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Abstract. Mixed-mean inequalities for integral power means over centered
and uncentered spheres are proved. Therefrom we deduce the Hardy type
inequalities for corresponding averaging operators. Moreover, we discuss esti-
mates related to the spherical maximal functions.

1. Introduction

This paper is a continuation of series of papers [3, 4, 5] which deal with the
problem of deriving mixed-mean inequalities for various averaging operators act-
ing on functions defined on Rn. The mixed-mean inequalities are of interest
themselves, but they can also produce important inequalities, of which the most
important are the Hardy type inequalities.

Throughout the paper we assume that all involved functions are non-negative.
M. Christ and L. Grafakos introduced in [1] the averaging operator particularly

suitable for deriving mixed-mean inequalities

(Tδf) (x) =
1

|B (x, δ|x|)|

∫
B(x,δ|x|)

f(y)dy, f ∈ L1
loc (Rn)),
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where δ > 0, B(x, r) is the ball in Rn centered at x ∈ Rn and of radius r > 0, |x|
is the Euclidean norm of x ∈ Rn and |A| is the Lebesgue measure of a measurable
set A ⊂ Rn. In the same paper they proved the Hardy type inequality for the
operator Tδ and henceforth deduced its operator norm on Lp (Rn). The basic tool
in their proof was Young’s inequality ‖f ∗K‖p ≤ ‖f‖p‖K‖1 for the convolution
on the group

(
R+, dt

t

)
. An interesting and important feature of this norm is that

it is an lower bound for the Hardy-Littlewood (centered) maximal function

(Mcf) (x) = supr>0

1

|B (x, r)|

∫
B(x,r)

f(y)dy.

In [5] by proving the appropriate mixed-mean inequality, we derived the general-
ization of this result, in the sense that we obtained the operator norm on weighted
Lp spaces (with power weights) of the operator

(Tδ,αf) (x) =
1

|B (x, δ|x|)|α

∫
B(x,δ|x|)

f(y)|y|αdy,

where |A|α =
∫

A
|y|αdy.

The second motivation for this paper is that maximal function can be defined
for various collections C of sets, C = {C : C ⊂ Rn}, by

(MCf) (x) = sup
C∈C

1

|C|

∫
C

f(x− y)dy.

This maximal function is closely related to one of the main problems in real-
variable theory: For what collections C

lim
diam(C)→0

1

|C|

∫
C

f(x− y)dy = f(x) a.e.

holds for ”all” f (see [14]).
In this paper we consider two collection of sets, a collection of centered spheres

and a collection of uncentered spheres and analogous averaging operators(
Sc

δ,αf
)
(x) =

1

|Sn−1 (x, δ|x|)|α

∫
Sn−1(x,δ|x|)

f(y)|y|αds(y), δ > 0,

(
Sunc

δ,α f
)
(x) =

1

|Sn−1 (δx, |1− δ||x|)|α

∫
Sn−1(δx,|1−δ||x|)

f(y)|y|αds(y), δ ∈ R, δ 6= 1,

defined for suitable f (say continuous with compact support), where Sn−1(a, r)
is the sphere in Rn centered at a ∈ Rn and of radius r > 0 and ds is the induced
Lebesgue measure. Of course, in both cases the operator norms of these operators
are lower bounds for operator norms of appropriate maximal functions defined
by

(Mcf) (x) = sup
r>0

1

|Sn−1(x, r)|

∫
Sn−1(x,r)

f(y)ds(y),

(Muncf) (x) = sup
a∈Rn,r>0,x∈Sn−1(a,r)

1

|Sn−1(a, r)|

∫
Sn−1(a,r)

f(y)ds(y).

The importance of these lower bounds can be seen by comparing the operator
norm of an maximal function, when it is known, with the maximum (with respect
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to δ) of the operator norms of operators defined as Sc
δ,α and Sunc

δ,α . For example,
this can be done using results from [8] and calculating the norms of an operator
defined analogously as Sunc

δ,α but for balls instead of spheres.
Our results will be given in a priori forms, in the sense that we shall not go

into details about existence and integrability of functions Sc
δ,αf and Sunc

δ,α f . For
further details in this matter see [13, 14]. In what follows we assume that all
integrals exist on the respective domains of their definitions.

We shall frequently use the obvious identities

|B(r)|α =
n

n + α
rn+α|B|, |B(x, δ|x|)|α = |x|n+α |B(e, δ)|α ,∣∣Sn−1(r)

∣∣
α

= rn+α−1
∣∣Sn−1

∣∣ , ∣∣Sn−1(x, δ|x|)
∣∣
α

= |x|n+α−1
∣∣Sn−1(e, δ)

∣∣
α
,

where B = B(0, 1) and Sn−1 = Sn−1(0, 1) are the unit ball and the unit sphere
respectively.

We shall also use the integral representation (see [15])

1

|Sn−1|

∫
Sn−1

f(θ)dθ =

∫
SO(n)

f (σe) dσ, (1.1)

where dσ is the normalized Haar measure on the rotation group SO(n) of Rn

(which is left and right invariant due to the compactness of SO(n), [10]), dθ is
induced Lebesgue measure on unit sphere Sn−1, e ∈ Rn is any unit vector. Note
that we change notation of the surface measure ds in the case of unit sphere,
in order to be in accordance with the standard notation of polar coordinates in
integral over domains in Rn.

2. Mixed-mean inequality

We begin with a technical lemma, which is especially useful in calculating the
norms of the operators Sc

δ,α and Sunc
δ,α . This lemma is a generalization of the

calculus arc length formula.

Lemma 2.1. Suppose that some hypersurface in Rn is given in polar coordinates
with y = uφ = tF (φ · θ) φ, where t > 0, θ ∈ Sn−1 are fixed, φ ∈ U , U is an open
subset of Sn−1, and F : [−1, 1] → R is an differentiable function. Then

ds(y) = tn−1F n−2 (φ · θ)
√

F 2 (φ · θ) + F ′2 (φ · θ) (1− φ · θ2) dφ (2.1)

Proof. Using rotational invariance of the induced Lebesgue measure on Sn−1 it
is enough to prove the case when θ = en ≡ (0, . . . , 0, 1). In that case φ · θ =
cos ϕn−1, ϕn−1 ∈ [0, π] and the equation of the hypersurface is y = tF (cos ϕn−1) φ.
The polar coordinates are used in the sense that φ =

(
sin ϕn−1φ̄, cos ϕn−1

)
, where

φ̄ ∈ Sn−2. To prove the formula we should calculate the Jacobian JΦ, where

y = (y1, . . . , yn) = Φ (ϕ1, . . . , ϕn−1) = tF (cos ϕn−1)
(
sin ϕn−1φ̄, cos ϕn−1

)
.

Note that JΦ is a n × (n − 1) determinant. Using Pythagorean theorem for
non-square determinants (see for example [7]) we have

(JΦ)2 =
n∑

k=1

(
∂ (y1, . . . , ŷk, . . . , yn)

∂ (ϕ1, . . . , ϕn−1)

)2

,
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where ŷk denotes the missing variable. A straightforward calculation reveals

∂ (y1, . . . , , yn−1)

∂ (ϕ1, . . . , ϕn−1)
(2.2)

= tn−1F n−2
(
−F ′ sin2 ϕn−1 + F cos ϕn−1

)
sinn−2 ϕn−1

∣∣∣∣∣∣∣∣
∂φ̄1

∂ϕ1
· · · ∂φ̄1

∂ϕn−2
φ̄1

...
...

...
...

∂φ̄n−1

∂ϕ1
· · · ∂φ̄n−1

∂ϕn−2
φ̄n−1

∣∣∣∣∣∣∣∣
and for k = 1, . . . , n− 1,

∂ (y1, . . . , ŷk, . . . , yn)

∂ (ϕ1, . . . , ϕn−1)
(2.3)

= −tn−1F n−2 (F ′ cos ϕn−1 + F ) sinn−1 ϕn−1

∂
(
φ̄1, . . . ,

ˆ̄
kφ, . . . , φ̄n−1

)
∂ (ϕ1, . . . , ϕn−2)

.

Using
∑n−1

k=1 φ̄2
k = 1 and Pythagorean theorem we obtain∣∣∣∣∣∣∣∣

∂φ̄1

∂ϕ1
· · · ∂φ̄1

∂ϕn−2
φ̄1

...
...

...
...

∂φ̄n−1

∂ϕ1
· · · ∂φ̄n−1

∂ϕn−2
φ̄n−1

∣∣∣∣∣∣∣∣
2

= det


∂φ̄1

∂ϕ1
· · · ∂φ̄1

∂ϕn−2

...
...

...
∂φ̄n−1

∂ϕ1
· · · ∂φ̄n−1

∂ϕn−2




∂φ̄1

∂ϕ1
· · · ∂φ̄1

∂ϕn−2

...
...

...
∂φ̄n−1

∂ϕ1
· · · ∂φ̄n−1

∂ϕn−2


T

=
n−1∑
k=1

∂
(
φ̄1, . . . ,

ˆ̄
kφ, . . . , φ̄n−1

)
∂ (ϕ1, . . . , ϕn−2)

2

=
(
Jφ̄
)2

.

(2.4)

Using (2.2), (2.3) and (2.4) we have

(JΦ)2 =
n∑

k=1

(
∂ (y1, . . . , ŷk, . . . , yn)

∂ (ϕ1, . . . , ϕn−1)

)2

= t2(n−1)F 2(n−2) (F ′ cos ϕn−1 + F )
2
sin2(n−1) ϕn−1

(
Jφ̄
)2

+t2(n−1)F 2(n−2)
(
−F ′ sin2 ϕn−1 + F cos ϕn−1

)2
sin2(n−2) ϕn−1

(
Jφ̄
)2

= t2(n−1)F 2(n−2) sin2(n−2) ϕn−1[
sin2 ϕn−1 (F ′ cos ϕn−1 + F )

2
+
(
−F ′ sin2 ϕn−1 + F cos ϕn−1

)2] (
Jφ̄
)2

= t2(n−1)F 2(n−2) sin2(n−2) ϕn−1

[
F 2 + F ′2 sin2 ϕn−1

] (
Jφ̄
)2

. (2.5)

Finally, using (2.5) follows

ds(y) = JΦ dϕ1 · · · dϕn−1

= tn−1F n−2 sinn−2 ϕn−1

√
F 2 + F ′2 sin2 ϕn−1 Jφ̄ dϕ1 · · · dϕn−1

= tn−1F n−2

√
F 2 + F ′2 sin2 ϕn−1 sinn−2 ϕn−1 dϕn−1dφ̄

= tn−1F n−2
√

F 2 + F ′2 (1− cos2 ϕn−1) dφ,
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which, jointly with rotational invariance, gives (2.1). �

Our basic inequality reads as follows. When there is no danger of confusion,
we write S instead of Sn−1.

Theorem 2.2. Let r, s, b, δ, α1, α2 ∈ R be such that r ≤ s, r, s 6= 0, b > 0, δ > 0,
α2 > −n and α1 > −n + 1 in the case δ = 1. If f is a non-negative function
on B ((1 + δ)b) (f positive in the case r < 0) and b = b e, |e| = 1, then the
inequality[

1

|B(b)|α2

∫
B(b)

(
1

|S(x, δ|x|)|α1

∫
S(x,δ|x|)

f r( y)|y|α1ds(y)

) s
r

|x|α2dx

] 1
s

≤

[
1

|S(b, δb)|α1

∫
S(b,δb)

(
1

|B(| x|)|α2

∫
B(|x|)

f s( y)|y|α2dy

) r
s

|x|α1ds(x)

] 1
r

.

(2.6)

holds. Inequality (2.6) is sharp and equality holds for functions of the form f(x) =
C|x|λ, C > 0. In the case r ≥ s the sign of inequality in (2.6) is reversed.

Proof. To transform the LHS of inequality (2.6) we use the polar coordinates, so
let x = tθ and y = uφ, t, u ≥ 0, θ, φ ∈ Sn−1. The relation |y − x| = δ|x| is now

equivalent to expression u = t
(
φ · θ ±

√
φ · θ2 + δ2 − 1

)
, where φ · θ denotes the

inner product in Rn. In the case 0 < δ < 1, we have φ · θ ≥
√

1− δ2 and we
must decompose the sphere into two parts, Sn−1

+ (x, δ|x|) and Sn−1
− (x, δ|x|). In

the case δ ≥ 1, the minus case has no geometrical meaning.
We continue by considering the case 0 < δ < 1. In the case δ ≥ 1 the proof

follows the same lines. It is obvious that it is enough to prove (2.6) in the case
r = 1 < s = p and b = 1. In order to simplify the formulas we introduce
the following notations φθ for inner product, F1,2(φθ) = φθ ±

√
φθ2 + δ2 − 1,

H1,2(φθ) = F n−2
1,2 (φθ) ·

√
F 2

1,2(φθ) + F
′2
1,2(φθ) (1− φθ2) and I(φθ) for the condition

φθ ≥
√

1− δ2. Using above transformations and triangle inequality we obtain[
1

|B|α2

∫
B

(
1

|S(x; δ|x|)|α1

∫
S(x;δ|x|)

f(y)|y|α1ds(y)

)p

|x|α2dx

]1/p

≤ 1

|B|1/p
α2
|S(δ)|α1

·

[(∫ 1

t=0

∫
θ

(∫
I(φθ)

f (tF1 (φθ) φ) Fα1
1 (φθ) H1(φθ)dφ

)p

tα2+n−1dtdθ

)1/p

+

(∫ 1

t=0

∫
θ

(∫
I(φθ)

f (tF2 (φθ) φ) Fα1
2 (φθ)H2(φθ)dφ

)p

tα2+n−1dtdθ

)1/p
]

.

(2.7)
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Using integral equality (1.1) and rotational invariance of the induced Lebesgue
measure on Sn−1, we transform the first term in square brackets in (2.7) as follows

|S|−
1
p

(∫ 1

t=0

∫
θ

(∫
I(φθ)

f (tF1 (φθ) φ) Fα1
1 (φθ)H1(φθ)dφ

)p

tα2+n−1dtdθ

)1/p

=

(∫ 1

t=0

∫
σ

(∫
I(φσe)

f (tF1 (φσ e) φ) Fα1
1 (φσ e)H1(φσe)dφ

)p

tα2+n−1dtdσ

)1/p

=
(∫ 1

t=0

∫
σ

(∫
I(σ−1φ e)

f
(
tF1

(
σ−1φ e

)
φ
)
Fα1

1 (σ−1φ e)H1(σ
−1φe)dφ

)p

tα2+n−1dtdσ
)1/p

=

(∫ 1

t=0

∫
σ

(∫
I(φ e)

f (tF1 (φ e) σφ) Fα1
1 (φe)H1(φ e)dφ

)p

tα2+n−1dtdσ

)1/p

≤
∫

I(φ· e)

(∫ 1

t=0

∫
σ

fp (tF1 (φ e) σφ) tα2+n−1dtdσ

) 1
p

Fα1
1 (φ e)H1(φe)dφ

=

∫
I(φe)

(
|B|α2

|B (F1(φ e))|α2

∫ F1(φ e)

0

∫
σ

fp (tσφ) tα2+n−1dσdt

) 1
p

Fα1
1 (φe)H1 (φe) dφ

=
|B|

1
p
α2

|S|
1
p

∫
I(φe)

(
1

|B (F1(φ e))|α2

∫ F1(φ e)

0

∫
θ

fp (tθ) tα2+n−1dθdt

) 1
p

Fα1
1 (φe)H1 (φe) dφ

=
|B|

1
p
α2

|S|
1
p

∫
S+( e;δ)

(
1

|B (|y|)|α2

∫
B(|y|)

fp (x) |x|α2 dx

) 1
p

|y|α1ds(y), (2.8)

where integral Minkowski inequality is used, and integral equality (1.1) again.
Analogous arguing for the second term in (2.7) gives(∫ 1

t=0

∫
θ

(∫
I(φθ)

f (tF2 (φθ) φ) Fα1
2 (φθ)H2(φθ)dφ

)p

tα2+n−1dtdθ

)1/p

(2.9)

≤ |B|
1
p
α2

∫
S−( e;δ)

(
1

|B (|y|)|α2

∫
B(|y|)

fp (x) |x|α2 dx

) 1
p

|y|α1ds(y).

Using (2.7), (2.8) and (2.9), inequality (2.6) follows.
Finally, it is straightforward to check that both sides of inequality (2.6), rewrit-

ten for the function f(x) = |x|λ, are equal to

bλMr

(
|y|λ; Sn−1( e; δ); α1

)
Ms

(
|x|λ; B; α2

)
,

which gives the sharpness of the inequality. �

Mixed-mean inequality for uncentered case is given in the following theorem.
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Theorem 2.3. Let r, s, b, δ, α1, α2 ∈ R be such that r ≤ s, r, s 6= 0, b > 0, δ 6= 1,
α2 > −n and α1 > −n + 1 in the case δ = 1/2. If f is a non-negative function
on B ((|δ|+ |1− δ|)b)) (f positive in the case r < 0) and b = be, |e| = 1, then
the inequality[

1

|B(b)|α2

∫
B(b)

(
1

|S(δx, |1− δ||x|)|α1

∫
S(δx,|1−δ|| x|)

f r(y)|y|α1ds(y)

) s
r

|x|α2dx

] 1
s

≤

[
1

|S(δb, |1− δ|b)|α1

∫
S(b,δb)

(
1

|B(| x|)|α2

∫
B(|x|)

f s( y)|y|α2dy

) r
s

|x|α1ds(x)

] 1
r

.

(2.10)

holds. Inequality (2.6) is sharp and equality holds for functions of the form f(x) =
C|x|λ, C > 0. In the case r ≥ s the sign of inequality in (2.6) is reversed.

Proof. The proof is analogous to the proof of Theorem 2.2. In transforming
inequality (2.10) in polar coordinates using x = tθ, y = uφ, the relation y ∈
S (δx, |1− δ||x|) is equivalent to equation

u2 − 2utδφ · θ + (2δ − 1)t2 = 0.

Three cases should be considered. For 0 ≤ δ ≤ 1/2 the equation of the sphere is
given by

u = tδ

(
φ · θ +

√
(φ · θ)2 +

1− 2δ

δ2

)
,

for δ < 0

u = t|δ|

(√
(φ · θ)2 +

1− 2δ

δ2
− φ · θ

)
and for δ > 1/2, δ 6= 1 we must decompose the sphere into two parts given by

u = tδ

(
φ · θ ±

√
(φ · θ)2 +

1− 2δ

δ2

)
,

with the condition φ · θ ≥
√

1−2δ
δ

.
The rest of the proof is as in the proof of Theorem 2.2. �

3. Hardy and Carleman type inequalities

The mixed means can be used in proving various integral inequalities, such
as the Hardy and the Carleman inequality (for the classical theory see [2, 9,
11, 12] and for the multidimensional case see for example [6]). Analogously to
the procedure given in [3, 4, 5], we apply the mixed mean inequality (2.6) to
deduce the Hardy-type inequalities for the operators Sc

δ,α and Sunc
δ,α defined in the

Introduction.
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Theorem 3.1. Let p > 1, 0 < b ≤ ∞, α1, α2 ∈ R, δ > 0 be such that α2 > −n
and α1 > −n+1 in the case δ = 1. If f is a nonnegative function on B ((1 + δ)b)
and |e| = 1, then[∫

B(b)

(
1

|S(x, δ| x|)|α1

∫
S(x,δ|x|)

f( y)|y|α1ds(y)

)p

|x|α2dx

] 1
p

≤ C(n, p; δ; α1; α2)

(∫
B((1+δ)b)

fp( y)|y|α2dy

) 1
p

,

(3.1)

where

C(n, p; δ; α1; α2) =
1

|S(e, δ)|α1

∫
S( e,δ)

|x|−
n+α2

p |x|α1ds(x),

is the best possible constant.

Proof. Let 0 < b < ∞. Inequality (2.6) for r = 1 and s = p and obvious
estimation

∫
B(|x|) fp(y)|y|α2dy ≤

∫
B((1+δ)b)

fp(y)|y|α2dy, which holds for every

x ∈ S(b, δb), implies the inequality[∫
B(b)

(
1

|S(x, δ| x|)|α1

∫
S(x,δ|x|)

f( y)|y|α1ds(y)

)p

|x|α2dx

] 1
p

≤
|B(b)|1/p

α2

|S(b, δb)|α1

∫
S(b,δb)

|B(|x|)|−1/p
α2

|x|α1ds(x)

(∫
B((1+δ)b)

fp( y)|y|α2dy

) 1
p

.

Using |B(b)|α2 = bn+α2|B(1)|α2 , |S( b, δb)|α1 = bn+α1−1|S( e, δ)|α1 , and simple
substitution x′ = x/b and radiallity of the involved function we obtain (3.1).
Since the constant C(n, p; δ; α1; α2) is independent of b, inequality (3.1) obviously
holds for b = ∞ as well.

In the usual manner, for the best possibility of inequality (3.1) consider the
functions fε(x) = |x|−(α2+n)/p+ε. It is straightforward to check that the quotient
of the integral expressions on the left side and the right side of inequality (3.1),
in this particular choice of functions, tends to the constant C(n, p; δ; α1; α2) as ε
tends to 0. �

Theorem 3.2. Let 0 6= p < 1, 0 < b ≤ ∞, α1, α2 ∈ R, δ > 0 be such that
α2 > −n and α1 > −n + 1 in the case δ = 1. If f is a nonnegative function on
B ((1 + δ)b), then∫

B(b)

(
1

|S(x, δ| x|)|α1

∫
S(x,δ|x|)

fp( y)|y|α1ds(y)

) 1
p

|x|α2dx

≤ C1(n, p; δ; α1; α2)

∫
B((1+δ)b)

f( y)|y|α2dy,
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where

C1(n, p; δ; α1; α2) =

(
1

|S(e, δ)|α1

∫
S(e,δ)

|x|−p(n+α2)|x|α1ds(x)

) 1
p

, (3.2)

is the best possible constant.

Proof. The proof is analogous to the proof of Theorem 3.1 taking in Theorem 2.6
r = p < s = 1. For the best possibility of the constant C1(n, p; δ; α1; α2), arguing
is the same as in Theorem 3.1 using functions fε(y) = |y|−p(n+α2)+ε. �

Finally, we give the related Carleman type inequality for geometric mean.

Theorem 3.3. Let 0 < b ≤ ∞, α1, α2 ∈ R, δ > 0 be such that α2 > −n and
α1 > −n + 1 in the case δ = 1. If f is a positive function on B ((1 + δ)b), then∫

B(b)

exp

[
1

|S (x, δ|x|)|α1

∫
S(x,δ|x|)

|y|α1 log f(y) ds(y)

]
|x|α2dx

≤ C2 (n; δ; α1, α2)

∫
B((1+δ)b)

f(y)|y|α2 dy, (3.3)

where

C2 (n; δ; α1, α2) = exp

[
α2 + n

|S (e, δ)|α1

∫
S(e,δ)

|x|α1 log
1

|x|
ds(x)

]
is the best possible constant.

Proof. Inequality (3.3) follows from (3.2) by taking the limiting procedure limp→0.
We give here the proof that the constant C2 (n; δ; α1, α2) is the best possible

one. To do that consider the functions fε(y) = |y|−n−α2+ε, ε > 0. The integral
on the right hand side of inequality (3.3), for this choice of functions, is equal
to |S|(1 + δ)εbε/ε. The integral on the left hand side of inequality (3.2), for this
choice of functions, using substitution y 7→ y/|x| and obvious transformations
gives∫

B(b)

exp

[
− n + α2 − ε

|S (x, δ|x|)|α1

∫
S(x,δ|x|)

|y|α1 log |y| ds(y)

]
|x|α2dx

=

∫
B(b)

exp

[
− n + α2 − ε

|S ( e, δ)|α1

∫
S(e,δ)

|y|α1 (log |y|+ log |x|) ds(y)

]
|x|α2dx

= exp

[
− n + α2 − ε

|S ( e, δ)|α1

∫
S(e,δ)

|y|α1 log |y|ds(y)

] ∫
B(b)

|x|−n+εdx

= exp

[
− n + α2 − ε

|S ( e, δ)|α1

∫
S(e,δ)

|y|α1 log |y|ds(y)

]
|S|b

ε

ε
,

which gives that the quotient of the integrals on the left hand side and on the
right hand side of the inequality (3.2), for this particular choice of functions,
tends to C2 (n; δ; α1, α2) as ε tends to 0. �
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Keeping in mind Theorem 2.3, it is obvious what are the uncentered versions of
Theorems 3.1, 3.2 and 3.3, so we give just the forms of the constants in analogous
inequalities

Cunc(n, p; δ; α1; α2)

=
1

|S(δe, |1− δ|)|α1

∫
S(δe,|1−δ|)

|x|−
n+α2

p |x|α1ds(x), p > 1,

Cunc
1 (n, p; δ; α1; α2)

=

(
1

|S(δe, |1− δ|)|α1

∫
S(δe,|1−δ|)

|x|−p(n+α2)|x|α1ds(x)

) 1
p

, 0 6= p < 1,

Cunc
2 (n; δ; α1, α2)

= exp

[
α2 + n

|S (δ e, |1− δ|)|α1

∫
S(δ e,|1−δ|)

|x|α1 log
1

|x|
ds(x)

]
, p = 0.

4. Concluding remarks

We give several remarks on the constants C(n, p; δ) = C(n, p; δ; 0, 0), C2(n; δ) =
C2(n; δ; 0, 0), Cunc(n, p; δ) = Cunc(n, p; δ; 0, 0), Cunc

2 (n; δ) = Cunc
2 (n; δ; 0, 0).

Using Lemma 2.1 for x = en, y = uφ and using dφ = sinn−2 ϕn−1dϕn−1dφ̄,

φ̄ ∈ Sn−2, φ · en = cos ϕn−1, |Sn−1| = 2πn/2

Γ(n/2)
, we easily get

C(n, p; δ)

=
1

δn−2

Γ
(

n
2

)
√

πΓ
(

n−1
2

) ∫ 1

−1

(
t +

√
t2 + δ2 − 1

) n
p′−1 (1− t2)

n−3
2 dt√

t2 + δ2 − 1
, δ ≥ 1,

Cunc(n, p; δ)

=
|δ|

n
p′−2

(1− δ)n−2

Γ
(

n
2

)
√

πΓ
(

n−1
2

) ∫ 1

−1

(
t +

√
t2 +

1− 2δ

δ2

) n
p′−1

(1− t2)
n−3

2 dt√
t2 + 1−2δ

δ2

, δ ≤ 1

2
,

C2(n; δ)

= exp

[
− n

δn−2

Γ
(

n
2

)
√

πΓ
(

n−1
2

)
·
∫ 1

−1

log
(
t +

√
t2 + δ2 − 1

)(
t +

√
t2 + δ2 − 1

)n−1 (1− t2)
n−3

2 dt√
t2 + δ2 − 1

]
, δ ≥ 1,
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Cunc
2 (n; δ)

= exp

[
− n|δ|n−2

(1− δ)n−2

Γ
(

n
2

)
√

πΓ
(

n−1
2

)
·
∫ 1

−1

log

[
|δ|

(
t +

√
t2 +

1− 2δ

δ2

)](
t +

√
t2 +

1− 2δ

δ2

)n−1
(1− t2)

n−3
2 dt√

t2 + 1−2δ
δ2

 ,

δ ≤ 1

2
.

It is not necessary to have complementary formulas (in the centered case 0 <
δ ≤ 1, in uncentered case δ > 1/2) since it is easy to see that the following
identities hold

Cunc(n, p; δ) = Cunc(n, p; 1− δ), δ ≤ 1/2, (4.1)

C(n, p; δ) = δ−
n
p C

(
n, p;

1

δ

)
, (4.2)

Cunc(n, p; δ) = δ−
n
p C

(
n, p;

1

δ
− 1

)
, 0 < δ < 1. (4.3)

In some cases we can explicitly calculate the above constants as functions of δ.
The easiest case is p = n

n−2
. This is the case when the function x 7→ |x|−

n
p is

a harmonic function. We get C(n, p = n
n−2

; δ) = 1, 0 < δ ≤ 1 and C(n, p =
n

n−2
; δ) = δ2−n, δ ≥ 1. Also, Cunc(n, p = n

n−2
; δ) = δ2−n, δ ≥ 1/2 and Cunc(n, p =

n
n−2

; δ) = (1 − δ)2−n, δ ≤ 1/2. Note that supδ>0 C(n, p = n
n−2

; δ) = 1 and

supδ Cunc(n, p = n
n−2

; δ) = 2n−2. It is easy to see using (4.2) that in harmonic case
p = n/(n−2) and in super-harmonic case p > n/(n−2), we get supδ>0 C(n, p; δ) =
1. Only in sub-harmonic cases n/(n − 1) < p < n/(n − 2) we obtain non-trivial

lower bounds. For example, C(p = 2, n = 3; δ) =
√

1+δ−
√
|1−δ|

δ
, so supδ>0 C(p =

2, n = 3; δ) =
√

2.
The identities (4.1), (4.2), (4.3) and previous examples suggest to consider

C(n, p; 1) and Cunc(n, p; 1/2) in order to obtain the best possible lower bounds
for operator norms for appropriate maximal functions. We easily get

C(n, p; 1) = 2
n
p′−2 Γ

(
n
2

)
√

πΓ
(

n−1
2

)B( n

2p′
− 1

2
,
n− 1

2

)
, p > n′ =

n

n− 1
,

and

Cunc(n, p;
1

2
) = 2n−2 Γ

(
n
2

)
√

πΓ
(

n−1
2

)B( n

2p′
− 1

2
,
n− 1

2

)
, p > n′ =

n

n− 1
.

Also,

C2(n; 1) = 2−nexp

[
n

2

(
H(n− 2)−H

(
n− 3

2

))]
,
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and

Cunc
2 (n; 1) = exp

[
n

2

(
H(n− 2)−H

(
n− 3

2

))]
,

where H = H(s), s > −1, are harmonic numbers.

Finally, using Stirling asymptotic formula Γ(x) ∼ e−xxx− 1
2

√
2π, we can give

asymptotic behavior of the above constants for fixed p > 1 and large n. For the
similar discussion in the case of balls see [8]. Straightforward calculation gives
that C(n, p; δ) asymptotically behaves as 4

1
p′
(

1
p′
− 1

n

) 1
p′

(
1
p′

+ 1− 2
n

)1+ 1
p′


n
2

,

which shows that C(n, p; δ) has exponential decay, since by Bernoulli inequality
4/p′ < (1 + 1/p′)1+p′ . Analogous arguing gives that Cunc(n, p; δ) asymptotically
behaves as  4

(
1
p′
− 1

n

) 1
p′

(
1
p′

+ 1− 2
n

)1+ 1
p′


n
2

,

which shows that Cunc(n, p; δ) has exponential growth, since 4p′/p′ > (1+1/p′)1+p′ .
Using limn→∞ (H(2k)−H(k)) = log 2, we get that C2(n; 1) asymptotically be-
haves as 2−n/2 and Cunc

2 (n; 1/2) behaves as 2n/2.
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