (3.1)

as z → ∞ along any curve joining z = 0 and z = ∞ is listed, where z 6=
−a,−a−1, . . . and z 6= −b,−b−1, . . . . Suggested by (3.1), the following complete
monotonicity was proved in [21, Theorem 2.4]: Let a > b ≥ 0, a+ b ≥ 1 and

h(x) = ln

[
xa−b

Γ(x+ b)

Γ(x+ a)

]
.

Then both h′(x) and

xb−a
Γ(x+ a)

Γ(x+ b)
(3.2)

are completely monotonic on (0,∞); The results fail when a + b < 1 replaces
a+ b ≥ 1 in the hypotheses.
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Meanwhile, the following q-analogue of [21, Theorem 2.4] was also provided
in [21, Theorem 2.5]: Let a > b ≥ 0, a+ b ≥ 1, q > 0, q 6= 1 and

hq(x) = ln

[
|1− qx|a−b Γq(x+ b)

Γq(x+ a)

]
.

Then h′q(x) is completely monotonic on (0,∞); So is the function

|1− qx|b−aΓq(x+ a)

Γq(x+ b)
; (3.3)

The result fails if a+ b < 1.

Remark 3.1. The proof of [21, Theorem 2.4] can be outlined as follows: Using
the integral representation

ψ(z) = −γ +

∫ ∞
0

e−t − e−tz

1− e−t
dt (3.4)

for Rez > 0 yields

h′(x) =

∫ ∞
0

[
e−at − e−bt

1− e−t
+ a− b

]
e−xtdt. (3.5)

It was obtained in [21, Lemma 4.1] that if 0 ≤ b < a, a+b ≥ 1, and b2+(a−1)2 6= 0,
then

wb − wa

1− w
< a− b, 0 < w < 1; (3.6)

the inequality (3.6) fails if the condition a+ b ≥ 1 is replaced by a+ b < 1. Com-
bining (3.5) and (3.6) with Theorem 1.2 on page 133 results in [21, Theorem 2.4].

The proof of [21, Theorem 2.5] was fulfilled by using the formula (1.2), the
inequality (3.6), Theorem 1.1 on page 133, and Theorem 1.2 on page 133.

Remark 3.2. We remark that [21, Theorem 2.4 and Theorem 2.5] can be restated
using the terminology “logarithmically completely monotonic function” as fol-
lows: The functions defined by (3.2) and (3.3) are logarithmically completely
monotonic on (0,∞) if and only if a+ b ≥ 1 for a > b ≥ 0, q > 0 and q 6= 1.

Remark 3.3. The function
e−at − e−bt

1− e−t
(3.7)

for t ∈ (−∞,∞) in (3.5) has been researched and applied in [19] and closely
related references therein. See also Section 4.1.

3.2. Bustoz-Ismail’s monotonicity results. In [9], it was noticed that in-
equalities like (2.17) are “immediate consequences of the complete monotonicity
of certain functions. Indeed, one should investigate monotonicity properties of
functions involving quotients of gamma functions and as a by-product derive in-
equalities of the aforementioned type. This approach is simpler and yields more
general results.”

In [9], it was revealed that
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(1) the function

1

(x+ c)1/2
· Γ(x+ 1)

Γ(x+ 1/2)
, x > max

{
−1

2
,−c

}
(3.8)

is completely monotonic on (−c,∞) if c ≤ 1
4
, so is the reciprocal of (3.8)

on
[
−1

2
,∞
)

if c ≥ 1
2
; see [9, Theorem 1];

(2) the function

(x+ c)a−b
Γ(x+ b)

Γ(x+ a)
(3.9)

for 1 ≥ b − a > 0 is completely monotonic on (max{−a,−c},∞) if c ≤
a+b−1

2
, so is the reciprocal of (3.9) on (max{−a,−c},∞) if c ≥ a; see [9,

Theorem 3];
(3) the function

Γ(x+ 1)

Γ(x+ s)

(
x+

s

2

)s−1

(3.10)

for 0 ≤ s ≤ 1 is completely monotonic on (0,∞); when 0 < s < 1, it
satisfies (−1)nf (n)(x) > 0 for x > 0; see [9, Theorem 7];

(4) the function (
x− 1

2
+

√
s+

1

4

)1−s
Γ(x+ s)

Γ(x+ 1)
(3.11)

for 0 < s < 1 is strictly decreasing on (0,∞); see [9, Theorem 8].

Remark 3.4. A special case of Theorem 1.2 says that the function exp(−h(x))
is completely monotonic on an interval I if h′(x) is completely monotonic on I.
This was iterated as [9, Lemma 2.1].

In [12, p. 15 and p. 20], the following integral representation was listed: For
Rez > 0,

ψ

(
1

2
+
z

2

)
− ψ

(
z

2

)
= 2

∫ ∞
0

e−zt

1 + e−t
dt. (3.12)

The formula (3.12) and [9, Lemma 2.1] are basic tools to prove [9, Theorem 1].

Remark 3.5. The basic tools to prove [9, Theorem 3] also include the formula (3.4)
and the non-negativeness of the functions

ω(t) = 2(b− a) sinh
t

2
− 2 sinh

(b− a)t

2
(3.13)

for b > a and t ≥ 0 and

(a− b)(1− e−t) + e(c−a)t − e(c−b)t (3.14)

for b > a, c ≥ a and t ≥ 0. As mentioned in Remark 3.3, the positivity of the
functions (3.13) and (3.14) for t > 0 can be deduced from monotonic properties of
the function (3.7) or (4.1), studied in [19, Theorems 2.1–2.3], and closely related
references therein. See also Section 4.1.
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Remark 3.6. The proof of the complete monotonicity of the function (3.10) in [9,
Theorem 7] relies on the series representation

ψ(x) = −γ − 1

x
+
∞∑
n=1

(
1

n
− 1

x+ n

)
(3.15)

in [12, p. 15], the positivity of the function

(1− s) sinh t− sinh[(1− s)t] (3.16)

on (0,∞) for 0 < s < 1, and Theorem 1.2 applied to f(x) = e−x, as mentioned
in Remark 3.4.

The proof of the decreasing monotonicity of the function (3.11) just used the
formula (3.15) and [9, Lemma 2.1] stated in Remark 3.4.

Remark 3.7. It is clear that the function (3.16) is a special case of (3.13).

Remark 3.8. In fact, the logarithmically complete monotonicity of the func-
tions (3.8), (3.9), (3.10) and their reciprocals was proved in [9].

3.3. Ismail-Muldoon’s monotonicity results. It was claimed in [22, p. 310]
that “Many inequalities for special functions follow from monotonicity properties.
Often such inequalities are special cases of the complete monotonicity of related
special functions. For example, an inequality of the form f(x) ≥ g(x) for x ∈
[a,∞) with equality if and only if x = a may be a disguised form of the complete

monotonicity of g(ϕ(x))
f(ϕ(x))

where φ(x) is a nondecreasing function on (a,∞) and
g(ϕ(a))
f(ϕ(a))

= 1”.

Among other things, suggested by [9, Theorem 3] mentioned on page 143,
the following complete monotonicity was presented in [22, Theorem 2.5]: Let
a < b ≤ a+ 1 and

g(x) =

(
1− qx+c

1− q

)a−b
Γq(x+ b)

Γq(x+ a)
.

Then −[ln g(x)]′ is completely monotonic on (−c,∞) if 0 ≤ c ≤ a+b−1
2

and
[ln g(x)]′ is completely monotonic on (−a,∞) if c ≥ a ≥ 0; Neither is completely
monotonic for a+b−1

2
< c < a.

As a supplement of [22, Theorem 2.5], it was proved separately in [22, Theo-
rem 2.6] that the first derivative of the function

ln

[(
1− qx

1− q

)a
Γq(x)

Γq(x+ a)

]
, 0 < q < 1

is completely monotonic on (0,∞) for a ≥ 1.

Remark 3.9. The proof of [22, Theorem 2.5] depends on deriving

d

dx
ln g(x) = −

∫ ∞
0

e−xt
[
e−bt − e−at

1− e−t
+ (b− a)e−ct

]
dµq(t)

and on [22, Lemma 1.2]: If 0 < α < 1, then

αe(α−1)t <
sinh(αt)

sinh t
< α, t > 0. (3.17)
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The inequalities become equalities when α = 1 and they are reversed when α > 1.
The proof of [22, Theorem 2.6] is similar to that of [22, Theorem 2.5].

Remark 3.10. It is clear that Theorem 2.5 and Theorem 2.6 in [22] can be rewrit-
ten using the phrase “logarithmically completely monotonic function”.

Remark 3.11. The inequality (3.17) is also a consequence of the monotonicity of
the function (4.1) obtained in [19, Theorems 2.1–2.3] and related references listed
therein.

Remark 3.12. From [22, Theorem 2.5], the following inequality was derived in [22,
Theorem 3.3]: For 0 < q ≤ 1, the inequality

Γq(x+ 1)

Γq(x+ s)
>

(
1− qx+s/2

1− q

)1−s

(3.18)

holds for 0 < s < 1 and x > − s
2
. In [3], it was pointed out that the inequality

Γq(x+ 1)

Γq(x+ s)
<

(
1− qx+s

1− q

)1−s

, s ∈ (0, 1) (3.19)

is also valid for x > −s. As refinements of (3.18) and (3.19), the following double
inequality was presented in [3, Theorem 3.1]: For real numbers 0 < q 6= 1 and
s ∈ (0, 1), the double inequality[

1− qx+α(q,s)

1− q

]1−s

<
Γq(x+ 1)

Γq(x+ s)
<

[
1− qx+β(q,s)

1− q

]1−s

, x > 0

holds with the best possible values

α(q, s) =


ln[(qs − q)/(1− s)(1− q)]

ln q
, 0 < q < 1

s

2
, q > 1

and

β(q, s) =
ln
{

1− (1− q)[Γq(s)]1/(s−1)
}

ln q
.

As a direct consequence, it was derived in [3, Corollary 3.2] that the inequality

[x+ a(s)]1−s ≤ Γ(x+ 1)

Γ(x+ s)
≤ [x+ b(s)]1−s (3.20)

holds for s ∈ (0, 1) and x ≥ 0 with the best possible values a(s) = s
2

and

b(s) = [Γ(s)]1/(s−1).
The inequality (3.20) was ever claimed in [26, p. 248], but with a wrong proof.

It was also generalized and extended in [11, Theorem 3].

4. Some logarithmically completely monotonic functions
involving ratios of two gamma or q-gamma functions

In this section, we look back and analyse necessary and sufficient conditions
for functions involving ratios of two gamma or q-gamma functions to be logarith-
mically completely monotonic.
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4.1. Some properties of a function involving exponential functions. For
real numbers α and β with α 6= β and (α, β) /∈ {(0, 1), (1, 0)}, let

qα,β(t) =


e−αt − e−βt

1− e−t
, t 6= 0;

β − α, t = 0.
(4.1)

As seen in Section 3, it is easy to have an idea that the function qα,β(t) or its
variations play indispensable roles in the proofs of [9, Theorem 3], [9, Theorem 7],
[21, Theorem 2.4], [21, Theorem 2.5], [22, Theorem 2.5] and [22, Theorem 2.6].

In order to bound ratios of two gamma or q-gamma functions, necessary and
sufficient conditions for qα,β(t) to be either monotonic or logarithmically convex
were established in [18, 19, 37, 44] little by little.

Proposition 4.1 ([19, Theorems 2.1–2.3]). Let t, α and β with α 6= β and
(α, β) /∈ {(0, 1), (1, 0)} be real numbers. Then

(1) the function qα,β(t) increases on (0,∞) if and only if

(α, β) ∈ D1(α, β)

, {(α, β) : (β − α)(1− α− β) ≥ 0, (β − α)(|α− β| − α− β) ≥ 0}; (4.2)

(2) the function qα,β(t) decreases on (0,∞) if and only if

(α, β) ∈ D2(α, β)

, {(α, β) : (β − α)(1− α− β) ≤ 0, (β − α)(|α− β| − α− β) ≤ 0}; (4.3)

(3) the function qα,β(t) increases on (−∞, 0) if and only if (β−α)(1−α−β) ≥
0 and (β − α)(2− |α− β| − α− β) ≥ 0;

(4) the function qα,β(t) decreases on (−∞, 0) if and only if (β−α)(1−α−β) ≤
0 and (β − α)(2− |α− β| − α− β) ≤ 0;

(5) the function qα,β(t) increases on (−∞,∞) if and only if (β−α)(|α−β|−
α− β) ≥ 0 and (β − α)(2− |α− β| − α− β) ≥ 0;

(6) the function qα,β(t) decreases on (−∞,∞) if and only if (β−α)(|α−β|−
α− β) ≤ 0 and (β − α)(2− |α− β| − α− β) ≤ 0.

Proposition 4.2 ([19, Theorem 3.1] and [44, Lemma 1]). The function qα,β(t)
on (−∞,∞) is logarithmically convex if β−α > 1 and logarithmically concave if
0 < β − α < 1.

Proposition 4.3 ([37, Theorem 1.1]). If 1 > β − α > 0, then qα,β(u) is 3-log-
convex on (0,∞) and 3-log-concave on (−∞, 0); If β − α > 1, then qα,β(u) is
3-log-concave on (0,∞) and 3-log-convex on (−∞, 0).

Proposition 4.4 ([18]). Let λ ∈ R. If β−α > 1, then the function qα,β(t)qα,β(λ−
t) is increasing on

(
λ
2
,∞
)

and decreasing on
(
−∞, λ

2

)
; if 0 < β − α < 1, it is

decreasing on
(
λ
2
,∞
)

and increasing on
(
−∞, λ

2

)
.

Remark 4.5. By noticing that the function qα,β(t) can be rewritten as

qα,β(t) =
sinh[(β − α)t/2]

sinh(t/2)
exp

(1− α− β)t

2
,
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it is easy to see that the inequality (3.6), the non-negativeness of the func-
tions (3.13) and (3.14), the positivity of the function (3.16) and the inequal-
ity (3.17) are at all special cases of the monotonicity of the function qα,β(t) on
(0,∞).

4.2. Necessary and sufficient conditions related to the ratio of two
gamma functions. In this section, we survey necessary and sufficient conditions
for some functions involving the ratio of two gamma functions to be logarithmi-
cally completely monotonic.

4.2.1. The logarithmically complete monotonicity of the function

ha(x) =
(x+ a)1−aΓ(x+ a)

xΓ(x)
=

(x+ a)1−aΓ(x+ a)

Γ(x+ 1)

for x > 0 and a > 0 and the reciprocal of the first function in (2.7) were considered
in [46].

Theorem 4.6 ([46, Theorem 1.2]). The function ha(x) has the following proper-
ties:

(1) The function ha(x) is logarithmically completely monotonic on (0,∞) if
0 < a < 1;

(2) The function [ha(x)]−1 is logarithmically completely monotonic on (0,∞)
if a > 1;

(3) For any a > 0,

lim
x→0+

ha(x) =
Γ(a+ 1)

aa
and lim

x→∞
ha(x) = 1.

In order to obtain a refined upper bound in (2.2), the logarithmically complete

monotonicity of the function fa(x) = Γ(x+a)
xaΓ(x)

for x ∈ (0,∞) and a ∈ (0,∞),

the middle term in (2.2) or the reciprocal of the second function in (2.7), were
considered in [46, Theorem 1.3].

Theorem 4.7 ([46, Theorem 1.3]). The function fa(x) has the following proper-
ties:

(1) The function fa(x) is logarithmically completely monotonic on (0,∞) and
limx→0+ fa(x) =∞ if a > 1;

(2) The function [fa(x)]−1 is logarithmically completely monotonic on (0,∞)
and limx→0+ fa(x) = 0 if 0 < a < 1;

(3) limx→∞ fa(x) = 1 for any a ∈ (0,∞).

As a straightforward consequence of combining Theorem 4.6 and Theorem 4.7,
the following refinement of the upper bound in the inequality (2.2) was estab-
lished.
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Theorem 4.8 ([46, Theorem 1.4]). Let x ∈ (0,∞). If 0 < a < 1, then(
x

x+ a

)1−a

<
Γ(x+ a)

xaΓ(x)

<


Γ(a+ 1)

aa

(
x

x+ a

)1−a

≤ 1, 0 < x ≤ ap(a)

1− p(a)
,

1,
ap(a)

1− p(a)
< x <∞,

(4.4)

where

p(x) =


[

xx

Γ(x+ 1)

]1/(1−x)

, x 6= 1,

e−γ, x = 1.

(4.5)

If a > 1, the reversed inequality of (4.4) holds.

Remark 4.9. The logarithmically complete monotonicity of the function (4.5) and
its generalized form were researched in [36, Theorem 1.4], and [46, Theorem 1.5]
respectively.

4.2.2. In [27, Theorem 1], the functions

Γ(x+ t)

Γ(x+ s)

(
x+

s+ t− 1

2

)s−t
and

Γ(x+ s)

Γ(x+ t)
(x+ s)t−s (4.6)

for 0 < s < t < s+ 1 are proved to be logarithmically completely monotonic with
respect to x on (−s,∞).

Remark 4.10. We cannot understand why the authors of the paper [27] chose so
special functions in (4.6). More accurately, we have no idea why the constants
s+t−1

2
and s were chosen in the polynomial factors of the functions listed in (4.6).

Perhaps this can be interpreted by Theorems 4.12 and 4.16 below.

4.2.3. For real numbers a, b and c, denote ρ = min{a, b, c} and let

Ha,b;c(x) = (x+ c)b−a
Γ(x+ a)

Γ(x+ b)
(4.7)

for x ∈ (−ρ,∞).
By a recourse to the incomplete monotonicity of the function qα,β(t) defined

by (4.1), the following incomplete conclusions about the logarithmically complete
monotonicity of the function Ha,b;c(x) were procured in [34].

Theorem 4.11 ([34, Theorem 1]). Let a, b and c be real numbers and ρ =
min{a, b, c}. Then

(1) the function Ha,b;c(x) is logarithmically completely monotonic on (−ρ,∞)
if

(a, b; c) ∈
{

(a, b; c) : a+ b ≥ 1, c ≤ b < c+
1

2

}
∪
{

(a, b; c) : a > b ≥ c+
1

2

}
∪ {(a, b; c) : 2a+ 1 ≤ a+ b ≤ 1, a < c} ∪ {(a, b; c) : b− 1 ≤ a < b ≤ c}
\ {(a, b; c) : a = c+ 1, b = c},



BOUNDS FOR THE RATIO OF TWO GAMMA FUNCTIONS 149

(2) so is the function [Ha,b;c(x)]−1 if

(a, b; c) ∈
{

(a, b; c) : a+ b ≥ 1, c ≤ a < c+
1

2

}
∪
{

(a, b; c) : b > a ≥ c+
1

2

}
∪ {(a, b; c) : b < a ≤ c} ∪ {(a, b; c) : b+ 1 ≤ a, c ≤ a ≤ c+ 1}
∪ {(a, b; c) : b+ c+ 1 ≤ a+ b ≤ 1}
\ {(a, b; c) : a = c+ 1, b = c} \ {(a, b; c) : b = c+ 1, a = c}.

4.2.4. In [35, Theorem 1] and [39, Theorem 1.1], the function

δs,t(x) =


ψ(x+ t)− ψ(x+ s)

t− s
− 2x+ s+ t+ 1

2(x+ s)(x+ t)
, s 6= t

ψ′(x+ s)− 1

x+ s
− 1

2(x+ s)2
, s = t

(4.8)

for |t−s| < 1 and −δs,t(x) for |t−s| > 1 were proved to be completely monotonic
on the interval (−min{s, t},∞). By employing the formula (3.4), the monotonic-
ity of qα,β(t) on (0,∞) and the complete monotonicity of δs,t(x), necessary and
sufficient conditions are presented for the function Ha,b;c(x) to be logarithmically
completely monotonic on (−ρ,∞) in [42] as follows.

Theorem 4.12 ([42, Theorem 1]). Let a, b and c be real numbers and ρ =
min{a, b, c}. Then

(1) the function Ha,b;c(x) is logarithmically completely monotonic on (−ρ,∞)
if and only if

(a, b; c) ∈ D1(a, b; c) , {(a, b; c) : (b− a)(1− a− b+ 2c) ≥ 0}
∩ {(a, b; c) : (b− a)(|a− b| − a− b+ 2c) ≥ 0}
\ {(a, b; c) : a = c+ 1 = b+ 1} \ {(a, b; c) : b = c+ 1 = a+ 1};

(4.9)

(2) so is the function Hb,a;c(x) on (−ρ,∞) if and only if

(a, b; c) ∈ D2(a, b; c) , {(a, b; c) : (b− a)(1− a− b+ 2c) ≤ 0}
∩ {(a, b; c) : (b− a)(|a− b| − a− b+ 2c) ≤ 0}
\ {(a, b; c) : b = c+ 1 = a+ 1} \ {(a, b; c) : a = c+ 1 = b+ 1}.

(4.10)

Proof. In [1, p. 255, 6.1.1], it was listed that, for x > 0 and ω > 0,

1

xω
=

1

Γ(ω)

∫ ∞
0

tω−1e−xtdt. (4.11)

By virtue of (4.11) and (3.4), a straightforward calculation gives

[lnHa,b,c(x)]′ = −
∫ ∞

0

[qa−c,b−c(t) + (a− b)]e−(x+c)tdt,

and, for k ∈ N,

(−1)k[lnHa,b,c(x)](k) =

∫ ∞
0

[qa−c,b−c(t) + (a− b)]tk−1e−(x+c)tdt,
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where qa−c,b−c(t) is the function defined by (4.1). From qa−c,b−c(0) = b − a, it
is revealed that if qa−c,b−c(t) is increasing (or decreasing respectively) on (0,∞)
then qa−c,b−c(t) + (a − b) R 0 in t ∈ (0,∞) and (−1)k[lnHa,b,c(x)](k) R 0 in
x ∈ (−ρ,∞) for k ∈ N. Combining this with Proposition 4.1 demonstrates
that the function Ha,b,c(x) is logarithmically completely monotonic on (−ρ,∞) if
(a−c, b−c) ∈ D1(a−c, b−c) and that the function [Ha,b,c(x)]−1 is logarithmically
completely monotonic on (−ρ,∞) if (a − c, b − c) ∈ D2(a − c, b − c), where
D1(a− c, b− c) and D2(a− c, b− c) are defined by (4.2) and (4.3). The sufficiency
of Theorem 4.12 is proved.

If the function Ha,b,c(x) is logarithmically completely monotonic on (−ρ,∞),
then [lnHa,b,c(x)]′ ≤ 0, which is equivalent to

c ≥ b− a
ψ(x+ b)− ψ(x+ a)

− x , χa,b(x) (4.12)

for b > a on (−ρ,∞). Since limx→0+ ψ(x) = −∞, then limx→(−a)+ χa,b(x) = a ≤ c
for b > a. From the complete monotonicity of the function (4.8) for |t − s| < 1
and −δs,t(x) for |t − s| > 1 on the interval (−α,∞), where s and t are two real
numbers and α = min{s, t}, and limx→∞ δs,t(x) = 0, it is deduced that

c ≥ χa,b(x) ≥ 2(x+ a)(x+ b)

2x+ a+ b+ 1
− x→ a+ b− 1

2
> a (4.13)

for b− a > 1 and that

χa,b(x) ≤ 2(x+ a)(x+ b)

2x+ a+ b+ 1
− x→ a+ b− 1

2
< a (4.14)

for b − a < 1 as x tends to ∞. The necessity of Ha,b,c(x) being logarithmically
completely monotonic on (−ρ,∞) follows.

The proof of necessity of Hb,a,c(x) being logarithmically completely monotonic
on (−ρ,∞) is same as above. The necessity of Theorem 4.12 is proved. �

Remark 4.13. The limit (2.1) implies that limx→∞Ha,b;c(x) = 1 is valid for all
defined numbers a, b, c. Combining this with the logarithmically complete mono-
tonicity of Ha,b;c(x) yields that the inequality Ha,b;c(x) > 1 holds if (a, b; c) ∈
D1(a, b; c) and reverses if (a, b; c) ∈ D2(a, b; c), that is, the inequality

x+ λ <

[
Γ(x+ a)

Γ(x+ b)

]1/(a−b)

< x+ µ, b > a (4.15)

holds for x ∈ (−a,∞) if λ ≤ min
{
a, a+b−1

2

}
and µ ≥ max

{
a, a+b−1

2

}
, which is

equivalent to

min

{
a,
a+ b− 1

2

}
<

[
Γ(a)

Γ(b)

]1/(a−b)

< max

{
a,
a+ b− 1

2

}
, b > a > 0.

It is noted that a special case 0 < a < b < 1 of the inequality (4.15) was
derived in [10] from [11, Theorem 1] (see also [18, 44]). Moreover, by available of
the inequality (2.2) and others, the double inequalities

x+ a

x+ b
(x+ b)b−a ≤ Γ(x+ b)

Γ(x+ a)
≤ (x+ a)b−a, x > 0
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and

(x+ a)e−γ/(x+a) <

[
Γ(x+ b)

Γ(x+ a)

]1/(b−a)

< (x+ b)e−1/2(x+b), x ≥ 1

were proved in [48] to be valid for 0 < a < b < 1.
Maybe two references [6, 32] are also useful and worth being mentioned.

Remark 4.14. Since the complete monotonicity of the function (4.8) was not es-
tablished and the main result about the monotonicity of the function qα,β(t) is
incomplete at that time, necessary conditions for the function (4.7) to be loga-
rithmically completely monotonic was not discovered in [34, Theorem 1] and the
sufficient conditions in [34, Theorem 1] are imperfect.

Remark 4.15. It is not difficult to see that all (complete) monotonicity on func-
tions involving the ratio of two gamma functions showed in [9, 21] and related
results in [34, 46] are special cases of the above Theorem 4.12.

4.2.5. From Theorem 4.12 above, the following double inequalities for divided
differences of the psi and polygamma functions may be deduced immediately.

Theorem 4.16 ([42, Theorem 3]). Let b > a ≥ 0 and k ∈ N. Then the double
inequality

(k − 1)!

(x+ α)k
<

(−1)k−1
[
ψ(k−1)(x+ b)− ψ(k−1)(x+ a)

]
b− a

<
(k − 1)!

(x+ β)k
(4.16)

for x ∈ (−ρ,∞) holds if α ≥ max
{
a, a+b−1

2

}
and 0 ≤ β ≤ min

{
a, a+b−1

2

}
.

Remark 4.17. It is amazing that taking b− a = 1 in (4.16) leads to

ψ(k−1)(x+ a+ 1)− ψ(k−1)(x+ a) = (−1)k−1 (k − 1)!

(x+ a)k

for a ≥ 0, x > 0 and k ∈ N, which is equivalent to the recurrence formula

ψ(n)(z + 1)− ψ(n)(z) = (−1)nn!z−n−1, z > 0, n ≥ 0 (4.17)

listed in [1, p. 260, 6.4.6]. For related information, see [19, Remark 4.2].

Remark 4.18. For more information on results of divided differences for the psi
and polygamma functions, please refer to [15, 35, 39, 40] and related references
therein.

Remark 4.19. It is worthwhile to note that some errors and defects appeared
in [34] have been corrected and consummated in [42].

4.3. Necessary and sufficient conditions related to the ratio of two q-
gamma functions. The known results obtained by many mathematicians show
that most of properties relating to the ratio of two gamma functions may be
replanted to cases of the ratio of two q-gamma functions, as done in [21, Theo-
rem 2.5] and [22, Theorems 2.5 and 2.6].

Let a, b and c be real numbers, ρ = min{a, b, c}, and define

Hq;a,b;c(x) =

(
1− qx+c

1− q

)a−b
Γq(x+ b)

Γq(x+ a)
(4.18)
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for x ∈ (−ρ,∞), where Γq(x) is the q-gamma function defined by (1.1).
It is clear that the function (4.18) is a q-analogue of the function (4.7).
In virtue of the monotonicity of qα,β(t) on (0,∞) and the formula (1.3), a

q-analogue of Theorem 4.12 was procured.

Theorem 4.20 ([19, Theorem 4.3]). Let a, b and c be real numbers and ρ =
min{a, b, c}. Then the function Hq;a,b;c(x) is logarithmically completely monotonic
on (−ρ,∞) if and only if (a, b; c) ∈ D2(a, b; c), so is the function Hq;b,a;c(x) if and
only if (a, b; c) ∈ D1(a, b; c), where D1(a, b; c) and D2(a, b; c) are defined by (4.9)
and (4.10) respectively.

Remark 4.21. All complete monotonicity obtained in [21, Theorem 2.5] and [22,
Theorems 2.5 and 2.6] are special cases of Theorem 4.20.

Similar to Theorem 4.16, the following double inequality of divided differences
of the q-psi function ψq(x) for 0 < q < 1 may be derived from Theorem 4.20.

Theorem 4.22 ([19, Theorem 4.4]). Let b > a ≥ 0, k ∈ N and 0 < q < 1. Then,
for x ∈ (−ρ,∞), the inequality

(−1)k−1
[
ψ

(k−1)
q (x+ b)− ψ(k−1)

q (x+ a)
]

b− a
< (−1)k−1[ln(1− qx+c)](k) (4.19)

holds if 0 ≤ c ≤ min
{
a, a+b−1

2

}
and reverses if c ≥ max

{
a, a+b−1

2

}
. Consequently,

the identity

ψ(k−1)
q (x+ 1)− ψ(k−1)

q (x) = [ln(1− qx)](k) (4.20)

holds for x ∈ (0,∞) and k ∈ N.

Remark 4.23. Since identities (4.17) and (4.20) may be derived from inequali-
ties (4.16) and (4.19), we can regard inequalities (4.16) and (4.19) as generaliza-
tions of identities (4.17) and (4.20).

5. Logarithmically complete monotonicity for ratios of products
of the gamma and q-gamma functions

In this section, we would like to look back and analyse some (logarithmically)
complete monotonicity of ratios of products of the gamma and q-gamma func-
tions.

Let ai and bi for 1 ≤ i ≤ n be real numbers and ρn = min1≤i≤n{ai, bi}. For
x ∈ (−ρn,∞), define

ha,b;n(x) =
n∏
i=1

Γ(x+ ai)

Γ(x+ bi)
, (5.1)

where a and b denote (a1, a2, . . . , an) and (b1, b2, . . . , bn) respectively.

5.1. Complete monotonicity. In [9, Theorem 6], by virtue of the formula (3.4)
and a special case of Theorem 1.2 mentioned in Remark 3.4 above, the function

x 7→ Γ(x)Γ(x+ a+ b)

Γ(x+ a)Γ(x+ b)
(5.2)
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for a, b ≥ 0, a special cases of ha,b;n(x) for n = 2, was proved to be completely
monotonic on (0,∞).

In [2, Theorem 10], the function ha,b;n(x) was proved to be completely mono-
tonic on (0,∞) provided that 0 ≤ a1 ≤ · · · ≤ an, 0 ≤ b1 ≤ · · · ≤ bn and∑k

i=1 ai ≤
∑k

i=1 bi for 1 ≤ k ≤ n. Its proof used the formula (3.4), a special case
of Theorem 1.2 applied to f(x) = e−x, and the following conclusion cited from [30,
p. 10]: Let ai and bi for i = 1, . . . , n be real numbers such that a1 ≤ · · · ≤ an,

b1 ≤ · · · ≤ bn, and
∑k

i=1 ai ≤
∑k

i=1 bi for k = 1, . . . , n. If the function f is
decreasing and convex on R, then

n∑
i=1

f(bi) ≤
n∑
i=1

f(ai).

In [22, Theorem 4.1], the functions

− d

dx
ln

Γq(x+ a1)Γq(x+ a2) · · ·Γq(x+ an)

[Γ(x+ ā)]n

and
d

dx
ln

Γq(x+ a1)Γq(x+ a2) · · ·Γq(x+ an)

[Γq(x)]n−1Γq(x+ a1 + a2 + · · ·+ an)
(5.3)

were proved to be completely monotonic on (0,∞), where a1, . . . , an are positive
numbers, nā = a1 + · · ·+ an, and 0 < q ≤ 1.

In [29], the function

x 7→
[Γ(x)]n−1Γ

(
x+

∑n
i=1 ai

)∏n
i=1 Γ(x+ ai)

(5.4)

for ai > 0 and i = 1, . . . , n was found to be decreasing on (0,∞).
Motivated by the decreasing monotonic property of the function (5.4), H. Alzer

proved in [2, Theorem 11] that the function

x 7→
[Γ(x)]αΓ

(
x+

∑n
i=1 ai

)∏n
i=1 Γ(x+ ai)

is completely monotonic on (0,∞) if and only if α = n− 1.

Remark 5.1. It is clear that the decreasingly monotonic property of the func-
tion (5.4) is just the special case q → 1− of the complete monotonicity of the
function (5.3). Therefore, it seems that the authors of the papers [2, 29] were not
aware of the results in [22, Theorem 4.1].

Remark 5.2. The complete monotonicity mentioned just now are indeed logarith-
mically completely monotonic ones.

5.2. Logarithmically complete monotonicity. Let Sn be the symmetric group
over n symbols, a1, a2, . . . , an. Let On and En be the sets of odd and even per-
mutations over n symbols, respectively. For a1 > a2 > · · · > an > 0, define

F (x) =

∏
σ∈En

Γ
(
x+ aσ(2) + 2aσ(3) + · · ·+ (n− 1)aσ(n)

)∏
σ∈On

Γ
(
x+ aσ(2) + 2aσ(3) + · · ·+ (n− 1)aσ(n)

) .
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It was proved in [14, Theorem 1.1] that the function F (x−a2−2a3−· · ·−(n−1)an)
is logarithmically completely monotonic on (0,∞).

In [14, Theorem 1.2], it was presented that the functions

Fn(x) =
Γ(x)

∏[n/2]
k=1

[∏
m∈Pn,2k

Γ
(
x+

∑2k
j=1 amj

)]
∏[(n+1)/2]

k=1

[∏
m∈Pn,2k−1

Γ
(
x+

∑2k−1
j=1 amj

)] (5.5)

for any ak > 0 and k ∈ N are logarithmically completely monotonic on (0,∞)
and that any product of functions of the type (5.5) with different parameters ak is
logarithmically completely monotonic on (0,∞) as well, where Pn,k for 1 ≤ k ≤ n
is the set of all vectors m = (m1, . . . ,mk) whose components are natural numbers
such that 1 ≤ mν < mµ ≤ n for 1 ≤ ν < µ ≤ k and Pn,0 is the empty set.

Remark 5.3. The above Theorem 1.2 is more general than Theorem 1.1. The
case n = 2 in Theorem 1.2 corresponds to the complete monotonicity of the
function (5.2) obtained in [9, Theorem 6].

In [14, Theorem 3.2], it was showed that if

Fq(x) =

∏
σ∈En

Γq
(
x+ aσ(2) + 2aσ(3) + · · ·+ (n− 1)aσ(n)

)∏
σ∈On

Γq
(
x+ aσ(2) + 2aσ(3) + · · ·+ (n− 1)aσ(n)

)
for a1 > a2 > · · · > an > 0, then Fq(x − a2 − 2a3 − · · · − (n − 1)an) is a
logarithmically completely monotonic function of x on (0,∞).

In [14, Theorem 3.3], it was stated that the functions

Fn,q(x) =
Γq(x)

∏[n/2]
k=1

[∏
m∈Pn,2k

Γq

(
x+

∑2k
j=1 amj

)]
∏[(n+1)/2]

k=1

[∏
m∈Pn,2k−1

Γq

(
x+

∑2k−1
j=1 amj

)] (5.6)

for any ak > 0 with k = 1, . . . , n are logarithmically completely monotonic on
(0,∞), so is any product of functions (5.6) with different parameters ak.

Remark 5.4. It is obvious that [14, Theorem 3.2 and Theorem 3.3] are q-analogues
of [14, Theorem 1.1 and Theorem 1.2].

5.3. Some recent conclusions. By a recourse to the monotonicity of qα,β(t) on
(0,∞), the following sufficient conditions for the function ha,b;n(x) to be logarith-
mically completely monotonic on (0,∞) are devised.

Theorem 5.5 ([19, Theorem 4.5]). If

(bi − ai)(1− ai − bi) ≥ 0 and (bi − ai)(|ai − bi| − ai − bi) ≥ 0 (5.7)

hold for 1 ≤ i ≤ n and
n∑
i=1

bi ≥
n∑
i=1

ai, (5.8)

then the function ha,b;n(x) is logarithmically completely monotonic on (−ρn,∞).
If inequalities in (5.7) and (5.8) are reversed, then the function hb,a;n(x) is loga-
rithmically completely monotonic on (−ρn,∞).
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Proof. Taking the logarithm of ha,b;n(x) defined by (5.1) and differentiating con-
secutively gives

[lnha,b;n(x)](k) =
n∑
i=1

[
ψ(k−1)(x+ ai)− ψ(k−1)(x+ bi)

]
for k ∈ N. Using the integral representation (3.4) and its derivative

ψ(m)(x) = (−1)m+1

∫ ∞
0

e−txtm

1− e−t
dt

for x > 0 and m ∈ N yields

(−1)k[lnha,b;n(x)](k) =

∫ ∞
0

tk−1e−xt
n∑
i=1

qai,bi(t)dt,

where qai,bi(t) is defined by (4.1). Since

n∑
i=1

qai,bi(0) =
n∑
i=1

(bi − ai) =
n∑
i=1

bi −
n∑
i=1

ai

and, by Proposition 4.1, the function qai,bi(t) increases on (0,∞) if and only if
inequalities in (5.7) hold, when the inequality (5.8) and the inequalities in (5.7)
are valid for 1 ≤ i ≤ n, it follows that (−1)k[lnha,b;n(x)](k) ≥ 0 for k ∈ N, and so
the function ha,b;n(x) is logarithmically completely monotonic on (−ρn,∞).

Similarly, when the inequalities in (5.7) and (5.8) are reversed, the function
hb,a;n(x), the reciprocal of ha,b;n(x), is logarithmically completely monotonic on
(−ρn,∞). The proof of Theorem 5.5 is completed. �

The q-analogue of Theorem 5.5 is as follows.

Theorem 5.6 ([19, Theorem 4.6]). Let ai and bi for 1 ≤ i ≤ n be real and
ρn = min1≤i≤n{ai, bi}. For x ∈ (−ρn,∞), define

hq;a,b;n(x) =
n∏
i=1

Γq(x+ ai)

Γq(x+ bi)

for 0 < q < 1, where a and b stand for (a1, a2, . . . , an) and (b1, b2, . . . , bn) respec-
tively. If inequalities in (5.7) and (5.8) hold, then the function hq;a,b;n(x) is loga-
rithmically completely monotonic on (−ρn,∞). If inequalities in (5.7) and (5.8)
are reversed, then the function hq;b,a;n(x) is logarithmically completely monotonic
on (−ρn,∞).

Proof. Taking the logarithm of hq;a,b;n(x) and differentiating successively reveal

[lnhq;a,b;n(x)](k) =
n∑
i=1

[
ψ(k−1)
q (x+ ai)− ψ(k−1)

q (x+ bi)
]

for k ∈ N. Using (1.3) and its derivative

ψ(m)
q (x) = (−1)m+1

∫ ∞
0

tme−tx

1− e−t
dγq(t)
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for x > 0 and m ∈ N results in

(−1)k[lnhq;a,b;n(x)](k) =

∫ ∞
0

tk−1e−xt
n∑
i=1

qai,bi(t)dt.

The rest is the same as that in the proof of Theorem 5.5. The proof of Theo-
rem 4.20 is thus completed. �

6. An open problem

From Theorem 1.1, we can see that a completely monotonic function f(x) on
the interval (0,∞) must be a Laplace transform of the measure α(t) in (1.4). We
now naturally pose a problem: Can on find the concrete measures α(t) for the
(logarithmically) completely monotonic functions mentioned in this paper?
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12. A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi (Eds), Higher Transcendental
Functions, Vol. 1, McGraw-Hill, New York, 1953.

13. W. Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma
function, J. Math. Phys. 38 (1959/60), 77–81.

14. A.Z. Grinshpan and M.E.H. Ismail, Completely monotonic functions involving the gamma
and q-gamma functions, Proc. Amer. Math. Soc. 134 (2006), 1153–1160.

15. B.-N. Guo and F. Qi, A class of completely monotonic functions involving divided differences
of the psi and tri-gamma functions and some applications, J. Korean Math. Soc. 48 (2011),
no. 3, 655–667.

16. B.-N. Guo and F. Qi, A completely monotonic function involving the tri-gamma function
and with degree one, Appl. Math. Comput. 218 (2012), no. 19, 9890–9897.

17. B.-N. Guo and F. Qi, A property of logarithmically absolutely monotonic functions and
the logarithmically complete monotonicity of a power-exponential function, Politehn. Univ.
Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72 (2010), no. 2, 21–30.

18. B.-N. Guo and F. Qi, An alternative proof of Elezović-Giordano-Pečarić’s theorem, Math.
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