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QUADRUPLE FIXED POINT THEOREMS FOR NONLINEAR
CONTRACTIONS IN PARTIALLY ORDERED METRIC SPACES

ERDAL KARAPINAR1∗ AND VASILE BERINDE2

Communicated by M. A. Japón Pineda

Abstract. In this paper we obtain existence and uniqueness results for quadru-
ple fixed points of operators F : X4 → X. We also give some examples to
support our results.

1. Introduction and preliminaries

The basic topological properties of ordered sets were discussed by Wolk[17] and
Monjardet [15]. The existence of fixed points in partially ordered metric spaces
was considered by Ran and Reurings [16]. Recently, many papers have been
reported on partially ordered metric spaces (see e.g. [16, 1, 5, 13, 4, 2, 3]).

The notion of coupled fixed point appears to have been introduced by Guo
and Laksmikantham [8] in connexion to monotone operators. Recently, this con-
cept has been reconsidered by Bhaskar and Lakshmikantham [5] in connexion to
mixed monotone operators that satisfy a certain contractive type condition. More
specifically, they proved the existence, as well as the existence and uniqueness of
a coupled fixed point of an operator F : X × X → X on a complete metric
space (X, d) where X has an partial order. Later, several authors have devoted
their efforts to the study of coupled fixed points or coupled coincidence points
[14, 11, 10, 7, 6]. For example, Lakshmikantham and Ćirić in [13] who extended
the results in [5] by considering g-monotone operators.
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Very recently, Berinde and Borcut [4] by continuing this trend have introduced
the concept of tripled fixed point and proved some related theorems. In this man-
uscript, in a natural fashion, the quadruple fixed point is considered and by using
the mixed g-monotone mapping, several existence, as well existence and unique-
ness of quadruple fixed points are obtained. First we recall some basic definitions
and results from which quadruple fixed point is inspired. The triple (X, d,≤)
is called partially ordered metric spaces (POMS) if (X,≤) is a partially ordered
set and (X, d) is a metric space. Further, if (X, d) is a complete metric space,
the triple (X, d,≤) is called partially ordered complete metric spaces (POCMS).
Throughout the manuscript, we assume that X 6= ∅ and Xk = X ×X × · · ·X︸ ︷︷ ︸

k−times

.

Then the mapping ρk : Xk ×Xk → [0,∞) such that

ρk(x,y) := d(x1, y1) + d(x2, y2) + · · ·+ d(xk, yk),

where x = (x1, x2, · · · , xk),y = (y1, y2, · · · , yk) ∈ Xk, is a metric on Xk.
An element (x, y) ∈ X2 is said to be a coupled fixed point of the mapping

F : X ×X → X if

F (x, y) = x and F (y, x) = y. (1.1)

Let (X,≤) be partially ordered set and F : X ×X → X. The operator F is said
to have mixed monotone property if F (x, y) is monotone nondecreasing in x and
is monotone non-increasing in y, that is, for any x, y ∈ X,

x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y), for x1, x2 ∈ X, and (1.2)

y1 ≤ y2 ⇒ F (x, y2) ≤ F (x, y1), for y1, y2 ∈ X. (1.3)

Throughout this paper, let (X, d,≤) be a POCMS and consider on the product
space X ×X the following order:

(u, v) ≤ (x, y) ⇔ u ≤ x, y ≤ v; for all (x, y), (u, v) ∈ X ×X. (1.4)

In [5] Bhaskar and Lakshmikantham proved the existence of coupled fixed points
for an operator F : X×X → X having the mixed monotone property on (X, d,≤)
by supposing that there exists a k ∈ [0, 1) such that

d(F (x, y), F (u, v)) ≤ k

2
[d(x, u) + d(y, v)] , for all u ≤ x, y ≤ v. (1.5)

Inspired by the definition of mixed monotone property, the concept of a g-mixed
monotone mapping introduced by Lakshmikantham and Ćirić [13] as follows:
On a partially ordered set (X,≤) an operator F : X2 → X is said to have the
mixed g-monotone property if F (x, y) is monotone g-non-decreasing in x and
is monotone g-non-increasing in y, where g : X → X is a given self-mapping.
It is clear that the definition of Lakshmikantham and Ćirić [13] reduces to the
definition of Bhaskar and Lakshmikantham [5] when g is the identity map. In this
context, an element (x, y) ∈ X × X is called a coupled coincidence point of the
operators F : X2 → X and g : X → X if

F (x, y) = g(x), F (y, x) = g(y). (1.6)
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Furthermore, (x, y) is called the common coupled fixed point of F and g if

F (x, y) = g(x) = x, F (y, x) = g(y) = y. (1.7)

Let F : X ×X → X and g : X → X where X 6= ∅. The mappings F and g are
said to commute if

g(F (x, y)) = F (g(x), g(y)), for all x, y ∈ X. (1.8)

Lakshmikantham and Ćirić [13] proved the existence of the common coupled fixed
point of the operators sequentially continuous g : X → X and F : X2 → X,
where F has as the mixed g-monotone property, F (X ×X) ⊂ g(X) and F and g
commutes, as an extension of the fixed point results in [5]. They also proved the
uniqueness of the coupled common fixed point of F and g under some additional
assumptions. Berinde and Borcut [4] introduced the following partial order on
the product space X3 = X ×X ×X:

(u, v, w) ≤ (x, y, z) if and only if x ≥ u, y ≤ v, z ≥ w, (1.9)

where (u, v, w), (x, y, z) ∈ X3. Regarding this partial order, they introduced the
following definition:

Definition 1.1. (See [4]) Let (X,≤) be partially ordered set and F : X3 → X.
We say that F has the mixed monotone property if F (x, y, z) is monotone non-
decreasing in x and z, and it is monotone non-increasing in y, that is, for any
x, y, z ∈ X

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y, z) ≤ F (x2, y, z),
y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y1, z) ≥ F (x, y2, z),
z1, z2 ∈ X, z1 ≤ z2 ⇒ F (x, y, z1) ≤ F (x, y, z2).

(1.10)

Theorem 1.2. (See [4]) Let (X,≤) be partially ordered set and (X, d) be a com-
plete metric space. Let F : X × X × X → X be a mapping having the mixed
monotone property on X. Assume that there exist constants a, b, c ∈ [0, 1) such
that a+ b+ c < 1 for which

d(F (x, y, z), F (u, v, w)) ≤ ad(x, u) + bd(y, v) + cd(z, w) (1.11)

for all x ≥ u, y ≤ v, z ≥ w. Assume that X has the following properties:

(i) if non-decreasing sequence xn → x, then xn ≤ x for all n,
(ii) if non-increasing sequence yn → y, then yn ≥ y for all n,

If there exist x0, y0, z0 ∈ X such that

x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0), z0 ≤ F (x0, y0, z0)

then there exist x, y, z ∈ X such that

F (x, y, z) = x and F (y, x, y) = y and F (z, y, x) = z
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Starting from this rich background, the aim of this paper is to introduce the
concept of quadruple fixed point and prove the existence and uniqueness of the
common quadruple fixed point of F : X4 → X and g : X → X on a POCMS
(X, d,≤) under certain appropriate conditions. Regarding the paper of Haghi–
Rezapour–Shahzad [9], we emphasize that our results are real generalization.

2. Quadruple fixed point theorems

Definition 2.1. (See [12]) Let (X,≤) be partially ordered set and F : X4 → X.
We say that F has the mixed monotone property if F (x, y, z, w) is monotone non-
decreasing in x and z, and it is monotone non-increasing in y and w, that is, for
any x, y, z, w ∈ X

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y, z, w) ≤ F (x2, y, z, w),
y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y1, z, w) ≥ F (x, y2, z, w),
z1, z2 ∈ X, z1 ≤ z2 ⇒ F (x, y, z1, w) ≤ F (x, y, z2, w),

w1, w2 ∈ X, w1 ≤ w2 ⇒ F (x, y, z, w1) ≥ F (x, y, z, w2).

(2.1)

Definition 2.2. (See [12]) An element (x, y, z, w) ∈ X4 is called a quadruple
fixed point of F : X4 → X if

F (x, y, z, w) = x, F (x,w, z, y) = y, F (z, y, x, w) = z, F (z, w, x, y) = w. (2.2)

Definition 2.3. Let (X,≤) be partially ordered set and F : X4 → X. We say
that F has the mixed g-monotone property if F (x, y, z, w) is monotone g-non-
decreasing in x and z, and it is monotone g-non-increasing in y and w, that is,
for any x, y, z, w ∈ X

x1, x2 ∈ X, g(x1) ≤ g(x2) ⇒ F (x1, y, z, w) ≤ F (x2, y, z, w),
y1, y2 ∈ X, g(y1) ≤ g(y2) ⇒ F (x, y1, z, w) ≥ F (x, y2, z, w),
z1, z2 ∈ X, g(z1) ≤ g(z2) ⇒ F (x, y, z1, w) ≤ F (x, y, z2, w),

w1, w2 ∈ X, g(w1) ≤ g(w2) ⇒ F (x, y, z, w1) ≥ F (x, y, z, w2).

(2.3)

Definition 2.4. An element (x, y, z, w) ∈ X4 is called a quadruple coincidence
point of F : X4 → X and g : X → X if

F (x, y, z, w) = g(x), F (y, z, w, x) = g(y),
F (z, w, x, y) = g(z), F (w, x, y, z) = g(w).

(2.4)

Notice that if g is identity mapping, then Definition 2.3 and Definition 2.4
reduce to Definition 2.1 and Definition 2.2, respectively.

Definition 2.5. Let F : X4 → X and g : X → X. F and g are called commuta-
tive if

g(F (x, y, z, w)) = F (g(x), g(y), g(z), g(w)), for all x, y, z, w ∈ X. (2.5)
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For a metric space (X, d), the function ρ : X4 ×X4 → [0,∞), given by,

ρ((x, y, z, w), (u, v, r, t)) := d(x, u) + d(y, v) + d(z, r) + d(w, t)

forms a metric space on X4, that is, (X4, ρ) is a metric induced by (X, d).
Let Φ denote the all functions φ : [0,∞) → [0,∞) which are continuous and

satisfy that

(i) φ(t) < t
(i) limr→t+ φ(r) < t for each r > 0.

In order to shorten the statements of the new results in this paper, for the space
X and mapping F appearing in the next theorem, consider the following:

Assumption 2.1. Suppose either

(a) F is continuous, or
(b) X has the following property:

(i) if non-decreasing sequence xn → x, then xn ≤ x for all n,
(ii) if non-increasing sequence yn → y, then yn ≥ y for all n.

The main result of this paper is the following theorem.

Theorem 2.6. Let (X, d,≤) be a POCMS. Suppose F : X4 → X and there exists
φ ∈ Φ such that F has the mixed g-monotone property and

d(F (x, y, z, w), F (u, v, r, t))

≤ φ

(
d(g(x), g(u)) + d(g(y), g(v)) + d(g(z), g(r)) + d(g(w), g(t))

4

)
(2.6)

for all x, u, y, v, z, r, w, t for which g(x) ≤ g(u), g(y) ≥ g(v), g(z) ≤ g(r) and
g(w) ≥ g(t). Suppose there exist x0, y0, z0, w0 ∈ X such that

g(x0) ≤ F (x0, y0, z0, w0), g(y0) ≥ F (x0, w0, z0, y0),
g(z0) ≤ F (z0, y0, x0, w0), g(w0) ≥ F (z0, w0, x0, y0).

(2.7)

Assume also that Assumption 2.1 holds, that F (X4) ⊂ g(X) and g commutes with
F . Then there exist x, y, z, w ∈ X such that

F (x, y, z, w) = g(x), F (x,w, z, y) = g(y),
F (z, y, x, w) = g(z), F (z, w, x, y) = g(w).

that is, F and g have a quadruple coincidence point.

Proof. Let x0, y0, z0, w0 ∈ X be such that (2.7). We construct the sequences {xn},
{yn}, {zn} and {wn} defined, for n = 1, 2, 3, . . . , as follows

g(xn)
g(yn)
g(zn)
g(wn)

 =


F (xn−1, yn−1, zn−1, wn−1)
F (xn−1, wn−1, zn−1, yn−1)
F (zn−1, yn−1, xn−1, wn−1)
F (zn−1, wn−1, xn−1, yn−1)

 . (2.8)

We claim that, for all n ≥ 1,

g(xn−1) ≤ g(xn), g(yn−1) ≥ g(yn), g(zn−1) ≤ g(zn), g(wn−1) ≥ g(wn). (2.9)
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Indeed, we shall use mathematical induction to prove (2.9). Due to (2.7), we have

g(x0) ≤ F (x0, y0, z0, w0) = g(x1), g(y0) ≥ F (x,w0, z0, y0) = g(y1),
g(z0) ≤ F (z0, y0, x0, w0) = g(z1), g(w0) ≥ F (z0, w0, x0, y0) = g(w1).

Thus, the inequalities in (2.9) hold for n = 1. Suppose now that the inequalities
in (2.9) hold for some n ≥ 1. By the mixed g-monotone property of F , together
with (2.8) and (2.3) we have

g(xn) = F (xn−1, yn−1, zn−1, wn−1) ≤ F (xn, yn, zn, wn) = g(xn+1),
g(yn) = F (xn−1, wn−1, zn−1, yn−1) ≥ F (xn, wn, zn, yn) = g(yn+1),
g(zn) = F (zn−1, yn−1, xn−1, wn−1) ≤ F (zn, yn, xn, wn) = g(zn+1),

g(wn) = F (zn−1, wn−1, xn−1, yn−1) ≥ F (zn−1, wn−1, xn−1, yn−1) = g(wn+1),
(2.10)

Thus, (2.9) holds for all n ≥ 1. Hence, we have

· · · g(xn) ≥ g(xn−1) ≥ · · · ≥ g(x1) ≥ g(x0),
· · · g(yn) ≤ g(yn−1) ≤ · · · ≤ g(y1) ≤ g(y0),
· · · g(zn) ≥ g(zn−1) ≥ · · · ≥ g(z1) ≥ g(z0),
· · · g(wn) ≤ g(wn−1) ≤ · · · ≤ g(w1) ≤ g(w0),

(2.11)

For the simplicity, we define δn as a product of the following matrices:

δn =
1

4


1
1
1
1



d(g(xn), g(xn+1))
d(g(yn), g(yn+1))
d(g(zn), g(zn+1))
d(g(wn), g(wn+1))

 .
We shall show that, for all n,

δn+1 ≤ φ(δn). (2.12)

Due to (2.6), (2.8) and (2.11), we have

d(g(xn+1), g(xn+2))

= d(F (xn, yn, zn, wn), F (xn+1, yn+1, zn+1, wn+1))

≤ φ
(
d(g(xn), g(xn+1)) + d(g(yn), g(yn+1))

+ d(g(zn), g(zn+1)) + d(g(wn), g(wn+1))
)/

4

= φ(δn) (2.13)

and, similarly,

d(g(yn+1), g(yn+2)) = d(F (yn, zn, wn, xn), F (yn+1, zn+1, wn+1, xn+1)) ≤ φ(δn),
(2.14)

d(g(zn+1), g(zn+2)) = d(F (zn, wn, xn, yn), F (zn+1, wn+1, xn+1, yn+1)) ≤ φ(δn),
(2.15)

d(g(wn+1), g(wn+2)) = d(F (wn, xn, yn, zn), F (wn+1, xn+1, yn+1, zn+1)) ≤ φ(δn).
(2.16)
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Now, by summing up (2.13)-(2.16) we get exactly (2.12). Since φ(t) < t for all
t > 0, then δn+1 ≤ δn for all n. Hence {δn} is a non-increasing sequence. Since it
is bounded below, there is some δ ≥ 0 such that

lim
n→∞

δn = δ + . (2.17)

We shall show that δ = 0. Suppose, to the contrary, that δ > 0. Taking the
limit as δn → δ+ of both sides of (2.12) and having in mind that we suppose
limt→r φ(r) < t for all t > 0, we have

δ = lim
n→∞

δn+1 ≤ lim
n→∞

φ(δn) = lim
δn→δ+

φ(δn) < δ, (2.18)

which is a contradiction. Thus, δ = 0, that is,

lim
n→∞

[d(g(xn), g(xn−1)) + d(g(yn), g(yn−1)) + d(g(zn), g(zn−1)) + d(g(wn), g(wn−1))]

= 0. (2.19)

Now, we shall prove that {g(xn)},{g(yn)},{g(zn)} and {g(wn)} are Cauchy se-
quences. Suppose, to the contrary, that at least one of {g(xn)},{g(yn)},{g(zn)}
and {g(wn)} is not Cauchy. So, there exists an ε > 0 for which we can find sub-
sequences {g(xn(k))}, {g(xn(k))} of {g(xn)} and {g(yn(k))}, {g(yn(k))} of {g(yn)}
and {g(zn(k))}, {g(zn(k))} of {g(zn)} and {g(wn(k))}, {g(wn(k))} of {g(wn)} with
n(k) > m(k) ≥ k such that


1
1
1
1



d(g(xn(k)), g(xm(k)))
d(g(yn(k)), g(ym(k)))
d(g(zn(k)), g(zm(k)))
d(g(wn(k)), g(wm(k)))

 ≥ ε. (2.20)

Additionally, corresponding to m(k), we may choose n(k) such that it is the
smallest integer satisfying (2.20) and n(k) > m(k) ≥ k. Thus,


1
1
1
1



d(g(xn(k)−1), g(xm(k)))
d(g(yn(k)−1), g(ym(k)))
d(g(zn(k)−1), g(zm(k)))
d(g(wn(k)−1), g(wm(k)))

 < ε. (2.21)
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By using triangle inequality and having (2.20), (2.21) in mind

ε ≤ tk =


1
1
1
1



d(g(xn(k)), g(xm(k)))
d(g(yn(k)), g(ym(k)))
d(g(zn(k)), g(zm(k)))
d(g(wn(k)), g(wm(k)))



≤


1
1
1
1




d(g(xn(k)), g(xn(k)−1)) + d(g(xn(k)−1), g(xm(k)))
d(g(yn(k)), g(yn(k)−1)) + d(g(yn(k)−1), g(ym(k)))
d(g(zn(k)), g(zn(k)−1)) + d(g(zn(k)−1), g(zm(k)))
d(g(wn(k)), g(wn(k)−1)) + d(g(wn(k)−1), g(wm(k)))



≤


1
1
1
1



d(g(xn(k)), g(xn(k)−1))
d(g(yn(k)), g(yn(k)−1))
d(g(zn(k)), g(zn(k)−1))
d(g(wn(k)), g(wn(k)−1))

 + ε.

(2.22)

Letting k →∞ in (2.22) and using (2.19)

lim
k→∞

tk = lim
k→∞


1
1
1
1



d(g(xn(k)), g(xm(k)))
d(g(yn(k)), g(ym(k)))
d(g(zn(k)), g(zm(k)))
d(g(wn(k)), g(wm(k)))

 = ε+ (2.23)

Again by triangle inequality,

tk =


1
1
1
1



d(g(xn(k)), g(xm(k)))
d(g(yn(k)), g(ym(k)))
d(g(zn(k)), g(zm(k)))
d(g(wn(k)), g(wm(k)))



≤


1
1
1
1




d(g(xn(k)), g(xn(k)+1)) + d(g(xn(k)+1), g(xm(k)+1))
d(g(yn(k)), g(yn(k)+1)) + d(g(yn(k)+1), g(ym(k)+1))
d(g(zn(k)), g(zn(k)+1)) + d(g(zn(k)+1), g(zm(k)+1))
d(g(wn(k)), g(wn(k)+1)) + d(g(wn(k)+1), g(wm(k)+1))

+d(g(xm(k)+1), g(xm(k)))
+d(g(ym(k)+1), g(ym(k)))
+d(g(zm(k)+1), g(zm(k)))
+d(g(wm(k)+1), g(wm(k)))


≤ δn(k)+1 +


1
1
1
1



d(g(xn(k)+1), g(xm(k)+1))
d(g(yn(k)+1), g(ym(k)+1))
d(g(zn(k)+1), g(zm(k)+1))
d(g(wn(k)+1), g(wm(k)+1))

 + δm(k)+1.

(2.24)

Since n(k) > m(k), then

g(xn(k)) ≥ g(xm(k)) and g(yn(k)) ≤ g(ym(k)),
g(zn(k)) ≥ g(zm(k)) and g(wn(k)) ≤ g(wm(k)).

(2.25)

Hence from (2.25), (2.8) and (2.6), we have,
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d(g(xn(k)+1), g(xm(k)+1))

= d(F (xn(k), yn(k), zn(k), wn(k)), F (xm(k), ym(k), zm(k), wm(k)))

≤ φ

1

4


1
1
1
1



d(g(xn(k)), g(xm(k)))
d(g(yn(k)), g(ym(k)))
d(g(zn(k)), g(zm(k)))
d(g(wn(k)), g(wm(k)))


 (2.26)

d(g(yn(k)+1), g(ym(k)+1))

= d(F (yn(k), zn(k), wn(k), xn(k)), F (ym(k), zm(k), wm(k), xm(k)))

≤ φ

1

4


1
1
1
1



d(g(yn(k)), g(ym(k)))
d(g(zn(k)), g(zm(k)))
d(g(wn(k)), g(wm(k)))
d(g(xn(k), xm(k)))


 (2.27)

d(g(zn(k)+1), g(zm(k)+1))

= d(F (zn(k), wn(k), xn(k), yn(k)), F (zm(k), wm(k), xm(k), ym(k)))

≤ φ

1

4


1
1
1
1



d(g(zn(k)), g(zm(k)))
d(g(wn(k)), g(wm(k)))
d(g(xn(k)), g(xm(k)))
dg((yn(k)), g(ym(k)))


 (2.28)

d(g(wn(k)+1), g(wm(k)+1)

= d(F (wn(k), xn(k), yn(k), zn(k)), F (wm(k), xm(k), ym(k), zm(k))

≤ φ

1

4


1
1
1
1



d(g(wn(k)), g(wm(k)))
d(g(xn(k)), g(xm(k)))
d(g(yn(k)), g(ym(k)))
d(g(zn(k)), g(zm(k)))


 (2.29)

Combining (2.24) with (2.26)-(2.29), we obtain that

tk ≤ δn(k)+1 +


1
1
1
1




d(g(xn(k)+1), g(xm(k)+1)
d(g(yn(k)+1), g(ym(k)+1))
d(g(zn(k)+1), g(zm(k)+1))
d(g(wn(k)+1), g(wm(k)+1))

 + δm(k)+1

≤ δn(k)+1 + δm(k)+1 + 4φ
(

tk
4

)
< δn(k)+1 + δm(k)+1 + 4 tk

4
.

(2.30)

Letting k →∞, we get a contradiction. This shows that {g(xn)},{g(yn)} ,{g(zn)}
and {g(wn)} are Cauchy sequences. Since X is complete metric space, there exists
x, y, z, w ∈ X such that

limn→∞ g(xn) = x and limn→∞ g(yn) = y,
limn→∞ g(zn) = z and limn→∞ g(wn) = w.

(2.31)
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Since g is continuous, (2.31) implies that

limn→∞ g(g(xn)) = g(x) and limn→∞ g(g(yn)) = g(y),
limn→∞ g(g(zn)) = g(z) and limn→∞ g(g(wn)) = g(w).

(2.32)

From (2.10) and by regarding commutativity of F and g,

g(g(xn+1)) = g(F (xn, yn, zn, wn)) = F (g(xn), g(yn), g(zn), g(wn)),
g(g(yn+1)) = g(F (xn, wn, zn, yn)) = F (g(xn), g(wn), g(zn), g(yn)),
g(g(zn+1)) = g(F (zn, yn, xn, wn)) = F (g(zn), g(yn), g(xn), g(wn)),
g(g(wn+1)) = g(F (zn, wn, xn, yn)) = F (g(zn), g(wn), g(xn), g(yn)),

(2.33)

We shall show that

F (x, y, z, w) = g(x), F (x,w, z, y) = g(y),
F (z, y, x, w) = g(z), F (z, w, x, y) = g(w).

Suppose now (a) holds. Then by (2.8), (2.33) and (2.31), we have

g(x) = lim
n→∞

g(g(xn+1)) = lim
n→∞

g(F (xn, yn, zn, wn))

= lim
n→∞

F (g(xn), g(yn), g(zn), g(wn))

= F ( lim
n→∞

g(xn), lim
n→∞

g(yn), lim
n→∞

g(zn), lim
n→∞

g(wn)) = F (x, y, z, w)

(2.34)

Analogously, we also observe that

g(y) = lim
n→∞

g(g(yn+1)) = lim
n→∞

g(F (xn, wn, zn, yn)

= lim
n→∞

F (g(xn), g(wn), g(zn), g(yn))

= F ( lim
n→∞

g(xn), lim
n→∞

g(wn), lim
n→∞

g(zn), lim
n→∞

g(yn))

= F (x,w, z, y)

(2.35)

g(z) = lim
n→∞

g(g(zn+1)) = lim
n→∞

g(F (zn, yn, xn, wn))

= lim
n→∞

F (g(zn), g(yn), g(xn), g(wn))

= F ( lim
n→∞

g(zn), lim
n→∞

g(yn), lim
n→∞

g(xn), lim
n→∞

g(wn))

= F (z, y, x, w)

(2.36)

g(w) = lim
n→∞

g(g(wn+1)) = lim
n→∞

g(F (zn, wn, xn, yn))

= lim
n→∞

F (g(zn), g(wn), g(xn), g(yn))

= F ( lim
n→∞

g(zn), lim
n→∞

g(wn), lim
n→∞

g(xn), lim
n→∞

g(yn))

= F (z, w, x, y)

(2.37)

Thus, we have

F (x, y, z, w) = g(x), F (y, z, w, x) = g(y),
F (z, , w, x, y) = g(z), F (w, x, y, z) = g(w).

Suppose now the assumption (b) holds. Since {g(xn)}, {g(zn)} is non-decreasing
and g(xn) → x, g(zn) → z and also {g(yn)}, {g(wn)} is non-increasing and
g(yn) → y, g(wn) →, then by assumption (b) we have

g(xn) ≥ x, g(yn) ≤ y, g(zn) ≥ z, g(wn) ≤ w (2.38)

for all n. Thus, by triangle inequality and (2.33)

g(xn) ≥ x, g(yn) ≤ y, g(zn) ≥ z, g(wn) ≤ w (2.39)
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for all n. Thus, by triangle inequality and (2.33)

d(g(x), F (x, y, z, w)) ≤ d(g(x), g(g(xn+1))) + d(g(g(xn+1)), F (x, y, z, w))
≤ d(g(x), g(g(xn+1)))

+φ

1
4


1
1
1
1



d(g(g(xn), g(x)))
d(g(g(yn), g(y)))
d(g(g(zn), g(z)))
d(g(g(wn), g(w)))




(2.40)
Letting n→∞ implies that d(g(x), F (x, y, z, w)) ≤ 0. Hence, g(x) = F (x, y, z, w).
Analogously we can get that

F (y, z, w, x) = g(y), F (z, w, x, y) = g(z) and F (w, x, y, z) = g(w).

Thus, we proved that F and g have a quadruple coincidence point. �

Corollary 2.7. Let (X,≤) be partially ordered set and (X, d) be a complete metric
space. Suppose F : X4 → X and there exists φ ∈ φ such that F has the mixed
g-monotone property and there exists a k ∈ [0, 1) with

ψ(d(F (x, y, z, w), F (u, v, r, t)))

≤ k

4
[d(g(x), g(u)) + d(g(y), g(v)) + d(g(z), g(r)) + d(g(w), g(t))] (2.41)

for all x, u, y, v, z, r, w, t for which g(x) ≤ g(u), g(y) ≥ g(v), g(z) ≤ g(r) and
g(w) ≥ g(t). Suppose there exist x0, y0, z0, w0 ∈ X such that

g(x0) ≤ F (x0, y0, z0, w0), g(y0) ≥ F (x0, w0, z0, y0),
g(z0) ≤ F (z0, y0, x0, w0), g(w0) ≥ F (z0, w0, x0, y0).

(2.42)

Assume also that Assumption 2.1 holds, that F (X4) ⊂ g(X) and g commutes with
F . Then there exist x, y, z, w ∈ X such that

F (x, y, z, w) = g(x), F (x,w, z, y) = g(y),
F (z, y, x, w) = g(z), F (z, w, x, y) = g(w).

that is, F and g have a quadruple coincidence point.

Proof. It is sufficient to take φ = kt with k ∈ [0, 1) in previous theorem. �

3. Uniqueness of quadruple fixed point

In this section we shall prove the uniqueness of quadruple fixed point for a
product X4 of a partial ordered set (X,≤) where partial order is defined as follow:
For all (x, y, z, w), (u, v, r, t) ∈ X4,

(x, y, z, w) ≤ (u, v, r, t) ⇔ x ≤ u, y ≥ v, z ≤ r, w ≥ t. (3.1)

We say that (x, y, z, w) is equal (u, v, r, t) if and only if x = u, y = v, z = r and
w = t.

Theorem 3.1. In addition to hypothesis of Theorem 2.6, assume that for all
(x, y, z, w), (u, v, r, t) ∈ X4, there exists (a, b, c, d) ∈ X4 such that (F (a, b, c, d),
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F (a, d, c, b), F (c, b, a, d), F (c, d, a, b)) is comparable to

(F (x, y, z, w), F (x,w, z, y), F (z, y, x, w), F (z, w, x, y)) and

(F (u, v, r, t), F (u, t, r, v), F (z, v, u, r), F (r, t, u, v)).

Then, F and g have a unique quadruple common fixed point, that is, there exists
a unique (p, q, s, o) ∈ X4 such that

g(p) = F (p, q, s, o), g(q) = F (p, o, s, q), g(s) = F (s, q, p, o), g(o) = F (s, o, p, q).

Proof. The set of quadruple common fixed point of F and g is not empty due to
Theorem 2.6. Assume, now, (x, y, z, w) and (u, v, r, t) are the quadruple common
fixed point of F and g, that is,

F (x, y, z, w) = g(x), F (u, v, r, t) = g(u), F (x,w, z, y) = g(y), F (u, t, r, v) = g(v),
F (z, y, x, w) = g(z), F (r, v, u, t) = g(r), F (z, w, x, y) = g(w), F (r, t, u, v) = g(t).

(3.2)
We shall show that (g(x), g(y), g(z), g(w)) and (g(u), g(v), g(r), g(t)) are equal.
By assumption, there exists (a, b, c, d) ∈ X ×X ×X ×X such that

(F (a, b, c, d), F (a, d, c, b), F (c, b, a, d), F (c, d, a, b)) (3.3)

is comparable to

(F (x, y, z, w), F (x,w, z, y), F (z, y, x, w), F (z, w, x, y)) and (3.4)

(F (u, v, r, t), F (u, t, r, v), F (z, v, u, r), F (r, t, u, v)). (3.5)

Define sequences {g(an)}, {g(bn)}, {g(cn)} and {g(dn)} such that a = a0, b =
b0, c = c0, d = d0 for all n, and

g(an) = F (an−1, bn−1, cn−1, dn−1), g(bn) = F (an−1, dn−1, cn−1, bn−1),
g(cn) = F (cn−1, bn−1, an−1, dn−1), g(dn) = F (cn−1, dn−1, an−1, bn−1).

(3.6)

Since (3.4) is comparable with (3.3), we may assume that

(g(x), g(y), g(z), g(w)) ≥ (g(a), g(b), g(c), g(d)) = (g(a0), g(b0), g(c0), g(d0)).

Recursively, we get that

(g(x), g(y), g(z), g(w)) ≥ (g(an), g(bn), g(cn), g(dn)) for all n. (3.7)

By (3.7) and (2.6), we have

d(g(x), (an+1))

= d(F (g(x), g(y), g(z), g(w)), F (g(an), g(bn), g(cn), g(dn)))

≤ φ

(
1

4
[d(g(x), g(an)) + d(g(y), g(bn)) + d(g(z), g(cn)) + d(g(w), g(dn))]

)
(3.8)

d(g(bn+1), g(y))

= d(F (an, dn, cn, bn), F (x,w, z, y))

≤ φ

(
1

4
[d(g(an), g(x)) + d(g(dn), g(w)) + d(g(cn), g(z)) + d(g(bn), g(y))]

)
(3.9)
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d(g(z), g(cn+1))

= d(F (z, y, x, w), F (cn, bn, an, dn))

≤ φ

(
1

4
[d(g(z), g(cn)) + d(g(y), g(bn)) + d(g(x), g(an)) + d(g(w), g(dn))]

)
(3.10)

d(g(dn+1), g(w)) =d(F (cn−1, dn−1, an−1, bn−1), F (z, w, x, y))

≤φ(
1

4
[d(g(cn), g(z)) + d(g(dn), g(w))

+ d(g(an), g(x)) + d(g(bn), g(y))]) (3.11)

Set γn = d(g(x), g(an)) + d(g(y), g(bn)) + d(g(z), g(cn)) + d(g(w), g(dn)). Then,
due to (3)-(3), we have

γn+1

4
≤ φ

(γn

4

)
, for all n.

which implies
γn+1

4
≤ φn

(γ1

4

)
for all n. (3.12)

Since φ(t) < t and limr→t+ φ(r) < t then limn→∞ φ(t) = 0 for each t > 0. Hence
(3.12) implies that

limn→∞ d(g(x), g(an)) = 0, limn→∞ d(g(y), g(bn)) = 0,
limn→∞ d(g(z), g(cn)) = 0, limn→∞ d(g(w), g(dn)) = 0. (3.13)

Analogously, we show that

limn→∞ d(g(u), g(an)) = 0, limn→∞ d(g(v), g(bn)) = 0,
limn→∞ d(g(r), g(cn)) = 0, limn→∞ d(g(s), g(dn)) = 0.

(3.14)

Combining (3.13) and (3.14) and by using the triangle inequality,

d(g(u), g(x)) ≤ d(g(u), g(an)) + d(g(an), g(x)) → 0, as n→∞,
d(g(v), g(y)) ≤ d(g(v), g(bn)) + d(g(bn), g(y)) → 0, as n→∞,
d(g(r), g(z)) ≤ d(g(r), g(cn)) + d(g(cn), g(z)) → 0, as n→∞,
d(g(s), g(w)) ≤ d(g(w), g(dn)) + d(g(dn), g(w)) → 0, as n→∞.

(3.15)

Hence,

(g(x), g(y), g(z), g(w)) = (g(u), g(v), g(r), g(t)). (3.16)

By commutativity of F and g, the identities (3.2)

g(g(x)) = g(F (x, y, z, w)) = F (g(x), g(y), g(z), g(w))
g(g(y)) = g(F (x,w, z, y)) = F (g(x), g(w), g(z), g(y)),
g(g(z)) = g(F (z, y, x, w)) = F (g(z), g(y), g(x), g(w))),
g(g(w)) = g(F (z, w, x, y)) = F (g(z), g(w), g(x), g(y)).

(3.17)

Set

g(x) = p, g(y) = q, g(z) = s, g(w) = o (3.18)
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Then (3.17) turn into,

g(p) = F (p, q, s, o), g(q) = F (p, o, s, q), g(s) = F (s, q, p, o), g(o) = F (s, o, p, q).
(3.19)

Thus, (p, q, s, o) is a quadruple common coincidence point of F and g. By taking
(u, v, r, t) = (p, q, s, o) (3.16) we have

g(x) = g(p), g(y) = g(q), g(z) = g(s), g(w) = g(o). (3.20)

Combining (3.19), (3.20) and (3.18) we have

p = g(p) = F (p, q, s, o), q = g(q) = F (p, o, s, q),
s = g(s) = F (s, q, p, o), o = g(o) = F (s, o, p, q).

(3.21)

Thus, (p, q, s, o) is a quadruple common fixed point of F and g. Due to (3.16), it
is unique. �

Corollary 3.2. Let (X, d,≤) be a POCMS. Suppose F : X4 → X and there exists
φ ∈ φ such that F has the mixed monotone property and

ψ(d(F (x, y, z, w), F (u, v, r, t))) ≤ φ

(
d(x, u) + d(y, v) + d(z, r) + d(w, t)

4

)
(3.22)

for all x, u, y, v, z, r, w, t for which x ≤ u, y ≥ v, z ≤ r and w ≥ t where φ ∈ Φ.
Suppose there exist x0, y0, z0, w0 ∈ X such that

x0 ≤ F (x0, y0, z0, w0), y0 ≥ F (x0, w0, z0, y0),
z0 ≤ F (z0, y0, x0, w0), w0 ≥ F (z0, w0, x0, y0).

(3.23)

Assume also that Assumption 2.1 holds. Then there exist x, y, z, w ∈ X such that

F (x, y, z, w) = x, F (x,w, z, y) = y, F (z, y, x, w) = z, F (z, w, x, y) = w,

that is, F has a quadruple fixed point.

Proof. Take g(x) = x, then the assumptions of Theorem 2.6 are satisfied. Thus,
we get the result. �

Corollary 3.3. Let (X, d,≤) be a POCMS. Suppose F : X4 → X and there exists
φ ∈ φ such that F has the mixed g-monotone property and there exists a k ∈ [0, 1)
with

ψ(d(F (x, y, z, w), F (u, v, r, t))) ≤ k

4
[d(x, u) + d(y, v) + d(z, r) + d(w, t)] (3.24)

for all x, u, y, v, z, r, w, t for which x ≤ u, y ≥ v, z ≤ r and w ≥ t. Suppose there
exist x0, y0, z0, w0 ∈ X such that

x0 ≤ F (x0, y0, z0, w0), y0 ≥ F (x0, w0, z0, y0),
z0 ≤ F (z0, y0, x0, w0), w0 ≥ F (z0, w0, x0, y0).

(3.25)

Assume also that Assumption 2.1 holds. Then there exist x, y, z, w ∈ X such that

F (x, y, z, w) = x), F (x,w, z, y) = y, F (z, y, x, w)z, F (z, w, x, y) = w,

that is, F and g have a quadruple coincidence point.



88 V. BERINDE, E. KARAPINAR

4. Examples

In this sections we give some examples to show that our results are effective.

Example 4.1. Let X = [0,∞) with the metric d(x, y) = |x− y|, for all x, y ∈ X
and the following order relation:

x, y ∈ X, x � y ⇔ x = y = 0 or (x, y ∈ (0,∞)and x ≤ y),

where ≤ be the usual ordering. Let F : X4 → X be given by

F (x, y, z, w) =

{
1,
0,

if
if

xyzw 6= 0
xyzw = 0

for all x, y, z, w ∈ X and let φ : [0,∞) → [0,∞) be given by φ(t) = 9t
10

for all
t ∈ [0,∞).
It is easy to check that all the conditions of Corollary 2.7 are satisfied. Applying
Corollary 2.7 we conclude that F has at least a quadruple fixed point. In fact,
F has two quadruple fixed points, which are (0, 0, 0, 0) and (1, 1, 1, 1). Therefore,
the conditions of Corollary 2.7 are not sufficient for the uniqueness of a quadruple
fixed point.

Example 4.2. Let X = R with the metric d(x, y) = |x− y|, for all x, y ∈ X and
the usual ordering.
Let F : X4 → X be given by

F (x, y, z, w) =
x− y + z − w

16
, for all x, y, z, w ∈ X,

and let φ : [0,∞) → [0,∞) be given by φ(t) = t
2

for all t ∈ [0,∞).
It is easy to check that all the conditions of Corollary 3.2 are satisfied and
(0, 0, 0, 0) is the unique quadruple fixed point of F .
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