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Abstract. Let A be a unital algebra over a number field K. A linear mapping
δ from A into itself is called a generalized (m, n, l)-Jordan centralizer if it
satisfies (m + n + l)δ(A2) − mδ(A)A − nAδ(A) − lAδ(I)A ∈ KI for every
A ∈ A, where m ≥ 0, n ≥ 0, l ≥ 0 are fixed integers with m + n + l 6= 0. In
this paper, we study generalized (m, n, l)-Jordan centralizers on generalized
matrix algebras and some reflexive algebras algL, where L is a CSL or satisfies
∨{L : L ∈ J (L)} = X or ∧{L− : L ∈ J (L)} = (0), and prove that each
generalized (m, n, l)-Jordan centralizer of these algebras is a centralizer when
m+ l ≥ 1 and n+ l ≥ 1.

1. Introduction

Let A be an algebra over a number field K and M be an A-bimodule. An
additive (linear) mapping δ from A to M is called a left (right) centralizer if
δ(AB) = δ(A)B (δ(AB) = Aδ(B)) for all A,B ∈ A; it is called a left (right)
Jordan centralizer if δ(A2) = δ(A)A (δ(A2) = Aδ(A)) for every A ∈ A. We call
δ a centralizer if δ is both a left centralizer and a right centralizer. Similarly,
we can define a Jordan centralizer. It is clear that every centralizer is a Jordan
centralizer, but the converse is not true in general. In [20], Zalar proved that
each left Jordan centralizer of a semiprime ring is a left centralizer and each
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Jordan centralizer of a semiprime ring is a centralizer. For some other results,
see [15, 16, 17, 18] and references therein.

Recently, Vukman[19] introduced a new type of Jordan centralizers, named
(m, n)-Jordan centralizer, that is, an additive mapping δ from a ring R into itself
satisfies

(m+ n)δ(A2) = mδ(A)A+ nAδ(A)

for every A ∈ R, where m ≥ 0, n ≥ 0 are fixed integers with m + n 6= 0.
Obviously, each (1, 0)-Jordan centralizer is a left Jordan centralizer and each
(0, 1)-Jordan centralizer is a right Jordan centralizer. Moreover, each Jordan
centralizer is an (m, n)-Jordan centralizer and (1, 1)-Jordan centralizer satisfies
the relation 2δ(A2) = δ(A)A+Aδ(A) for every A ∈ R. The natural problem that
one considers in this context is whether the converses are true. In [15], Vukman
showed that each (1, 1)-Jordan centralizer of a 2-torsion free semiprime ring R
is a centralizer. In [2], Guo and Li studied (1, 1)-Jordan centralizers of some
reflexive algebras. In [19], Vukman investigated (m, n)-Jordan centralizers and
proved that for m ≥ 1 and n ≥ 1, every (m, n)-Jordan centralizer of a prime
ring R with char(R) 6= 6mn(m + n) is a centralizer. Furthermore, Qi and Hou
in [12] showed that for a unital prime algebra A with center KI, if δ is a linear
mapping from A into itself such that (m + n)δ(AB)−mAδ(B)− nδ(A)B ∈ KI
for all A,B ∈ A, then δ is a centralizer. Motivated by these facts, we define a new
type of Jordan centralizers that generalizes all the types mentioned above, named
generalized (m, n, l)-Jordan centralizer. A linear mapping δ from a unital algebra
A into itself is called a generalized (m, n, l)-Jordan centralizer if it satisfies

(m+ n+ l)δ(A2)−mδ(A)A− nAδ(A)− lAδ(I)A ∈ KI
for every A ∈ A, where m ≥ 0, n ≥ 0, l ≥ 0 are fixed integers with m+n+ l 6= 0.
This is equivalent to say that for every A ∈ A, there exists a λA ∈ K such that

(m+ n+ l)δ(A2) = mδ(A)A+ nAδ(A) + lAδ(I)A+ λAI.

When λA = 0 for every A ∈ A, we call such a δ an (m, n, l)-Jordan centralizer.
It is clear that each (m, n, l)-Jordan centralizer is a generalized (m, n, l)-Jordan
centralizer, each (m, n, 0)-Jordan centralizer is an (m, n)-Jordan centralizer and
(0, 0, 1)-Jordan centralizer has the relation δ(A2) = Aδ(I)A for every A ∈ A. In
this paper, we study (generalized) (m, n, l)-Jordan centralizers on some reflexive
algebras and generalized matrix algebras.

Let X be a Banach space over K and B(X) be the set of all bounded operators
on X, where K is the real field R or the complex field C. We use X∗ to denote
the set of all bounded linear functionals on X. For A ∈ B(X), denote by A∗

the adjoint of A. For any non-empty subset L ⊆ X, L⊥ denotes its annihilator,
that is, L⊥ = {f ∈ X∗ : f(x) = 0 for all x ∈ L}. By a subspace lattice on X,
we mean a collection L of closed subspaces of X with (0) and X in L such that
for every family {Mr} of elements of L, both ∧Mr and ∨Mr belong to L, where
∧Mr denotes the intersection of {Mr}, and ∨Mr denotes the closed linear span of
{Mr}. For a subspace lattice L of X, let algL denote the algebra of all operators
in B(X) that leave members of L invariant; and for a subalgebra A of B(X), let
latA denote the lattice of all closed subspaces of X that are invariant under all
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operators in A. An algebra A is called reflexive if alglatA = A; and dually, a
subspace lattice is called reflexive if latalgL = L. Every reflexive algebra is of
the form algL for some subspace lattice L and vice versa.

For a subspace lattice L and for E ∈ L, define

E− = ∨{F ∈ L : F + E} and E+ = ∧{F ∈ L : F � E}.

Put

J (L) = {K ∈ L : K 6= (0) and K− 6= X}.
For any non-zero vectors x ∈ X and f ∈ X∗, the rank one operator x⊗f is defined
by x⊗f(y) = f(y)x for y ∈ X. Several authors have studied the properties of the
set of rank one operators in reflexive algebras (for example, see [4, 6]). It is well
known (see [6]) that x⊗ f ∈ algL if and only if there exists some K ∈ J (L) such
that x ∈ K and f ∈ K⊥− . When X is a separable Hilbert space over the complex
field C, we change it toH. In a Hilbert space, we disregard the distinction between
a closed subspace and the orthogonal projection onto it. A subspace lattice L on
a Hilbert space H is called a commutative subspace lattice (CSL), if all projections
in L commute pairwise. If L is a CSL, then the corresponding algebra algL is
called a CSL algebra. By [1], we know that if L is a CSL, then L is reflexive. Let
L be a subspace lattice on a Banach space X satisfying ∨{L : L ∈ J (L)} = X
or ∧{L− : L ∈ J (L)} = (0). In [9], Lu considered this kind of reflexive algebras
which have rich rank one operators. In Section 2, we prove that if δ is a generalized
(m, n, l)-Jordan centralizer from algL into itself, where L is a CSL or satisfies
∨{L : L ∈ J (L)} = X or ∧{L− : L ∈ J (L)} = (0), then δ is a centralizer.

A Morita context is a set (A,B,M,N ) and two mappings φ and ϕ, where A
and B are two algebras over a number field K, M is an (A,B)-bimodule and N
is a (B,A)-bimodule. The mappings φ : M⊗B N → A and ϕ : N ⊗AM → B
are two bimodule homomorphisms satisfying φ(M ⊗N)M ′ = Mϕ(N ⊗M ′) and
ϕ(N ⊗ M)N ′ = Nφ(M ⊗ N ′) for any M,M ′ ∈ M and N,N ′ ∈ N . These
conditions insure that the set[

A M
N B

]
=

{[
A M
N B

]
| A ∈ A,M ∈M, N ∈ N , B ∈ B

}
forms an algebra over K under usual matrix operations. We call such an algebra a

generalized matrix algebra and denote it by U =

[
A M
N B

]
, where A and B are

two unital algebras and at least one of the two bimodules M and N is distinct
from zero. This kind of algebra was first introduced by Sands in [14]. Obviously,
whenM = 0 or N = 0, U degenerates to the triangular algebra. In Section 3, we
show that if δ is a generalized (m, n, l)-Jordan centralizer from U into itself, then
δ is a centralizer. We also study (m, n, l)-Jordan centralizers on AF C∗-algebras.
Throughout the paper, we assume m,n, l ∈ N are such that m+ l ≥ 1, n+ l ≥ 1.

2. Centralizers of certain reflexive algebras

In order to prove our main results, we need the following several lemmas.
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Lemma 2.1. Let A be a unital algebra with identity I. Suppose δ is a generalized
(m, n, l)-Jordan centralizer from A into itself. Then for any A,B ∈ A,

(m+ n+ l)δ(AB +BA)

= mδ(A)B +mδ(B)A+ nAδ(B) + nBδ(A)

+ lAδ(I)B + lBδ(I)A+ (λA+B − λA − λB)I. (2.1)

In particular, for any A ∈ A,

δ(A) =
m+ l

m+ n+ 2l
δ(I)A+

n+ l

m+ n+ 2l
Aδ(I) + λ(A), (2.2)

where we set λ(A) = 1
m+n+2l

(λA+I − λA)I for every A ∈ A.

Proof. Since δ is a generalized (m, n, l)-Jordan centralizer, we have

(m+ n+ l)δ(A2) = mδ(A)A+ nAδ(A) + lAδ(I)A+ λAI

for every A ∈ A. Replacing A by A + B in above equation, (2.1) holds. Letting
B = I in (2.1) gives (2.2), since λI = 0. �

Remark 2.2. For an (m, n, l)-Jordan centralizer, we could actually define it from
a unital algebra A to an A-bimodule. Hence when lemmas in this section are
applied to an (m, n, l)-Jordan centralizer δ, we will take it for granted that δ is
from a unital algebra A to its bimodule, since all the proofs remain true if we set
λA = 0 for all A ∈ A.

Remark 2.3. Obviously, each (1, 0, 0)-Jordan centralizer is a left Jordan cen-
tralizer and each (0, 1, 0)-Jordan centralizer is a right Jordan centralizer. So
by Lemma 2.1, it follows that every left Jordan centralizer of unital algebras is
a left centralizer and every right Jordan centralizer of unital algebras is a right
centralizer. Therefore every Jordan centralizer of unital algebras is a centralizer.

Let f be a linear mapping from an algebra A to its bimodule M. Recall
that f is a derivation if f(ab) = f(a)b + af(b) for all a, b ∈ A; it is a Jordan
derivation if f(a2) = f(a)a+ af(a) for every a ∈ A; it is a generalized derivation
if f(ab) = f(a)b + ad(b) for all a, b ∈ A, where d is a derivation from A to M;
and it is a generalized Jordan derivation if f(a2) = f(a)a+ad(a) for every a ∈ A,
where d is a Jordan derivation from A toM. From Remarks 2.2 and 2.3, we have
the following corollary.

Corollary 2.4. Let L be a subspace lattice on a Banach space X satisfying ∨{F :
F ∈ J (L)} = X or ∧{L− : L ∈ J (L)} = (0). If f is a generalized Jordan
derivation from algL to B(X), then f is a generalized derivation.

Proof. Since f is a generalized Jordan derivation, we have the relation

f(A2) = f(A)A+ Ad(A)
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for every A ∈ algL, where d is a Jordan derivation of algL. By [9, Theorem 2.1],
one can conclude that d is a derivation. Let δ = f − d. Then we have

δ(A2) = f(A2)− d(A2)

= f(A)A+ Ad(A)− Ad(A)− d(A)A

= f(A)A− d(A)A

= δ(A)A

for every A ∈ algL. This means that δ is a left Jordan centralizer. By Remark
2.3, δ is a left centralizer. Hence

f(AB) = d(AB) + δ(AB) = d(A)B + Ad(B) + δ(A)B = f(A)B + Ad(B)

for all A,B ∈ algL. In other words, f is a generalized derivation. �

Since every Jordan derivation of CSL algebras is a derivation [10], we also have
the following corollary.

Corollary 2.5. Let L be a CSL on a Hilbert space H. If f is a generalized Jordan
derivation from algL into itself, then f is a generalized derivation.

Lemma 2.6. Let A be a unital algebra and δ be a generalized (m, n, l)-Jordan
centralizer from A into itself. Then for every idempotent P ∈ A and every A ∈ A,
(i) δ(P ) = Pδ(I) = δ(I)P ;
(ii) δ(AP ) = δ(A)P + λ(AP )− λ(A)P ;
(iii) δ(PA) = Pδ(A) + λ(PA)− λ(A)P .

Proof. (i) Suppose P is an idempotent in A. It follows from Lemma 2.1 that

(m+ n+ 2l)δ(P ) = (m+ l)δ(I)P + (n+ l)Pδ(I) + (λP+I − λP )I. (2.3)

Right and left multiplication of (2.3) by P gives

Pδ(P )P = Pδ(I)P +
1

m+ n+ 2l
(λP+I − λP )P.

Since (m+n+ l)δ(P ) = mδ(P )P +nPδ(P )+ lP δ(I)P +λP I, multiplying P from
the right leads to

(n+ l)δ(P )P = n(Pδ(I)P +
1

m+ n+ 2l
(λP+I − λP )P ) + lP δ(I)P + λPP

= (n+ l)Pδ(I)P + (
n

m+ n+ 2l
(λP+I − λP ) + λP )P,

whence

δ(P )P = Pδ(I)P + εPP (2.4)

for some εP ∈ C. Similarly, Pδ(P ) = Pδ(I)P + ε′PP for some ε′P ∈ C.
Hence δ(P )P − εPP = Pδ(P ) − ε′PP . Right and left multiplication of P gives
εP = ε′P , which implies

δ(P )P = Pδ(P ). (2.5)

Replacing P by I − P in the above equation gives δ(I)P = Pδ(I).
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Now, we have from (2.3)

δ(P ) = δ(I)P +
1

m+ n+ 2l
(λP+I − λP )I. (2.6)

On the other hand, (2.4) and (2.5) yields

(m+ n+ l)δ(P ) = mδ(P )P + nPδ(P ) + lP δ(I)P + λP I

= (m+ n+ l)δ(P )P + λP I − lεPP,
right multiplication of which by P gives λP = lεP . Hence

δ(P ) = δ(P )P +
1

m+ n+ l
λP (I − P ). (2.7)

We then have from (2.6) that

δ(P )P = δ(I)P +
1

m+ n+ 2l
(λP+I − λP )P. (2.8)

Now (2.7) and (2.8) yield

δ(P ) = δ(I)P +
1

m+ n+ 2l
(λP+I − λP )P +

1

m+ n+ l
λP (I − P ),

which together with (2.6) implies

1

m+ n+ 2l
(λP+I − λP ) =

1

m+ n+ l
λP .

Thus we have

δ(P ) = δ(I)P +
1

m+ n+ l
λP I, (2.9)

while

δ(P ) =
m+ n

m+ n+ l
δ(P )P +

l

m+ n+ l
δ(I)P +

1

m+ n+ l
λP I. (2.10)

Comparing (2.9) and (2.10) gives

δ(I)P = δ(P )P.

This together with (2.8) gives

λ(P ) =
1

m+ n+ 2l
(λP+I − λP )I =

1

m+ n+ l
λP I = 0,

whence
δ(P ) = δ(I)P = Pδ(I).

(ii) By Lemma 2.1 and (i), we have

δ(AP ) =
m+ l

m+ n+ 2l
δ(I)AP +

n+ l

m+ n+ 2l
APδ(I) + λ(AP )

= (
m+ l

m+ n+ 2l
δ(I)A+

n+ l

m+ n+ 2l
Aδ(I))P + λ(AP )

= (δ(A)− λ(A))P + λ(AP )

= δ(A)P + λ(AP )− λ(A)P.

(iii) The proof is analogous to the proof of (ii). �



ON GENERALIZED (M, N, L)-JORDAN CENTRALIZERS 25

An subset I of an algebra A is called a left separating set of A if for every
A ∈ A, AI = 0 implies A = 0. We have the following simple but noteworthy
result.

Corollary 2.7. Suppose I is a left separating left ideal of a unital algebra A
and is contained in the algebra generated by all idempotents in A. Then each
generalized (m, n, l)-Jordan centralizer δ from A into itself is a centralizer.

Proof. Since I is contained in the algebra generated by all idempotents in A and
by (i) of Lemma 2.6, we have that δ(I) ∈ I ′, where I ′ denotes the commutant
of I. Hence δ(A) = δ(I)A + λ(A) = Aδ(I) + λ(A) for every A ∈ I according to
(2.2). For any A(6= KI) ∈ I, we have

(m+ n+ l)(δ(I)A2 + λ(A2))

= (m+ n+ l)δ(A2)

= mδ(A)A+ nAδ(A) + lAδ(I)A+ λAI

= m(δ(I)A2 + λ(A)A) + n(A2δ(I) + Aλ(A)) + lA2δ(I) + λAI,

which implies λ(A)A = kI for some k ∈ K.
Hence λ(A) = 0 and δ(A) = δ(I)A = Aδ(I) for every A ∈ I. Then Lemma

2.6 yields Aδ(I)B = ABδ(I) = δ(AB) = δ(I)AB for every B ∈ I, and since I
is a separating left ideal, we have Aδ(I) = δ(I)A for every A ∈ A. Therefore,
δ(A) = δ(I)A + λ(A) = Aδ(I) + λ(A) for every A ∈ A. Now by the same
argument as above, we have that δ(A) = δ(I)A = Aδ(I) for every A ∈ A and
this completes the proof. �

Remark 2.8. By [3, Proposition 2.2], [13, Example 6.2], we see that the class of
algebras we discussed in Corollary 2.7 contains a lot of algebras and is therefore
very large.

The proof of the following lemma is analogous to the proof of [8, Proposition
1.1]. For the sake of completeness, we present the proof here.

Lemma 2.9. Let E and F be non-zero subspaces of X and X∗ respectively. Let
φ : E × F → B(X) be a bilinear mapping such that φ(x, f)X ⊆ Kx for all
x ∈ E and f ∈ F . Then there exists a linear mapping S : F → X∗ such that
φ(x, f) = x⊗ Sf for all x ∈ E and f ∈ F .

Proof. For any non-zero vectors x ∈ E and f ∈ F , since φ(x, f)X ⊆ Kx,
there exists a continuous linear functional hx,f on X such that for each z ∈ X,
φ(x, f)z = hx,f (z)x. That is, for all x ∈ E and f ∈ F ,

φ(x, f) = x⊗ hx,f (2.11)

We claim that hx,f depends only on f . To see this, fix a non-zero functional f
in F , and let x1 and x2 be non-zero vectors in E. Suppose that x1 and x2 are
linearly independent. For all z ∈ X, by (2.11) we have

hx1+x2,f (z)(x1 + x2) = φ(x1 + x2, f)z

= φ(x1, f)z + φ(x2, f)z

= hx1,f (z)x1 + hx2,f (z)x2
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from which we have

(hx1+x2,f (z)− hx1,f (z))x1 = (hx2,f (z)− hx1+x2,f (z))x2.

So hx1,f = hx1+x2,f = hx2,f . Now suppose that x1 and x2 are linearly dependent.
Let x2 = kx1. Then

x2 ⊗ hx2,f = φ(x2, f) = kφ(x1, f) = kx1 ⊗ hx1,f = x2 ⊗ hx1,f ,

which yields hx1,f = hx2,f . Thus φ(x, f) = x⊗hf for all x ∈ E and f ∈ F . Hence
there exists a linear mapping S from F to X∗ such that φ(x, f) = x ⊗ Sf . It is
easy to check that the mapping S is well defined and linear. �

Lemma 2.10. Let L be a subspace lattice on a Banach space X and δ be a
generalized (m, n, l)-Jordan centralizer from algL into itself. Suppose that E
and L are in J (L) such that E− � L. Let x be in E and f be in L⊥−. Then
(δ(x⊗ f)− λ(x⊗ f))X ⊆ Kx.

Proof. Since E− � L, we have that E ≤ L. So x⊗ f ∈ algL. Suppose f(x) 6= 0,
it follows from Lemmas 2.1 and 2.6 that λ(x⊗ f) = 0 and δ(x⊗ f) = x⊗ fδ(I).
Thus δ(x⊗ f)X ⊆ Kx.

Now we assume f(x) = 0. Choose z from L and g from E⊥− such that g(z) = 1.
Then

(m+ n+ 2l)(m+ n+ l)δ(x⊗ f)

=(m+ n+ 2l)(m+ n+ l)δ((x⊗ g)(z ⊗ f) + (z ⊗ f)(x⊗ g))

=(m+ n+ 2l)(mδ(x⊗ g)(z ⊗ f) + n(x⊗ g)δ(z ⊗ f) + l(x⊗ g)δ(I)(z ⊗ f))

+ (m+ n+ 2l)(mδ(z ⊗ f)(x⊗ g) + n(z ⊗ f)δ(x⊗ g)

+ l(z ⊗ f)δ(I)(x⊗ g)) + (m+ n+ 2l)(λx⊗g+z⊗f − λx⊗g − λz⊗f )I

=(m2 +ml)δ(I)x⊗ f + (n2 + nl)x⊗ fδ(I)

+ 2(mn+ml + nl + l2)(x⊗ gδ(I)z ⊗ f + z ⊗ fδ(I)x⊗ g) + λ1I

for some λ1 ∈ K.
On the other hand,

(m+ 2n+ l)(m+ n+ l)δ(x⊗ f)

=(m+ n+ l)((m+ l)δ(I)x⊗ f + (n+ l)x⊗ fδ(I) + (λx⊗f+I − λx⊗f )I)

=(m2 + 2ml + l2 +mn+ nl)δ(I)x⊗ f
+ (ml +mn+ l2 + 2nl + n2)x⊗ fδ(I) + λ2I

for some λ2 ∈ K.
So

δ(I)x⊗ f + x⊗ fδ(I) = 2x⊗ gδ(I)z ⊗ f + 2z ⊗ fδ(I)x⊗ g + λI (2.12)

for some λ ∈ K.
Notice that (2.12) is valid for all z in L satisfying g(z) = 1. Applying this

equation to x, we have

f(δ(I)x)x = 2g(x)f(δ(I)x)z + λx. (2.13)
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If g(x) = 0 and f(z) = 0, then f(δ(I)x) = λ. Substituting z+ x for z in (2.12)
gives

δ(I)x⊗ f + x⊗ fδ(I) = 2x⊗ gδ(I)(z + x)⊗ f + 2λ(z + x)⊗ g + λI. (2.14)

Comparing (2.12) with (2.14) yields

g(δ(I)x)x⊗ f + λx⊗ g = 0.

Applying this equation to z leads to λx = 0, which means f(δ(I)x) = λ = 0.
If g(x) = 0 and f(z) 6= 0, from (2.13) we also have f(δ(I)x) = λ, and it follows

from Lemma 2.6 that

δ(I)x⊗ f + x⊗ fδ(I) = 2x⊗ gδ(I)z ⊗ f + 2z ⊗ fδ(I)x⊗ g + λI

= 2(x⊗ g)(z ⊗ f)δ(I) + 2δ(I)(z ⊗ f)(x⊗ g) + λI

= 2x⊗ fδ(I) + λI,

whence

δ(I)x⊗ f = x⊗ fδ(I) + λI.

Applying the above equation to x yields f(δ(I)x) = −λ. Thus f(δ(I)x) = λ = 0.
If g(x) 6= 0, replacing z by 1

g(x)
x in (2.13) gives f(δ(I)x) = −λ, while

δ(I)x⊗ f + x⊗ fδ(I) = 2x⊗ gδ(I)z ⊗ f + 2z ⊗ fδ(I)x⊗ g + λI

= 2δ(I)(x⊗ g)(z ⊗ f) + 2(z ⊗ f)(x⊗ g)δ(I) + λI

= 2δ(I)(x⊗ f) + λI.

Hence

x⊗ fδ(I) = δ(I)x⊗ f + λI. (2.15)

Applying (2.15) to x leads to f(δ(I)x) = λ. Therefore, f(δ(I)x) = λ = 0.
So by (2.12), we obtain δ(I)x⊗f = 2g(δ(I)z)x⊗f −x⊗fδ(I). It follows from

Lemma 2.1 that

δ(x⊗ f) =
m+ l

m+ n+ 2l
δ(I)(x⊗ f) +

n+ l

m+ n+ 2l
(x⊗ f)δ(I) + λ(x⊗ f)

=
m+ l

m+ n+ 2l
(2g(δ(I)z)x⊗ f − x⊗ fδ(I))

+
n+ l

m+ n+ 2l
(x⊗ f)δ(I) + λ(x⊗ f)

=
2(m+ l)

m+ n+ 2l
g(δ(I)z)x⊗ f +

n−m
m+ n+ 2l

(x⊗ f)δ(I) + λ(x⊗ f).

Hence (δ(x⊗ f)− λ(x⊗ f))X ⊆ Kx. �

Theorem 2.11. Let L be a subspace lattice on a Banach space X satisfying
∨{F : F ∈ J (L)} = X. If δ is a generalized (m, n, l)-Jordan centralizer from
algL into itself, then δ is a centralizer. In particular, the conclusion holds if L
has the property X− 6= X.
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Proof. Let E be in J (L). By ∨{F : F ∈ J (L)} = X, there is an element L in
J (L) such that E− � L. Let x be in E and f be in (L−)⊥. Let δ = δ − λ. Then

δ(I) = δ(I), and it follows from Lemmas 2.9 and 2.10 that there exists a linear
mapping S : (L−)⊥ → X∗ such that

δ(x⊗ f) = x⊗ Sf.
This together with

m+ l

m+ n+ 2l
δ(I)x⊗ f +

n+ l

m+ n+ 2l
x⊗ fδ(I) = δ(x⊗ f)

leads to

x⊗ (Sf − n+ l

m+ n+ 2l
δ(I)∗f) =

m+ l

m+ n+ 2l
δ(I)x⊗ f.

Thus there exists a constant λE in K such that δ(I)x = λEx for every x ∈ E.
Similarly, for every y ∈ L, we have δ(I)y = λLy.

If f(x) 6= 0, it follows from Lemma 2.6 that δ(x⊗ f) = δ(I)x⊗ f = x⊗ fδ(I).
If f(x) = 0, according to the proof of Lemma 2.10, we can choose z from L

and g from E⊥− such that g(z) = 1 and δ(I)x⊗ f = 2g(δ(I)z)x⊗ f − x⊗ fδ(I).

Since x ∈ E ≤ L, we have δ(I)x = λLx. Thus

δ(I)x⊗ f = 2λLx⊗ f − x⊗ fδ(I) = 2δ(I)x⊗ f − x⊗ fδ(I).

Hence δ(x⊗ f) = δ(I)x⊗ f = x⊗ fδ(I).
Therefore, for any x ∈ E, f ∈ (L−)⊥ and A ∈ algL, we have

Aδ(I)x⊗ f = Ax⊗ fδ(I) = δ(I)Ax⊗ f,
which yields Aδ(I)x = δ(I)Ax for any x ∈ E.

Now by ∨{F : F ∈ J (L)} = X, we have δ(A) = Aδ(I) = δ(I)A for any
A ∈ algL, this means δ(A) = Aδ(I) + λ(A) = δ(I)A + λ(A). The remaining
part goes along the same line as the proof of Corollary 2.7 and this completes the
proof. �

Remark 2.12. By [7], a subspace lattice L is said to be completely distributive
if L = ∨{E ∈ L : E− � L} and L = ∧{E− : E ∈ L and E � L} for all L ∈
L. It follows that completely distributive subspace lattices satisfy the condition
∨{E : E ∈ J (L)} = X. Thus Theorem 2.11 applies to completely distributive
subspace lattice algebras. A subspace lattice L is called a J -subspace lattice on
X if ∨{K : K ∈ J (L)} = X, ∧{K− : K ∈ J (L)} = (0), K ∨ K− = X and
K ∧ K− = (0) for any K ∈ J (L). Note also that the condition ∨{K : K ∈
J (L)} = X is part of the definition of J -subspace lattices, thus Theorem 2.11
also applies to J -subspace lattice algebras.

With a proof similar to the proof of Theorem 2.11, we have the following
theorem.

Theorem 2.13. Let L be a subspace lattice on a Banach space X satisfying
∧{L− : L ∈ J (L)} = (0). If δ is a generalized (m, n, l)-Jordan centralizer from
algL into itself, then δ is a centralizer. In particular, the conclusion holds if L
has the property (0)+ 6= (0).
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As for the cases of (m,n, l)-Jordan centralizers, we have from Remark 2.2 ,
Theorem 2.11 and Theorem 2.13 the following theorem.

Theorem 2.14. Let L be a subspace lattice on a Banach space X satisfying
∨{F : F ∈ J (L)} = X or ∧{L− : L ∈ J (L)} = (0). If δ is an (m, n, l)-Jordan
centralizer from algL to B(X), then δ is a centralizer.

In the rest of this section we will investigate generalized (m,n, l)-Jordan cen-
tralizers on CSL algebras. Let H be a complex separable Hilbert space and L
be a CSL on H. Let L⊥ be the lattice {I − E : E ∈ L} and L′ be the com-
mutant of L. It is easy to verify that (algL)∗ = algL⊥ for any lattice L on H
and the diagonal (algL) ∩ (algL)∗ = L′ is a von Neumann algebra. Given a CSL
L on a Hilbert space H, we define G1(L) and G2(L) to be the projections onto
the closures of the linear spans of {EA(I − E)x : E ∈ L, A ∈ algL, x ∈ H}
and {(I − E)A∗Ex : E ∈ L, A ∈ algL, x ∈ H}, respectively. For simplicity, we
write G1 and G2 for G1(L) and G2(L). Since CSL is reflexive, it is easy to verify
that G1 ∈ L and G2 ∈ L⊥. In [10], Lu showed that G1 ∨ G2 ∈ L ∩ L⊥ and
algL(I −G1 ∨G2) ⊆ L′.

Theorem 2.15. Let L be a CSL on a complex separable Hilbert space H. If δ is
a bounded generalized (m, n, l)-Jordan centralizer from algL into itself, then δ
is a centralizer.

Proof. We divide the proof into two cases.
Case 1: Suppose G1 ∨G2 = I.

Let A ∈ algL. For any T ∈ algL and P ∈ L, since

PT (I − P ) = P − (P − PT (I − P )),

which is a difference of two idempotents, it follows from Lemma 2.6 that

δ(I)APT (I − P ) = Aδ(I)PT (I − P )

= δ(APT (I − P ))

= δ(A)PT (I − P )− λ(A)PT (I − P ).

By arbitrariness of P and T , we have Aδ(I)G1 = δ(I)AG1 = (δ(A)−λ(A))G1.
That is,

δ(A)G1 = (Aδ(I) + λ(A))G1 = (δ(I)A+ λ(A))G1,

whence

δ(AG1) = δ(A)G1 + λ(AG1)− λ(A)G1

= δ(I)AG1 + λ(AG1)

= Aδ(I)G1 + λ(AG1). (2.16)

Define δ∗(A∗) = δ(A)∗ for every A∗ ∈ algL⊥. So

(m+ n+ l)δ∗((A∗)2) = ((m+ n+ l)δ(A2))∗

= (mδ(A)A+ nAδ(A) + lAδ(I)A+ λAI)∗

= mA∗δ∗(A∗) + nδ∗(A∗)A∗ + lA∗δ∗(I)A∗ + λA∗ ,
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where λA∗ = λA.
With the proof similar to the proof of (2.16), we have

G2δ(I)A = G2Aδ(I) = G2(δ(A)− λ(A)).

So by G1 ∨G2 = I,

(I −G1)δ(I)A = (I −G1)Aδ(I) = (I −G1)(δ(A)− λ(A)),

whence

δ((I −G1)A) = (1−G1)δ(A) + λ((I −G1)A)− λ(A)(I −G1)

= (1−G1)(δ(A)− λ(A)) + λ((I −G1)A)

= (1−G1)δ(I)A+ λ((I −G1)A)

= (I −G1)Aδ(I) + λ((I −G1)A). (2.17)

Hence by (2.16) and (2.17),

δ(A) = δ(AG1 +G1A(I −G1) + (I −G1)A)

= Aδ(I)G1 + λ(AG1) +G1A(I −G1)δ(I)

+ (I −G1)Aδ(I) + λ((1−G1)A)

= G1Aδ(I)G1 +G1Aδ(I)(I −G1) + (I −G1)Aδ(I)

+ λ(AG1) + λ((1−G1)A) + λ(G1A(1−G1))

= Aδ(I) + λ(A).

Similarly, δ(A) = δ(I)A+ λ(A). The remaining part goes along the same line as
the proof of Corollary 2.7 and we conclude that δ is a centralizer in this case.
Case 2: Suppose G1 ∨G2 < I.

Let G = G1∨G2. Since G ∈ L∩L⊥ and algL(I−G) ⊆ L′, so (I−G)algL(I−G)
is a von Neumann algebra. The algebra algL can be written as the direct sum

algL = alg(GLG)⊕ alg((I −G)L(I −G)).

By Lemma 2.6 we have that

δ(GAG) = Gδ(A)G and δ((I −G)A(I −G)) = (I −G)δ(A)(I −G)

for every A ∈ algL. Therefore δ can be written as δ(1) ⊕ δ(2), where δ(1) is a
generalized (m, n, l)-Jordan centralizer from alg(GLG) into itself and δ(2) is a
generalized (m, n, l)-Jordan centralizer from alg((I−G)L(I−G)) into itself. It is
easy to show that G1(GLG)∨G2(GLG) = G. So it follows from Case 1 that δ(1)

is a centralizer on alg(GLG). (I −G)algL(I −G) is a von Neumann algebra and
δ(2) is continuous, so by Corollary 2.7, δ(2) is a centralizer on alg((I−G)L(I−G)).
Consequently, δ is a centralizer on algL. �

3. Centralizers of generalized matrix algebras

LetA be a unital algebra over a number fieldK. We callM a unital A-bimodule
ifM is an A-bimodule and satisfies IAM = MIA = M for every M ∈M. We call
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M a faithful left A-module if for any A ∈ A, AM = 0 implies A = 0. Similarly,
we can define a faithful right A-module.

Throughout this section, we denote the generalized matrix algebra originated

from the Morita context (A,B,M,N , φMN , ϕNM) by U =

[
A M
N B

]
, where

A,B are two unital algebras over a number field K and M,N are two unital
bimodules, and at least one ofM andN is distinct from zero. We use the symbols
IA and IB to denote the unit element inA and B, respectively. Moreover, we make
no difference between λ(A) = 1

m+n+2l
(λA+I − λA)I and 1

m+n+2l
(λA+I − λA) ∈ K.

Lemma 3.1. Let δ be a generalized (m, n, l)-Jordan centralizer from U into
itself. Then δ is of the form

δ

([
A M
N B

])
=

 a11(A) + λ

([
0 M
N B

])
IA c12(M)

d21(N) b22(B) + λ

([
A M
N 0

])
IB


for any A ∈ A, M ∈ M, N ∈ N , B ∈ B, where a11 : A → A, c12 : M → M,
d21 : N → N , b22 : B → B are all linear mappings satisfying

c12(M) = a11(IA)M = Mb22(IB) and d21(N) = Na11(IA) = b22(IB)N.

Proof. Assume that δ is a generalized (m, n, l)-Jordan centralizer from U into
itself. Because δ is linear, for any A ∈ A, M ∈M, N ∈ N , B ∈ B, we can write

δ

([
A M
N B

])
=

[
a11(A) + b11(B) + c11(M) + d11(N) a12(A) + b12(B) + c12(M) + d12(N)
a21(A) + b21(B) + c21(M) + d21(N) a22(A) + b22(B) + c22(M) + d22(N)

]
where aij, bij, cij, dij are linear mappings, i, j ∈ {1, 2}.

Let P =

[
IA 0
0 0

]
and for any A ∈ A, S =

[
A 0
0 0

]
. By Lemma 2.6,

δ(PS) = Pδ(S) + λ(PS)− λ(S)P and δ(SP ) = δ(S)P + λ(SP )− λ(S)P , so we
have[
a11(A) a12(A)
a21(A) a22(A)

]
= δ

([
A 0
0 0

])
= δ

([
IA 0
0 0

] [
A 0
0 0

])
=

[
IA 0
0 0

]
δ

([
A 0
0 0

])
+

[
λ(PS)IA 0

0 λ(PS)IB

]
−
[
λ(S)IA 0

0 0

]

=

 a11(A) a12(A)

0 λ

([
A 0
0 0

])
IB


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and

[
a11(A) a12(A)
a21(A) a22(A)

]
= δ

([
A 0
0 0

])
= δ

([
A 0
0 0

] [
IA 0
0 0

])
= δ

([
A 0
0 0

])[
IA 0
0 0

]
+

[
λ(SP )IA 0

0 λ(SP )IB

]
−
[
λ(S)IA 0

0 0

]

=

 a11(A) 0

a21(A) λ

([
A 0
0 0

])
IB

 .
So we have

a12(A) = 0, a21(A) = 0 and a22(A) = λ

([
A 0
0 0

])
IB .

Similarly, by considering S =

[
0 M
0 0

]
and P =

[
IA 0
0 0

]
, we obtain that

c11(M) = λ

([
0 M
0 0

])
IA, c21(M) = 0 and c22(M) = λ

([
0 M
0 0

])
IB

for every M ∈M.

By considering S =

[
0 0
N 0

]
and P =

[
IA 0
0 0

]
, we obtain d11(N) =

λ

([
0 0
N 0

])
IA, d12(N) = 0 and d22(N) = λ

([
0 0
N 0

])
IB for every N ∈ N .

By considering S =

[
0 0
0 B

]
and Q =

[
0 0
0 IB

]
, we obtain

b11(B) = λ

([
0 0
0 B

])
IA, b12(B) = 0 and b21(B) = 0

for every B ∈ B.

For any A ∈ A, M1 ∈ M, M2 ∈ M and B ∈ B, let S =

[
A M1

0 0

]
and
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T =

[
0 M2

0 B

]
. Then by Lemma 2.1 we have

(m+ n+ l)

[
λ(ST )IA c12(AM2 +M1B)

0 λ(ST )IB

]
= (m+ n+ l)δ(ST ) = (m+ n+ l)δ(ST + TS)

= m

 a11(A) + λ

([
0 M1

0 0

])
IA c12(M1)

0 λ

([
A M1

0 0

])
IB

[ 0 M2

0 B

]

+m

 λ

([
0 M2

0 B

])
IA c12(M2)

0 b22(B) + λ

([
0 M2

0 0

])
IB

[ A M1

0 0

]

+ n

[
A M1

0 0

] λ

([
0 M2

0 B

])
IA c12(M2)

0 λ

([
0 M2

0 0

])
IB + b22(B)



+ n

[
0 M2

0 B

] a11(A) + λ

([
0 M1

0 0

])
IA c12(M1)

0 λ

([
A M1

0 0

])
IB


+ l

[
A M1

0 0

] [
a11(IA) 0

0 b22(IB)

] [
0 M2

0 B

]
+

[
(λS+T − λS − λT )IA 0

0 (λS+T − λS − λT )IB

]
.

The above matrix equation implies

(m+ n+ l)c12(AM2 +M1B)

= ma11(A)M2 +mλ

([
0 M1

0 0

])
M2 +mc12(M1)B + nM1b22(B)

+mλ

([
0 M2

0 B

])
M1 + nAc12(M2) + nλ

([
0 M2

0 0

])
M1

+ nλ

([
A M1

0 0

])
M2 + lAa11(IA)M2 + lM1b22(IB)B. (3.1)

Taking B = 0 , A = IA and M1 = 0 in (3.1), we have c12(M) = a11(IA)M
for every M ∈ M. Taking A = 0, B = IB and M2 = 0 in (3.1), we have
c12(M) = Mb22(IB) for every M ∈M.

Symmetrically, d21(N) = b22(IB)N = Na11(IA) for every N ∈ N . �

Theorem 3.2. Let δ be a generalized (m, n, l)-Jordan centralizer from U into
itself. Suppose that one of the following conditions holds:
(1) M is a faithful left A-module and a faithful right B-module;
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(2) M is a faithful left A-module and N is a faithful left B-module;
(3) N is a faithful right A-module and a faithful left B-module;
(4) N is a faithful right A-module and M is a faithful right B-module.
Then δ is a centralizer.

Proof. Let δ be a generalized (m, n, l)-Jordan centralizer from U into itself. By
Lemma 3.1, we have

c12(M) = a11(IA)M = Mb22(IB) (3.2)

for every M ∈M, and

d21(N) = Na11(IA) = b22(IB)N (3.3)

for every N ∈ N .
We assume that (1) holds. The proofs for the other cases are analogous.
For any A ∈ A and M ∈ M, a11(IA)AM = AMb22(IB) = Aa11(IA)M . Since

M is a faithful left A-module, we have

a11(IA)A = Aa11(IA),

whence

a11(A) = Aa11(IA) + λ

([
A 0
0 0

])
IA = a11(IA)A+ λ

([
A 0
0 0

])
IA. (3.4)

For any B ∈ B and M ∈ M, MBb22(IB) = a11(IA)MB = Mb22(IB)B. Since M
is a faithful right B-module, we have

b22(B) = b22(IB)B + λ

([
0 0
0 B

])
IB = Bb22(IB) + λ

([
0 0
0 B

])
IB. (3.5)

For any A ∈ A, M ∈M, N ∈ N and B ∈ B,

δ

([
A M
N B

])
=

 a11(A) + λ

([
0 M
N B

])
IA c12(M)

d21(N) b22(B) + λ

([
A M
N 0

])
IB

 ,
δ(I)

[
A M
N B

]
=

[
a11(IA)A a11(IA)M
b22(IB)N b22(IB)B

]
and [

A M
N B

]
δ(I) =

[
Aa11(IA) Mb22(IB)
Na11(IA) Bb22(IB)

]
.

So by (3.2)–(3.5), we have for every S ∈ U ,

δ(S) = δ(I)S + λ(S) = Sδ(I) + λ(S).

The remaining part goes along the same line as the proof of Corollary 2.7 and
this completes the proof. �
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Note that a unital prime ring A with a non-trivial idempotent P can be written

as the matrix form

[
PAP PA(I − P )

(I − P )AP (I − P )A(I − P )

]
. Moreover, for any A ∈ A,

PAPA(I − P ) = 0 implies PAP = 0 and PA(I − P )A(I − P ) = 0 implies
(I − P )A(I − P ) = 0.

Corollary 3.3. Let A be a unital prime ring with a non-trivial idempotent P .
If δ is a generalized (m, n, l)-Jordan centralizer from A into itself, then δ is a
centralizer.

As von Neumann algebras have rich idempotent elements and factor von Neu-
mann algebras are prime, the following corollary is obvious.

Corollary 3.4. Let A be a factor von Neumann algebra. If δ is a generalized
(m, n, l)-Jordan centralizer from A into itself, then δ is a centralizer.

Obviously, when N = 0, U degenerates to an upper triangular algebra. Thus
we have the following corollary.

Corollary 3.5. Let U = Tri(A,M,B) be an upper triangular algebra such that
M is a faithful (A, B)-bimodule. If δ is a generalized (m, n, l)-Jordan centralizer
from A into itself, then δ is a centralizer.

Let N be a nest on a Hilbert space H and algN be the associated algebra. If
N is trivial, then algN is B(H). If N is nontrivial, take a nontrivial projection
P ∈ N . Let A = PalgNP , M = PalgN (I − P ) and B = (I − P )algN (I − P ).
Then M is a faithful (A, B)-bimodule, and algN=Tri(A, M, B) is an upper
triangular algebra. Thus as an application of Corollaries 3.4 and 3.5, we have the
following corollary.

Corollary 3.6. Let N be a nest on a Hilbert space H and algN be the associated
algebra. If δ is a generalized (m, n, l)-Jordan centralizer from algN into itself,
then δ is a centralizer.

In the following, we study (m, n, l)-Jordan centralizers on AF C∗-algebras. A
unital C∗-algebra B is called approximately finite (AF) if B contains an increasing
chain Bn ⊆ Bn+1 of finite-dimensional C∗-subalgebra, all containing the unit I of
B, such that

⋃∞
n=1 Bn is dense in B. For more details and related terms, we refer

the readers to [5, 11].

Lemma 3.7. Let Mn(C) be the set of all n × n complex matrices, A be a CSL
subalgebra of Mn1(C)⊕ · · · ⊕Mnk

(C), and B be an algebra such that Mn1(C)⊕
· · ·⊕Mnk

(C) ⊆ B as an embedding. If δ is an (m, n, l)-Jordan centralizer from
A into B, then δ is a centralizer.

Proof. Let A be the linear span of its matrix units {Eij}, and since δ is linear,
we only need to show that for any i, j,

δ(Eij) = Eijδ(I) = δ(I)Eij. (3.6)

If i = j, by Lemma 2.4, (3.6) is clear.
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Next, we will prove (3.6) for i 6= j. By Lemma 2.1 and Remark 2.2, we have

(m+ n+ l)δ(Eij) = (m+ n+ l)δ(EiiEij + EijEii)

= mδ(Eii)Eij + nEiiδ(I)Eij + lEiiδ(I)Eij

= (m+ n+ l)δ(Eii)Eij,

Hence δ(Eij) = δ(Eii)Eij for any i, j.
Similarly, we have δ(Eij) = Eijδ(Ejj) for any i, j.
Hence for any i, j,

Eijδ(I) = Eij

n∑
k=1

δ(Ekk) = Eij

n∑
k=1

Ekkδ(Ekk) = Eijδ(Ejj) = δ(Eij).

Similarly, we have for any i, j, δ(I)Eij = δ(Eij) and the proof is complete. �

Theorem 3.8. Let A be a canonical subalgebra of an AF C∗-algebra B. If δ is a
bounded (m, n, l)-Jordan centralizer from A into B, then δ is a centralizer.

Proof . Suppose δ is a bounded (m, n, l)-Jordan centralizer from A into B.
Since An is a CSL algebra, δ|An is a centralizer by Lemma 3.7; that is, for any S
in An,

δ(S) = δ(I)S = Sδ(I).

Since δ is norm continuous and ∪∞i=1An is dense in A, it follows that δ is a
centralizer.
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