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ABSTRACT. Let A be a unital algebra over a number field K. A linear mapping
0 from A into itself is called a generalized (m, n, [)-Jordan centralizer if it
satisfies (m + n + [)3(A?) — md(A)A — nA§(A) — IAS(I)A € KI for every
A € A, where m > 0,n > 0,1 > 0 are fixed integers with m +n +1 # 0. In
this paper, we study generalized (m, n, [)-Jordan centralizers on generalized
matrix algebras and some reflexive algebras algl, where £ is a CSL or satisfies
VL : L e JL)} = X or M{L_ : L € J(£)} = (0), and prove that each
generalized (m, n, [)-Jordan centralizer of these algebras is a centralizer when
m+Il>1landn+1>1.

1. INTRODUCTION

Let A be an algebra over a number field K and M be an A-bimodule. An
additive (linear) mapping § from A to M is called a left (right) centralizer if
d(AB) = 0(A)B (0(AB) = Ad(B)) for all A,B € A, it is called a left (right)
Jordan centralizer if 6(A%) = §(A)A (§(A?) = A§(A)) for every A € A. We call
0 a centralizer if 0 is both a left centralizer and a right centralizer. Similarly,
we can define a Jordan centralizer. It is clear that every centralizer is a Jordan
centralizer, but the converse is not true in general. In [20], Zalar proved that
each left Jordan centralizer of a semiprime ring is a left centralizer and each
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Jordan centralizer of a semiprime ring is a centralizer. For some other results,
see [15, 16, 17, 18] and references therein.

Recently, Vukman[l9] introduced a new type of Jordan centralizers, named
(m, n)-Jordan centralizer, that is, an additive mapping  from a ring R into itself
satisfies

(m +n)86(A%) = mé(A)A +nAds(A)

for every A € R, where m > 0, n > 0 are fixed integers with m + n # 0.
Obviously, each (1, 0)-Jordan centralizer is a left Jordan centralizer and each
(0, 1)-Jordan centralizer is a right Jordan centralizer. Moreover, each Jordan
centralizer is an (m, n)-Jordan centralizer and (1, 1)-Jordan centralizer satisfies
the relation 26(A?%) = §(A)A+ Ad§(A) for every A € R. The natural problem that
one considers in this context is whether the converses are true. In [15], Vukman
showed that each (1, 1)-Jordan centralizer of a 2-torsion free semiprime ring R
is a centralizer. In [2], Guo and Li studied (1, 1)-Jordan centralizers of some
reflexive algebras. In [19], Vukman investigated (m, n)-Jordan centralizers and
proved that for m > 1 and n > 1, every (m, n)-Jordan centralizer of a prime
ring R with char(R) # 6mn(m + n) is a centralizer. Furthermore, Qi and Hou
in [12] showed that for a unital prime algebra A with center KI, if J is a linear
mapping from A into itself such that (m +n)d(AB) — mA§(B) —ndé(A)B € KI
for all A, B € A, then ¢ is a centralizer. Motivated by these facts, we define a new
type of Jordan centralizers that generalizes all the types mentioned above, named
generalized (m, n, 1)-Jordan centralizer. A linear mapping ¢ from a unital algebra
A into itself is called a generalized (m, n, [)-Jordan centralizer if it satisfies

(m +n + 1)5(A?) — md(A)A — nAS(A) — IAS()A € KI

for every A € A, where m > 0,n > 0,1 > 0 are fixed integers with m +n —+1 # 0.
This is equivalent to say that for every A € A, there exists a A4 € K such that

(m +n+ 1)5(A%) = mo(A)A +nAS(A) + LAS(I)A + Aul.

When Ay = 0 for every A € A, we call such a § an (m, n, l)-Jordan centralizer.
It is clear that each (m, n, [)-Jordan centralizer is a generalized (m, n, [)-Jordan
centralizer, each (m, n, 0)-Jordan centralizer is an (m, n)-Jordan centralizer and
(0, 0, 1)-Jordan centralizer has the relation §(A?) = A§(I)A for every A € A. In
this paper, we study (generalized) (m, n, [)-Jordan centralizers on some reflexive
algebras and generalized matrix algebras.

Let X be a Banach space over K and B(X) be the set of all bounded operators
on X, where K is the real field R or the complex field C. We use X* to denote
the set of all bounded linear functionals on X. For A € B(X), denote by A*
the adjoint of A. For any non-empty subset L C X, L denotes its annihilator,
that is, L+ = {f € X* : f(x) = 0 for all z € L}. By a subspace lattice on X,
we mean a collection £ of closed subspaces of X with (0) and X in £ such that
for every family {M,} of elements of £, both AM, and VM, belong to L, where
AM, denotes the intersection of { M,.}, and VM, denotes the closed linear span of
{M,}. For a subspace lattice £ of X, let algL denote the algebra of all operators
in B(X) that leave members of £ invariant; and for a subalgebra A of B(X), let
latA denote the lattice of all closed subspaces of X that are invariant under all
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operators in 4. An algebra A is called reflexive if alglat.A = A; and dually, a
subspace lattice is called reflerive if latalgl = L. Every reflexive algebra is of
the form algL for some subspace lattice £ and vice versa.

For a subspace lattice £ and for E € L, define

E_=V{FeL:F2E}and E, =N{FeL:FLFE}.

Put
JL)y={KeL:K#(0)and K_ # X}.

For any non-zero vectors x € X and f € X*, the rank one operator x® f is defined
by ® f(y) = f(y)x for y € X. Several authors have studied the properties of the
set of rank one operators in reflexive algebras (for example, see [1, 0]). It is well
known (see [0]) that x ® f € algL if and only if there exists some K € J (L) such
that v € K and f € K*. When X is a separable Hilbert space over the complex
field C, we change it to H. In a Hilbert space, we disregard the distinction between
a closed subspace and the orthogonal projection onto it. A subspace lattice £ on
a Hilbert space H is called a commutative subspace lattice (CSL), if all projections
in £ commute pairwise. If £ is a CSL, then the corresponding algebra algl is
called a CSL algebra. By [1], we know that if £ is a CSL, then L is reflexive. Let
L be a subspace lattice on a Banach space X satisfying V{L : L € J(£)} = X
or N{L_:LeJ(L)}=(0). In [9], Lu considered this kind of reflexive algebras
which have rich rank one operators. In Section 2, we prove that if § is a generalized
(m, n, [)-Jordan centralizer from algl into itself, where £ is a CSL or satisfies
VIL:Le J(L)} =X or N{L_:Le J(L)} =(0), then § is a centralizer.

A Morita context is a set (A, B, M, N) and two mappings ¢ and ¢, where A
and B are two algebras over a number field K, M is an (A, B)-bimodule and N
is a (B,.A)-bimodule. The mappings ¢ : M @z N — Aand p : N @4 M — B
are two bimodule homomorphisms satisfying ¢(M @ N)M' = Mp(N @ M') and
(N @ M)N' = Nop(M @ N') for any M, M’ € M and N,N' € N. These
conditions insure that the set

A M A M
{N B}_{{N B]|A€A,M€M,N€N,BGB}
forms an algebra over K under usual matrix operations. We call such an algebra a

generalized matriz algebra and denote it by U = [ le /\g } , where A and B are
two unital algebras and at least one of the two bimodules M and N is distinct
from zero. This kind of algebra was first introduced by Sands in [14]. Obviously,
when M =0 or N = 0, U degenerates to the triangular algebra. In Section 3, we
show that if ¢ is a generalized (m, n, [)-Jordan centralizer from U into itself, then
J is a centralizer. We also study (m, n, [)-Jordan centralizers on AF C*-algebras.
Throughout the paper, we assume m,n,l € N are such that m+1> 1, n+1> 1.

2. CENTRALIZERS OF CERTAIN REFLEXIVE ALGEBRAS

In order to prove our main results, we need the following several lemmas.



22 J.K. LI, Q.H. SHEN, J.B. GUO

Lemma 2.1. Let A be a unital algebra with identity I. Suppose § is a generalized
(m, n, 1)-Jordan centralizer from A into itself. Then for any A, B € A,

(m+n+1)0(AB+ BA)
= md(A)B +md(B)A+ nAd(B) + nBi(A)
+1AS(I)B+1BO(1)A+ (Aays — Aa — Ap)1. (2.1)

In particular, for any A € A,

m—+1 n—+1

5(A) = s SN A + s AB(T) + M(A), (2.2)

where we set N(A) = ———=(Aay1 — Aa)l for every A € A.
Proof. Since § is a generalized (m, n, [)-Jordan centralizer, we have
(m+n+1)6(A%) = md(A)A + nAS(A) + LAS(I)A + Al

for every A € A. Replacing A by A + B in above equation, (2.1) holds. Letting
B =11in (2.1) gives (2.2), since A; = 0. O

Remark 2.2. For an (m, n, [)-Jordan centralizer, we could actually define it from
a unital algebra A to an A-bimodule. Hence when lemmas in this section are
applied to an (m, n, [)-Jordan centralizer ¢, we will take it for granted that 0 is
from a unital algebra A to its bimodule, since all the proofs remain true if we set

A =0forall Ae A

Remark 2.3. Obviously, each (1, 0, 0)-Jordan centralizer is a left Jordan cen-
tralizer and each (0, 1, 0)-Jordan centralizer is a right Jordan centralizer. So
by Lemma 2.1, it follows that every left Jordan centralizer of unital algebras is
a left centralizer and every right Jordan centralizer of unital algebras is a right
centralizer. Therefore every Jordan centralizer of unital algebras is a centralizer.

Let f be a linear mapping from an algebra A to its bimodule M. Recall
that f is a derivation if f(ab) = f(a)b+ af(b) for all a,b € A; it is a Jordan
derivation if f(a?) = f(a)a+ af(a) for every a € A; it is a generalized derivation
if f(ab) = f(a)b+ ad(b) for all a,b € A, where d is a derivation from A to M;
and it is a generalized Jordan derivation if f(a?) = f(a)a+ad(a) for every a € A,
where d is a Jordan derivation from A to M. From Remarks 2.2 and 2.3, we have
the following corollary.

Corollary 2.4. Let L be a subspace lattice on a Banach space X satisfying V{F :
FeJlL)}=Xor M{L_:LeJL}=(0). If fis a generalized Jordan
derivation from algl to B(X), then f is a generalized derivation.

Proof. Since f is a generalized Jordan derivation, we have the relation

f(A?) = f(A)A + Ad(A)
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for every A € algl, where d is a Jordan derivation of algL. By [9, Theorem 2.1],
one can conclude that d is a derivation. Let 6 = f — d. Then we have

0(A%) = f(A%) — d(A?)
= f(A)A + Ad(A) — Ad(A) — d(A)A
= f(A)A—d(A)A
= §5(A)A

for every A € algl. This means that J is a left Jordan centralizer. By Remark
2.3, 0 is a left centralizer. Hence

f(AB) =d(AB)+ 6(AB) = d(A)B + Ad(B) + 6(A)B = f(A)B + Ad(B)
for all A, B € algL. In other words, f is a generalized derivation. O

Since every Jordan derivation of CSL algebras is a derivation [10], we also have
the following corollary.

Corollary 2.5. Let L be a CSL on a Hilbert space H. If f is a generalized Jordan
derivation from algl into itself, then f is a generalized derivation.

Lemma 2.6. Let A be a unital algebra and § be a generalized (m, n, 1)-Jordan
centralizer from A into itself. Then for every idempotent P € A and every A € A,
(i) 6(P) = Pé(I) = o(I)P;

(i) 0(AP) = 0(A)P + A(AP) — A(A)P;

(iii) 0(PA) = P§(A) + M(PA) — AN(A)P.

Proof. (i) Suppose P is an idempotent in A. It follows from Lemma 2.1 that
(m—+n+20)0(P)=m+0)6(I)P+ (n+1)P5(I)+ (Apsr — Ap)l. (2.3)
Right and left multiplication of (2.3) by P gives

1
— (A —Ap)P.
m+n+2l( Pl P)

Since (m+n-+1)0(P) = mé(P)P+nPo(P)+1Pd(I)P+ A\pl, multiplying P from
the right leads to

P§(P)P = P5(I)P +

1
n
= (n+1)Po(I)P + (m()\PH —Ap) + Ap)P,
whence
O(P)P=Pé(I)P+epP (2.4)

for some ep € C. Similarly, Po(P) = P(I)P + &', P for some €, € C.
Hence §(P)P — epP = P§(P) — ¢pP. Right and left multiplication of P gives
ep = €'p, which implies

d(P)P = Po(P). (2.5)
Replacing P by I — P in the above equation gives §(1)P = Pd(I).
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Now, we have from (2.3)

1
m+n + 21
On the other hand, (2.4) and (2.5) yields

(m+4+n+10)0(P)=mdé(P)P+nP§(P)+IPo(I)P+ \pl
=(m+n+1)0(P)P+ Apl —lepP,
right multiplication of which by P gives A\p = lep. Hence
1

5(P) = 8(I)P + (Aps1 — Ap)L. (2.6)

= - — P). 2.
§(P) 5(P)P+m+n+l)\p(l P) (2.7)
We then have from (2.6) that
1

Now (2.7) and (2.8) yield
1 1
- - AP —
m+n+2l<>\P+I Ar) +m—i—n—l—l
which together with (2.6) implies
1 1
m+n+2l<)\PH_)\P) B m—i—n—l—l)\P'

5(P) =5(I)P + Ap(I — P),

Thus we have
Apl, (2.9)

while

m-+n ) 1
_ . v — Apl. 2.1
d(P) m+n+l5(P>P+ S(I)P + P (2.10)

m+n -+ m+n+I(
Comparing (2.9) and (2.10) gives

This together with (2.8) gives
1 1

MP)= ——()\ A = —
(P) m+n+21( Pl P) m+n-+1

Apl =0,
whence
§(P)=0(I)P = Pi(I).
(ii) By Lemma 2.1 and (i), we have
m + [ n+1
— (AP + —
m+n + 21 (1) +7n+n+2l

m + [ n+1
—(— vt P
(m+n+215(I)A+ m+n+2lA5(I))P+/\(A )

— (5(A) — A(A))P + \(AP)
= §(A)P + A(AP) — A(A)P.

(iii) The proof is analogous to the proof of (ii). O

S(AP) = APS(I) + MAP)
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An subset Z of an algebra A is called a left separating set of A if for every
A e A AT = 0 implies A = 0. We have the following simple but noteworthy
result.

Corollary 2.7. Suppose I is a left separating left ideal of a unital algebra A
and is contained in the algebra gemerated by all idempotents in A. Then each
generalized (m, n, l)-Jordan centralizer 6 from A into itself is a centralizer.

Proof. Since 7 is contained in the algebra generated by all idempotents in A and
by (i) of Lemma 2.6, we have that 6(I) € Z’, where Z' denotes the commutant
of Z. Hence §(A) = d(1)A+ AN(A) = Ad(I) + A(A) for every A € T according to
(2.2). For any A(# KI) € Z, we have
(m+n+0)(6(1)A% + M(A?))

= (m+n+1)5(A%)

=mi(A)A + nAJ(A) +IAS(I)A+ Aal

=m(6(1)A% + N(A)A) +n(A%6(1) + AN(A)) + 1A*S(I) + al,
which implies \(A)A = kI for some k € K.

Hence \(A) = 0 and §(A) = 6(1)A = Ad(I) for every A € Z. Then Lemma
2.6 yields Ad(I)B = AB(I) = §(AB) = 6(1)AB for every B € Z, and since Z
is a separating left ideal, we have Ad(I) = 0(I)A for every A € A. Therefore,
§(A) = (1) A+ NMA) = AS(I) + A(A) for every A € A. Now by the same
argument as above, we have that §(A) = 0(I)A = Ad(I) for every A € A and
this completes the proof. O]

Remark 2.8. By [3, Proposition 2.2], [13, Example 6.2], we see that the class of
algebras we discussed in Corollary 2.7 contains a lot of algebras and is therefore
very large.

The proof of the following lemma is analogous to the proof of [, Proposition
1.1]. For the sake of completeness, we present the proof here.

Lemma 2.9. Let E and F be non-zero subspaces of X and X* respectively. Let
¢ EXF — B(X) be a bilinear mapping such that ¢(z, f)X C Kz for all
x € F and f € F. Then there exists a linear mapping S : F' — X* such that
Oz, f)=2@Sf forallz € E and f € F.

Proof. For any non-zero vectors x € E and f € F, since ¢(z, f)X C Kuz,
there exists a continuous linear functional h, ; on X such that for each z € X,

o(x, f)z = hy s(2)z. That is, for all z € £ and f € F,

Oz, [) =2 @ hy g (2.11)

We claim that h, s depends only on f. To see this, fix a non-zero functional f
in F, and let ;1 and x5 be non-zero vectors in E. Suppose that x; and x, are
linearly independent. For all z € X, by (2.11) we have

hr1+x2,f(z)(xl + $2) = ¢(‘Tl + T2, f)Z

= ¢(w1, f)z + ¢(x2, )2
= Ty 1 (2)@1 + Py p(2) 72
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from which we have

(hzl+$2,f(z> - hllvf(z))xl = (hwz,f(z) - hzl+$2,f(z>)x2'

SO Ngy . = hgytast = Ny Now suppose that x; and x, are linearly dependent.
Let x9 = kxy. Then

o ® ha:g,f - ¢(x27 f) = kd)(xb f) = kxl ® hr1,f = T2 ® hxl,fa

which yields hy, 5 = hy, r. Thus ¢(z, f) = x®@hy forall z € E and f € F. Hence
there exists a linear mapping S from F' to X* such that ¢(z, f) =2 ® Sf. Tt is
easy to check that the mapping S is well defined and linear. 0

Lemma 2.10. Let L be a subspace lattice on a Banach space X and 6 be a

generalized (m, n, 1)-Jordan centralizer from algL into itself. Suppose that E
and L are in J(L) such that E_ # L. Let x be in E and f be in LE. Then
(0(z @ f) = Mz ® [))X C Ka.

Proof. Since E_ # L, we have that E < L. So z ® f € algL. Suppose f(z) # 0,
it follows from Lemmas 2.1 and 2.6 that A(z ® f) =0 and 0(z ® f) =z ® fé(1).
Thus 6(z ® f)X C Kz.

Now we assume f(x) = 0. Choose z from L and g from E* such that g(z) = 1.
Then

(m4+n+20)(m+n+10(z® f)
(m+n+2D)(m+n+0i((z@9) (2@ )+ (2@ f)(z®g))
(m+n+20)(md(z @ g)(z® f) +n(z®g)d(z® f) + 1z @ g)6(1)(2 ® [))
+(m+n+20)(mé(z® f)(z®g)+n(z® fiz®g)
+1U(z® f)o(I)(z®g)) + (m+n+ 20)(Aaggizer — Aovg — Aar)]
=m?*+ml)é(Nr @ f+ (n* +nl)z ® f6(I)

+2(mn+ml+nl + 1) (22 g5z @ f+ 2@ fo(I)x @ g) + AT

for some A\; € K.
On the other hand,

(m+2n+0(m+n+10)izx f)
—m+n+0)((m+D5(Nz @ f+ (n+ Dz @ f6(I) + Naosis — dews)])
=(m® +2ml + >+ mn+nl)d(I)z @ f
+ (ml +mn +1* +2nl + n*)z @ fO(I) + Xl

for some Ay € K.
So

M Nzx@f+rf0(l)=20R9¢i(1)2@ f+22@ fé(Hz®@g+ A (2.12)

for some A € K.
Notice that (2.12) is valid for all z in L satisfying g(z) = 1. Applying this
equation to x, we have

fo(Dz)x =2g(x) f(6(1)x)z + . (2.13)
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If g(x) =0 and f(z) =0, then f(6(I)x) = A. Substituting z + z for z in (2.12)
gives

(N f+rfo(l)=209¢6(I)(z+2) R f+2Nz+2)® g+ A. (2.14)
Comparing (2.12) with (2.14) yields
gd(lz)z @ f+ I ®@g=0.

Applying this equation to z leads to Az = 0, which means f(6(1)x) = A = 0.
If g(x) =0 and f(z) # 0, from (2.13) we also have f(6(I)z) = A, and it follows
from Lemma 2.6 that
(e f+2@ fo(l) =2090(1)z@ f+2:® fé(I)x @ g+ A
=2z ®g)(z® f)o(I) +20(I)(2 ® f)(x @ g) + A
=2x® fo(I)+ A,

whence
d(Nr® f=x® fo(I)+ .
Applying the above equation to x yields f(d(I)z) = —A. Thus f(d(1)z) = X = 0.
If g(z) # 0, replacing z by ﬁx in (2.13) gives f(0(I)x) = —A, while
YN f+r@f0(l)=20®g0(1)z2@ f+2:® fo(l)x®@ g+ A
=25(1)(z®g)(z® f) +2(2 @ f)(x @ g)5(I) + A
=20(I)(z @ f) + M.

Hence
r® fo(I) =0z ® f+ M. (2.15)

Applying (2.15) to x leads to f(d(I)x) = A. Therefore, f(5(I)z) = A = 0.
So by (2.12), we obtain §(I)z® f = 2g(0(I)z)x® f —x @ fo(I). It follows from
Lemma 2.1 that

m+1 n-+1

dz® f) = I)(z® f)+ (x® f)o(I) + Mz ® f)

PR T
:%Qg(é(ﬂz)m ® f—x® fo(I))
N #ﬁzz@ ® 1)6(1) + Mz ® f)
:—WanJj)%g(é(I)z)x @+ i (w ® O + Mz & f).
Hence (6(z ® f) — Az ® f))X C Ka. -

Theorem 2.11. Let L be a subspace lattice on a Banach space X satisfying
V{F:FeJL)}=X. If 6 is a generalized (m, n, l)-Jordan centralizer from
algL into itself, then & is a centralizer. In particular, the conclusion holds if L
has the property X _ # X.



28 J.K. LI, Q.H. SHEN, J.B. GUO

Proof. Let E be in J(L£). By V{F : F € J(L£)} = X, there is an element L in
J (L) such that E_ # L. Let z be in E and f be in (L_)*. Let 6 = 6 — A\. Then

0(I) = §(I), and it follows from Lemmas 2.9 and 2.10 that there exists a linear
mapping S : (L_)* — X* such that

(z® f)=r®Sf.
This together with

m+1l = n+1 — _
ST - I) =
m+n—|—2l§( >$®f+m+n+2lx®f§<) oz f)
leads to o iy
n — m _
T S = — T ST ,
z®(5f m+n+2l5()f) m+n+215( Jr @ f

Thus there exists a constant Ag in K such that §(I)z = Agx for every x € E.
Similarly, for every y € L, we have d(I)y = Apy.
If f(z) # 0, it follows from Lemma 2.6 that §(z ® f) = 0(I)z ® f = 2 ® f5(I).
If f(z) = 0, according to the proof of Lemma 2.10, we can choose z from L
and g from E* such that g(2) =1 and 6(I)z ® f = 2g(0(I)2)x @ f — 2 @ fo(I).
Since x € E < L, we have 0(I)z = Apx. Thus

d(Nr@f=222@ f—2® f6(1)=20(1)z® f —x® fo(I).

Hence 6(z ® f) =0(I)z ® f =2 ® fo(I).
Therefore, for any z € E, f € (L_)* and A € algL, we have

AS(Nr® f=Az® f6(I) = 6(1)Ax ® f,

which yields Ad(1)x = 6(I)Ax for any = € E.

Now by V{F : F € J(£)} = X, we have 6(A) = A5(I) = §(I)A for any
A € algl, this means 0(A) = AS(I) + AM(A) = 6(/)A + AM(A). The remaining
part goes along the same line as the proof of Corollary 2.7 and this completes the
proof. O

Remark 2.12. By [7], a subspace lattice £ is said to be completely distributive
fL=V{EeLlL:E #?LlandL=ANE_:E€Land E « L} forall L€
L. It follows that completely distributive subspace lattices satisfy the condition
V{E : E € J(£)} = X. Thus Theorem 2.11 applies to completely distributive
subspace lattice algebras. A subspace lattice L is called a J-subspace lattice on
XitV{iK: KeJL)} =X, {K_: KeJL)}=(0),KVvK_ =X and
KANK_ = (0) forany K € J(L£). Note also that the condition V{K : K €
J (L)} = X is part of the definition of J-subspace lattices, thus Theorem 2.11
also applies to J-subspace lattice algebras.

With a proof similar to the proof of Theorem 2.11, we have the following
theorem.

Theorem 2.13. Let £ be a subspace lattice on a Banach space X satisfying
NML_:LeJ(L)}=(0). If 0 is a generalized (m, n, l)-Jordan centralizer from
algL into itself, then & is a centralizer. In particular, the conclusion holds if L
has the property (0), # (0).
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As for the cases of (m,n,l)-Jordan centralizers, we have from Remark 2.2 |
Theorem 2.11 and Theorem 2.13 the following theorem.

Theorem 2.14. Let L be a subspace lattice on a Banach space X satisfying
V{F:FeJL)}=X orN{L_:LeJ(L)}=(0). If 0 is an (m, n, 1)-Jordan

centralizer from algl to B(X), then § is a centralizer.

In the rest of this section we will investigate generalized (m,n,[)-Jordan cen-
tralizers on CSL algebras. Let H be a complex separable Hilbert space and £
be a CSL on H. Let £* be the lattice {I — E : E € L} and L' be the com-
mutant of £. It is easy to verify that (algl)* = alglt for any lattice £ on H
and the diagonal (algl) N (algl)* = £’ is a von Neumann algebra. Given a CSL
L on a Hilbert space H, we define G1(£) and G5(L) to be the projections onto
the closures of the linear spans of {FA(l — E)x : E € LA € algL,x € H}
and {(I — E)A*Ex : E € L, A € algL,z € H}, respectively. For simplicity, we
write G and Gy for G1(£) and G5(L). Since CSL is reflexive, it is easy to verify
that G; € £ and G, € £+, In [10], Lu showed that G, V Gy € £N L+ and
algﬁ(] — G1 V Gg) Q [,/.

Theorem 2.15. Let L be a CSL on a complex separable Hilbert space H. If  is
a bounded generalized (m, n, l)-Jordan centralizer from algL into itself, then o
s a centralizer.

Proof. We divide the proof into two cases.
Case 1: Suppose G V Gy = 1.
Let A € algl. For any T € algl and P € L, since

PT(I-P)=P—(P—-PT(I-P)),
which is a difference of two idempotents, it follows from Lemma 2.6 that
S(I)APT(I — P)=A0(I)PT(I — P)
=0(APT(I — P))
=3(A)PT(I—-P)—XNA)PT(I-P).
By arbitrariness of P and T', we have Aé(1)Gy = 0(I)AG, = (0(A) — A(A))G;.
That is,
6(A)GL = (Ad(I) + A(A))G1 = (6(1)A + A(A)) G,
whence
I(AG;) = §(A)G1 + MAGy) — MA)Gy
=06(1)AG, + M(AGy)
= A0(I1)G1 + MAGH). (2.16)
Define 6*(A*) = §(A)* for every A* € algLt. So
(m+n+ 00" ((A)?) = ((m +n +1)6(A?)*
= (mdo(A)A 4+ nAd(A) + IAS(I)A + Aal)*
=mA* S (A") + nd*(A")A* + LA™ (1) A* + A4,
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where A = \4.
With the proof similar to the proof of (2.16), we have

Gad(I)A = GoAS(I) = Go(6(A) — M(A)).
So by Gy V Gy = 1,
(I = G1)é(I)A = (I — G1)ASI) = (I — G1)(6(A) — A(4)),

whence
0((L = G1)A) = (1= G1)d(A) + M — G1)A) = MA)I — G4)
= (1= G1)(0(A) = A(4)) + AM(I — G1)A)
= (1 =G)I)A+ AN - G1)A)
= (I —G)AS(I) + A\(I — Gh)A). (2.17)

Hence by (2.16) and (2.17),
0(A) =0(AGL + GHA(I — G1) + (I — G1)A)
= AS(I)Gy + M(AGy) + G1A(I — G1)o(I)
+ (I —Gh)A(I) + A(1 —Ghp)A)
= G1AI)Gy + G1AS(I)(I — Gy) + (I — Gy)Ad(])
+ AMAG)) + A ((1 = G1)A) + AM(G1A(1 — Gy))
= Ad(I) + A(A).
Similarly, 6(A) = 6(1)A + A(A). The remaining part goes along the same line as
the proof of Corollary 2.7 and we conclude that ¢ is a centralizer in this case.
Case 2: Suppose G1V Gy < I.
Let G = G VGy. Since G € LNLY and algL(I—G) C L', s0 (I-G)algL(I—G)
is a von Neumann algebra. The algebra algl can be written as the direct sum
algl = alg(GLG) @ alg((I — G)L(I — G)).
By Lemma 2.6 we have that
I(GAG) =G6(A)G and §((I — G)A(I — G)) =1 — G)I(A)(I — G)

for every A € algl. Therefore § can be written as 6V @ 6@, where 6(V) is a
generalized (m, n, [)-Jordan centralizer from alg(GLG) into itself and §? is a
generalized (m, n, [)-Jordan centralizer from alg((/ —G)L(I —G)) into itself. It is
easy to show that G1(GLG) V Go(GLG) = G. So it follows from Case 1 that §()
is a centralizer on alg(GLG). (I — G)algL(I — G) is a von Neumann algebra and
6@ is continuous, so by Corollary 2.7, §®) is a centralizer on alg((I —G)L(I —@Q)).
Consequently, d is a centralizer on algL. O

3. CENTRALIZERS OF GENERALIZED MATRIX ALGEBRAS

Let A be a unital algebra over a number field K. We call M a unital A-bimodule
if M is an A-bimodule and satisfies [4M = M 14 = M for every M € M. We call
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M a faithful left A-module if for any A € A, AM = 0 implies A = 0. Similarly,
we can define a faithful right A-module.
Throughout this section, we denote the generalized matrix algebra originated

from the Morita context (A, B, M, N, drn, oam) by U = le /g } , where

A, B are two unital algebras over a number field K and M, N are two unital
bimodules, and at least one of M and N is distinct from zero. We use the symbols
I 4 and I3 to denote the unit element in A and B, respectively. Moreover, we make
no difference between A(A) = —L—(Aar — M)l and ——=(Aayr — Aa) € K.

Lemma 3.1. Let § be a generalized (m, n, l)-Jordan centralizer from U into
itself. Then § is of the form

an(A (| L Mg cra(M)
(EF) N w7 ([ 2 4])

forany Aec A, M e M, Ne N, Be B, whereaj; : A— A, ¢cjo: M — M,
da1 : N = N, by : B— B are all linear mappings satisfying

Clg(M) = CLH(IA)M = MbQQ(IB) and dQl(N) = NCLH(IA) = ng(IB)N.

Proof. Assume that § is a generalized (m, n, [)-Jordan centralizer from U into
itself. Because 4 is linear, for any A € A, M € M, N € N, B € B, we can write

(x5 )

. [ a11(A) +b11(B) + cin(M) + di1(N)  a12(A) + b12(B) + c12(M) + di2(N)
o agl(A) + le(B) + CQl(M) =+ dgl(N) agg(A) + bQQ(B) + CQQ(M) + dQQ(N)

where a;j, b;;, ¢;j, d;; are linear mappings, ,j € {1, 2}.

Let P = [ La 0 and for any A € A, S = 151 8 By Lemma 2.6,
i(S) + )\ PS) = A(S)P and 6(SP) = 0(S)P + A(SP) — A\(S)P, so we
have
CL11(A) 12(
(121(14) &22(

-«

1
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{all(A) &12(14)}
a (A) 6_122(/1) |
-5([5 8])
=s([5 ][5 )
I I R T R R
a1 (A) 0
(2] |

So we have

A 0]
CL12(A) = 07(121(14) =0 and CLQQ(A) =\ <|: 0 0 ) IB .
Similarly, by considering S = [ 8 ]\04 } and P = { 164 8 , we obtain that

M
0

for every M € M.

By considering S = [](3[ 8} and P = {164 8}

0 0 0 0

>\<|:N O:|)I.A7dlZ(N)—O&HddQQ(N)—)\([N 0
By considering S = {8 g} and @) = {8 IO }
B

bi1(B) = A

|

0 B

for every B € B.

ForanyAE.A,MlEM,MzeMandBGB,letS:{

) aceaan) =0 and eaar) =2 |

, We

0
0

|)e

obtain dy;(N) =

})Ig for every N € V.

, we obtain

D Ly, bia(B) =0 and by (B) =0
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T = l 8 Agz } Then by Lemma 2.1 we have

)| D 012<§?§2T+)[f13> }
= (m+n+1)0(ST m+n+l)5(ST+TS)
a1 (A ci2(Mh) ,
E q} A (4 [l 7]
A9 Mg cro( M)
o TN P |
A I cra( M _
D
SR P T
an(A) (|9 Mo (M) |
S|
][ ][]
*[(AM_AOS_AT)]A (AS+T—AOS—AT>IB]
The above matrix equation implies
(m+n+1)ci2(AMy + M, B)
= may (A) My + m\ ([ 8 ]\gl D My + me1o(My) B + nMibyy(B)
+m)\<{8 %DMﬁnAcm(Msz([g AO/[QDJ\/A
+nA([’g AglDM2+lAaH(IA)M2+1M1622(IB)B. (3.1)

Taking B =0, A = I4 and M; = 0 in (3.1), we have c;o(M) = a1 (1) M
for every M € M. Taking A = 0, B = Ig and My = 0 in (3.1), we have
c12(M) = Mbyy(Ip) for every M € M.

Symmetrically, da;(N) = bag(Ig)N = Nayq(14) for every N € N. O

Theorem 3.2. Let 6 be a generalized (m, n, l)-Jordan centralizer from U into
itself. Suppose that one of the following conditions holds:
(1) M is a faithful left A-module and a faithful right B-module;
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(2) M is a faithful left A-module and N is a faithful left B-module;
(3) N is a faithful right A-module and a faithful left B-module;

(4) N is a faithful right A-module and M is a faithful right B-module.
Then 0 is a centralizer.

Proof. Let 6 be a generalized (m, n, [)-Jordan centralizer from U into itself. By
Lemma 3.1, we have

Clg(M) = CLH(IA)M = Mbgg([g) (32)
for every M € M, and
dgl(N) = N(lu([A) = ng(IB)N (33)

for every N € N.

We assume that (1) holds. The proofs for the other cases are analogous.
For any A € A and M € M, a;1(I4)AM = AMbys(Ig) = Aay1(14)M. Since
M is a faithful left A-module, we have

ayi(Ia)A = Aai(1a),

whence

all(A):Aall(IA)Jr)\([é 81)&:@11(1,4)/1“({‘3 8])IA. (3.4)

For any B € B and M € M, M Bbay(Ig) = a11({4)MB = Mbys(Ig)B. Since M
is a faithful right B-module, we have

bas(B) = bas(Is)B + A ([ - D I = Bbas(Is) + A ({ - D Is. (3.5)

Forany Ac A, M € M, N € N and B € B,

an+a(] 2 M) a0}
5({;3 AB4DZ d(zlEj\,v) BD 4 bgz(B)+)‘< le ]\04])16 ,
3 5= [ i |

and

&b o= [N Bt |

So by (3.2)—(3.5), we have for every S € U,
5(S) =386(1)S+ A(S) = So(I) + A(S).

The remaining part goes along the same line as the proof of Corollary 2.7 and
this completes the proof. O
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Note that a unital prime ring A with a non-trivial idempotent P can be written
PAP PA(I — P)

(I— PYAP (I— P)A(I - P) ] Moreover, for any A € A,

PAPA(I — P) = 0 implies PAP = 0 and PA(I — P)A(I — P) = 0 implies

(I — P)A(I — P)=0.

as the matrix form

Corollary 3.3. Let A be a unital prime ring with a non-trivial idempotent P.
If § is a generalized (m, n, l)-Jordan centralizer from A into itself, then § is a
centralizer.

As von Neumann algebras have rich idempotent elements and factor von Neu-
mann algebras are prime, the following corollary is obvious.

Corollary 3.4. Let A be a factor von Neumann algebra. If 0 is a generalized
(m, n, l)-Jordan centralizer from A into itself, then ¢ is a centralizer.

Obviously, when N' = 0, U degenerates to an upper triangular algebra. Thus
we have the following corollary.

Corollary 3.5. Let U = Tri(A, M, B) be an upper triangular algebra such that
M is a faithful (A, B)-bimodule. If § is a generalized (m, n, [)-Jordan centralizer
from A into itself, then § is a centralizer.

Let N be a nest on a Hilbert space H and alg\ be the associated algebra. If
N is trivial, then alg\ is B(H). If N is nontrivial, take a nontrivial projection
PeN. Let A= PalgNP, M = PalgN (I — P) and B = (I — P)algN (I — P).
Then M is a faithful (A, B)-bimodule, and algN'=Tri(A, M, B) is an upper
triangular algebra. Thus as an application of Corollaries 3.4 and 3.5, we have the
following corollary.

Corollary 3.6. Let N be a nest on a Hilbert space H and alg/N be the associated
algebra. If § is a generalized (m, n, l)-Jordan centralizer from algN into itself,
then ¢ s a centralizer.

In the following, we study (m, n, [)-Jordan centralizers on AF C*-algebras. A
unital C*-algebra B is called approzimately finite (AF) if B contains an increasing
chain B,, C B, of finite-dimensional C*-subalgebra, all containing the unit I of
B, such that | J 7, B, is dense in B. For more details and related terms, we refer
the readers to [, 11].

Lemma 3.7. Let M,,(C) be the set of all n X n complex matrices, A be a CSL
subalgebra of My, (C) & --- & M, (C), and B be an algebra such that M,,, (C) &
- @M, (C) C B as an embedding. If 0 is an (m, n, l)-Jordan centralizer from
A into B, then § is a centralizer.

Proof. Let A be the linear span of its matrix units {£;;}, and since 0 is linear,
we only need to show that for any ¢, j,

If i = j, by Lemma 2.4, (3.6) is clear.



36 J.K. LI, Q.H. SHEN, J.B. GUO

Next, we will prove (3.6) for i # j. By Lemma 2.1 and Remark 2.2, we have
Hence 5(Ez]) = 5<E”)EZ] for any i, j

Similarly, we have 0(£;;) = E;;0(E};) for any 14, j.

Hence for any 1, j,

Eyjo(I) = Ei; > 0(Ew) = Eij Y Ewd(Ew) = Eijo(Ej;) = 6(Eyj).
k=1 k=1

Similarly, we have for any i, j, 0(I)E;; = 6(E;;) and the proof is complete. [J

Theorem 3.8. Let A be a canonical subalgebra of an AF C*-algebra B. If § is a
bounded (m, n, l)-Jordan centralizer from A into B, then 0 is a centralizer.

Proof. Suppose 0 is a bounded (m, n, [)-Jordan centralizer from A into 5.
Since A, is a CSL algebra, d| 4, is a centralizer by Lemma 3.7; that is, for any S
in A,,

6(S)=46(1)S =S6(1).
Since 0 is norm continuous and U2, A, is dense in A, it follows that J is a
centralizer.
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