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Abstract. The notion of an essentially slant Toeplitz operator on the space
L2 is introduced and some of the properties of the set ESTO(L2), the set of
all essentially slant Toeplitz operators on L2, are investigated. In particular
the conditions under which the product of two operators in ESTO(L2) is in
ESTO(L2) are discussed. The notion is generalized to kth-order essentially
slant Toeplitz operators.

The notion of Toeplitz operators was introduced by O. Toeplitz [8] in the year
1911. Subsequently many researchers like Devinatz [4], Abrahamse [1], Barria
and Halmos [3] came up with various generalizations of the notion of Toeplitz
operators. The essential commutant of the unilateral forward shift has been
the object of study for several years for its far reaching applications to various
branches like probability, statistics, oscillation signal processing etc. Barria and
Halmos [3] brought much attention to this set and mooted an idea of deriving
ways to characterize completely this set. The essential commutant of the forward
shift has sometimes been referred to as the set of essentially Toeplitz operators.

Ho [7], in the year 1995, began a systematic study of yet another class of op-
erators having the property that the matrices of such operators with respect to
the standard orthonormal basis could be obtained from those of Toeplitz oper-
ators just by eliminating every other row. Such operators were termed as slant
Toeplitz operators [7]. Villemoes [9] associated the Besov regularity of solutions
of the refinement equation with the spectral radius of an associated slant Toeplitz
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operator and Goodman, Micchelli and Ward [6] showed the connection between
the spectral radii and conditions for the solutions of certain differential equations
being in Lipschitz classes.

Ever since the introduction of the class of slant Toeplitz operators, the study
has gained voluminous importance due to its multidirectional applications and
hence it is desirable to consider those operators which behave essentially in the
same manner as slant Toeplitz operators do.

Motivated by the work of Barria, Halmos and Ho, in this paper we introduce a
new class of operators on the space L2 called essentially slant Toeplitz operators
and study some algebraic properties of this class of operators. The study is also
carried to the counterpart of these operators on the space H2. For the spaces L2,
H2 and L∞ one can see [5]. We begin with the following definitions:

Definition 1. A bounded linear operator A on the space H2 is said to be an
essentially Toeplitz operator if T ∗

z ATz − A is a compact operator on H2, where
Tz denotes the Toeplitz operator on H2 induced by z.

Definition 2. A slant Toeplitz operator on the space L2 is an operator of the
form WMφ, where Mφ denotes the multiplication operator on L2 induced by φ
in L∞ and W is defined on L2 as

W (z2n) = zn

W (z2n−1) = 0

}
∀ n ∈ Z,

where {en : n ∈ Z, en(z) = zn} denotes the standard orthonormal basis of L2.

It is known that [7] an operator A on the space L2 is a slant Toeplitz operator if
and only if MzA = AMz2 , where Mz is the multiplication operator on L2 induced
by z.

1. Essentially slant Toeplitz operators on L2

We introduce the following:

Definition 1.1. A bounded linear operator A on the space L2 is said to be
an essentially slant Toeplitz operator if MzA − AMz2 = K, for some compact
operator K on L2.

We denote the set of all essentially slant Toeplitz operators on L2 by ESTO(L2).
Since the zero operator on L2 is a compact operator, every slant Toeplitz operator
on L2 is trivially in ESTO(L2). In fact, if T is any compact perturbation of a
slant Toeplitz operator on L2 then T ∈ ESTO(L2). It is known that the only
compact slant Toeplitz operator is the zero operator. Also, from the definition
itself, every compact operator on L2 is in ESTO(L2). So if STO(L2) denotes the
set of all slant Toeplitz operators on L2 and K denotes the ideal of all compact
operators on L2 then

STO(L2) ∩ K = {0}
and

ESTO(L2) ∩ K = K .
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Thus any non-zero compact operator on L2 is an essentially slant Toeplitz oper-
ator but not a slant Toeplitz operator.

We now present an example of a non-compact essentially slant Toeplitz operator
on L2 which is not a slant Toeplitz operator:

Example 1.2. Let A on L2 be defined as

Aen =


e1 if n = 0

0 if n 6= 0, n is even

em, where m =

(
n + 1

2

)
, if n is odd

where en(z) = zn ∀ n ∈ Z. The matrix representation of A with respect to
{en}n∈Z is given by 

...
...

...
...

...
...

...
...

...
...

...
...

...
...

· · · 0 0 0 0 0 0 0 · · ·
· · · 1 0 0 0 0 0 0 · · ·
· · · 0 0 1 0 0 0 0 · · ·
· · · 0 0 0 1 1 0 0 · · ·
· · · 0 0 0 0 0 0 1 · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...


If W is defined on L2 as

W (z2n) = zn

W (z2n−1) = 0

}
∀ n ∈ Z

and K is defined on L2 as Ken =

{
e1 if n = 0

0 otherwise

for all n ∈ Z, then we can write

A = WMz + K

It is clear that

MzA− AMz2 = MzWMz −WMz3 + K ′

where K ′ ∈ K. Therefore MzA − AMz2 = 0 + K ′ ∈ K. Hence A ∈ ESTO(L2)
but A is not a slant Toeplitz operator on L2. Some basic properties of the set
ESTO(L2) are as follows

(i) ESTO(L2) is a norm-closed vector subspace of B(L2), the set of all bounded
linear operators on the space L2.

Proof. For T1, T2 ∈ ESTO(L2) and α, β ∈ C,

Mz(αT1 + βT2)− (αT1 + βT2)Mz2

= α(MzT1 − T1Mz2) + β(MzT2 − T2Mz2) ∈ K .

Also, if for each n, Tn is in ESTO(L2) and Tn → T uniformly in B(L2) then
MzTn − TnMz2 → MzT − TMz2 uniformly in B(L2). Since K is uniformly closed
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it follows that T ∈ ESTO(L2). Thus, ESTO(L2) is a norm-closed vector subspace
of B(L2).

(ii) ESTO(L2) is not an algebra of operators on L2 since the product of two
essentially slant Toeplitz operators on L2 is not necessarily an essentially slant
Toeplitz operator as is shown in the following:

Example 1.3. Let A = B = WMz + K, where W and K are as defined in
Example 1.2. Then A, B ∈ ESTO(L2) but C = AB /∈ ESTO(L2) because

MzC − CMz2 = MzAB − ABMz2

= Mz(WMz)
2 − (WMz)

2Mz2 (modK) .

Therefore MzC − CMz2 ∈ K if and only if Mz(WMz)
2 − (WMz)

2Mz2 ∈ K.
But

(Mz(WMz)
2 − (WMz)

2Mz2)en =



0 if n is even
e2 if n = 1
−e2 if n = 3
e3 if n = 5
−e3 if n = 7
e4 if n = 9

...

Therefore Mz(WMz)
2 − (WMz)

2Mz2 /∈ K. Hence C /∈ ESTO(L2).

(iii) ESTO(L2) is not a self-adjoint set.
For the operator A = WMz + K (as above) belongs to ESTO(L2) and A∗ /∈

ESTO(L2).

(iv) If T1, T2 ∈ ESTO(L2) then T1T2 ∈ ESTO(L2) if and only if T1MzT2 =
T1Mz2T2(modK).

For if T1, T2 ∈ ESTO(L2) then

MzT1T2 − T1T2Mz2 = T1Mz2T2 − T1T2Mz2 (modK)

= T1Mz2T2 − T1MzT2 (modK) .

Therefore, T1T2 ∈ ESTO(L2) if and only if T1MzT2 = T1Mz2T2 (modK).

(v) Let A ∈ ESTO(L2) and p ∈ N, p > 1. If n(p) denotes the number of partitions
of p as sum of two natural numbers, p = mi + ni (mi, ni ∈ N; i = 1, 2, . . . , n(p)),
Ami , Ani ∈ ESTO(L2) then the following are equivalent:

(a) Ap ∈ ESTO(L2)
(b) AmiMzA

ni = AmiMz2Ani (modK), i = 1, 2, . . . , n(p)
(c) AniMzA

mi = AniMz2Ami (modK), i = 1, 2, . . . , n(p)

In addition to these properties, we have the following

Theorem 1.4. If T1, T2 ∈ ESTO(L2) such that either T1 commutes essentially
with Mz or T2 commutes essentially with Mz2 then T1T2 ∈ ESTO(L2).
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Proof. Let T1, T2 ∈ ESTO(L2)

Case (i): T1Mz = MzT1 (modK)
Then

MzT1T2 − T1T2Mz2 = MzT1T2 − T1MzT2 (modK)

= T1MzT2 − T1MzT2 (modK)

= 0 (modK) .

Therefore T1T2 ∈ ESTO(L2) .

Case (ii): T2Mz2 = Mz2T2 (modK)
Then

MzT1T2 − T1T2Mz2 = T1Mz2T2 − T1T2Mz2 (modK)

= T1T2Mz2 − T1T2Mz2 (modK)

= 0 (modK) .

Therefore T1T2 ∈ ESTO(L2) .

Remark 1.5. From the proof of the above theorem we obtain the following:

(i) If T1 commutes essentially with Mz and T2 ∈ ESTO(L2) then T1T2 ∈
ESTO(L2).

(ii) If T1 ∈ ESTO(L2) and T2 commutes essentially with Mz2 then T1T2 ∈
ESTO(L2).

As a consequence we have the following:
If Mφ is a multiplication operator on L2 induced by φ in L∞ and A ∈ ESTO(L2)

then AMφ and MφA both are in ESTO(L2).

Theorem 1.6. If A, A∗ ∈ ESTO(L2) then TA∗ = A∗T ∗(modK) where T =
Mz + Mz̄2.

Proof. Let A, A∗ ∈ ESTO(L2). Then

MzA− AMz2 = K1 (1.1)

MzA
∗ − A∗Mz2 = K2 (1.2)

where K1, K2 ∈ K. Taking adjoint on both the sides of (1.1) and subtracting
(1.2) we have

(Mz + Mz̄2)A∗ − A∗(Mz2 + Mz̄) = K , for some K ∈ K .

Therefore TA∗ = A∗T ∗ (modK) where T = Mz + Mz̄2 .

Corollary 1.7. A necessary condition for any operator A ∈ ESTO(L2) to be self
adjoint is that TA is essentially self adjoint, where T = Mz + Mz̄2.

2. Compressions of essentially slant Toeplitz operators

In 2001, Arora and Zegeye [10] obtained a characterization of the compression
of a slant Toeplitz operator to H2 as follows:
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An operator B on H2 is the compression of a slant Toeplitz operator to H2 if
and only if B = T ∗

z BTz2 , where Tz is the Toeplitz operator induced by z. Moti-
vated by this we define the compression of an essentially slant Toeplitz operator
to H2 as follows:

Definition 2.1. An operator B on the space H2 is termed as the compression
of an essentially slant Toeplitz operator to H2 if B − T ∗

z BTz2 = K, for some
compact operator K on H2.

As Tz is essentially unitary, we can equivalently give the definition in the fol-
lowing way:

An operator B on the space H2 is the compression of an essentially slant
Toeplitz operator to H2 if TzB − BTz2 = K, for some compact operator K on
H2.

We denote the set of all compressions of essentially slant Toeplitz operators to
H2 by ESTO(H2). Clearly if T is the compression of a slant Toeplitz operator to
H2 then T ∈ ESTO(H2). The set ESTO(H2) has the following properties:

(i) ESTO(H2) is a norm-closed vector subspace of B(H2).
(ii) ESTO(H2) is not an algebra of operators on H2.
(iii) ESTO(H2) is not a self-adjoint set.
(iv) If K(H2) denotes the space of all compact operators on H2, then

K(H2) ∩ ESTO(H2) = K(H2).
(v) If A, B ∈ ESTO(H2) then AB ∈ ESTO(H2) if and only if

ATzB = ATz2B (modK(H2)).
(vi) If A, B ∈ ESTO(H2) such that either A commutes essentially with Tz or B

commutes essentially with Tz2 then AB ∈ ESTO(H2).
(vii) A necessary condition for an operator A ∈ ESTO(H2) to be self adjoint is

that TA is essentially self adjoint where T = Tz + Tz̄2 .

Note. Using the fact that any two multiplication operators on L2 commute,it has
been observed in Remark 1.5 that if A ∈ ESTO(L2) and Mφ is any multiplication
operator on L2 then AMφ and MφA both are in ESTO(L2). Although any two
Toeplitz operators do not commute in general still we have an analogous result
here as is shown in the following:

Theorem 2.2. If Tφ is a Toeplitz operator on H2 induced by symbol φ in L∞

and A ∈ ESTO(H2) then ATφ and TφA both are in ESTO(H2).

Proof. Let Tφ be a Toeplitz operator on H2 induced by φ in L∞. Using the
characterization of Toeplitz operators it is easy to see that the commutator of Tφ

and Tz is compact. In fact for any positive integer n, the commutator of Tφ and
Tzn is a compact operator on H2. Now let us suppose that A is in ESTO(H2).
Consider

Tz(TφA)− (TφA)T 2
z = TφTzA− TφAT 2

z (modK)

= Tφ(TzA− ATz2)(modK) ∈ K .
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Also

Tz(ATφ)− (ATφ)T
2
z = TzATφ − AT 2

z Tφ(modK)

= (TzA− AT 2
z )Tφ(modK) ∈ K .

This concludes the proof.

Theorem 2.3. The set ESTO(H2) contains no Fredholm operator.

Proof. Let A in ESTO(H2) be a Fredholm operator of index n. Then TzA−ATz2 =
K, for some compact operator K on H2. This implies that TzA = ATz2 +K.Since
A is Fredholm of index n, it follows that TzA is a Fredholm operator of index
n− 1. On the other hand ATz2 + K is a Fredholm operator of index n− 2. This
leads to n − 1 = n − 2,which is absurd. Thus there is no Fredholm operator in
the set ESTO(H2).

3. Generalization

The notion of kth-order slant Toeplitz operators on the space L2 and its com-
pression to H2 was initiated by Arora and Batra [2] in the year 2003. Motivated
by their work, we introduce the concept of generalized essentially slant Toeplitz
operator on L2 and its compression to H2 as follows:

Definition 3.1. A bounded linear operator A on the space L2 is said to be
a kth-order essentially slant Toeplitz operator on L2 (k ≥ 2, k an integer) if
MzA − AMzk = K for some K ∈ K. We denote by k-ESTO(L2), the set of
all kth-order essentially slant Toeplitz operators on L2. The set k-ESTO(L2),
contains all kth-order slant Toeplitz operators [2] on L2.

Definition 3.2. A bounded linear operator A on the space H2 is termed as
the compression of a kth-order essentially slant Toeplitz operator to H2 (k ≥
2, k an integer) if TzA − ATzk = K for some K ∈ K(H2). We denote the set
of all compressions of kth-order essentially slant Toeplitz operators to H2 by k-
ESTO(H2). If T is the compression of a kth-order slant Toeplitz operator to H2

then T ∈ k-ESTO(H2).

In particular for k = 2, the sets 2-ESTO(L2) and 2-ESTO(H2) are the sets
ESTO(L2) and ESTO(H2) respectively. The results for k-ESTO(L2) and k-
ESTO(H2) (k ≥ 2) have similar proofs as we have for ESTO(L2) and ESTO(H2).
We list the results here:

For any fixed integer k ≥ 2,

(1) k-ESTO(L2) and k-ESTO(H2) are norm-closed vector subspaces of B(L2)
and B(H2) respectively.

(2) K ∩ k-ESTO(L2) = K
K(H2) ∩ k-ESTO(H2) = K(H2)

(3) If k1, k2 ≥ 2; k1 6= k2 then
k1-ESTO(L2) ∩ k2-ESTO(L2) = K.

(4) (i) If T1, T2 ∈ k-ESTO(L2) then T1T2 ∈ k-ESTO(L2) if and only if T1MzT2 =
T1MzkT2 (modK)



8 S.C. ARORA, J. BHOLA

(ii) If T1, T2 ∈ k-ESTO(H2) then T1T2 ∈ k-ESTO(H2) if and only if T1TzT2 =
T1TzkT2 (modK(H2))

(5) (i) If T1, T2 ∈ k-ESTO(L2) such that either T1 commutes essentially with
Mz or T2 commutes essentially with Mzk then T1T2 ∈ k-ESTO(L2).

(ii) If T1, T2 ∈ k-ESTO(H2) such that either T1 commutes essentially with
Tz or T2 commutes essentially with Tzk then T1T2 ∈ k-ESTO(H2).

(6) (i) If T ∈ k-ESTO(L2) and Mφ is any multiplication operator on L2 then
TMφ and MφT both are in k-ESTO(L2).

(ii) If T ∈ k-ESTO(H2) and Tφ is any Toeplitz operator on H2 then TTφ

and TφT both are in k-ESTO(H2).
(7) (i) A necessary condition for an operator A in k-ESTO(L2) to be self adjoint

is that SA is essentially self adjoint where S = Mz + Mz̄k .
(ii) A necessary condition for an operator A in k-ESTO(H2) to be self ad-

joint is that TA is essentially self adjoint where T = Tz + Tz̄k .
(8) There is no Fredholm operator in the set k-ESTO(H2).
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