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HILBERT SPACE REPRESENTATIONS OF THE QUANTUM
∗-ALGEBRA Uq(su1,1)

DAVID DUBRAY1
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Abstract. The Hilbert space representation theory of the q-deformed quan-
tum ∗-algebra Uq(su1,1) is studied using the inducing procedure. As a result
we obtain four series of irreducible induced ∗-representations on Hilbert spaces.
Furthermore, we show that there is a one-to-one correspondence between the
induced series and the series of irreducible well-behaved ∗-representations of
Uq(su1,1) computed by Burban and Klymik.

Introduction

The representation theory of groups was founded by G. Frobenius in 1898. In
his work [5], he constructed induced representations of finite matrix groups from
subgroups. Subsequently, his work was extended and systematically developed
by G.W. Mackey in [7].

In [9], Y. Savchuk and K. Schmüdgen developed a theory of unbounded induced
Hilbert space representations. Important parts of this theory are a definition of
well-behaved representations, several versions of the imprimitivity theorem, a
generalization of Mackey’s analysis and an inducing procedure for group graded
∗-algebras and one-dimensional ∗-representations. Examples of ∗-representations
of ∗-algebras which are induced from a commutative ∗-subalgebra are given in [9]
and in the recent paper [3] by Y. Savchuk and P. Dowerk.

The aim of the present paper is a detailed analysis of the inducing procedure for
a much more involved example: the quantum ∗-algebra Uq(su1,1). This ∗-algebra
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has four series of unbounded irreducible series of ∗-representations. In 1993, Bur-
ban and Klymik [2] computed all irreducible ∗-representations of Uq(su1,1) which
fulfill certain technical regularity conditions. We elaborate all ∗-representations of
the ∗-algebra Uq(su1,1) which are induced by characters of the zero ∗-subalgebra
with the grading defined by

E ∈ A1 and K,K−1 ∈ A0.

The equivalence classes of induced ∗-representations are parametrized by means
of the positive characters. In our main theorem, we obtain a one-to-one corre-
spondence between subfamilies of equivalence classes of induced ∗-representations
and the series of ∗-representations derived in [2]. This result gives new insight
into the inducing procedure and another perspective on the representation theory
of the quantum ∗-algebra Uq(su1,1).

For a more general approach to induced representations we refer to [4]. Im-
portant monographs on the general theory of Hilbert space representations are
[1], [8], [6] and [11]. The quantum space Uq(sl2) was introduced in [10]. The
∗-algebra Uq(su1,1) is a real form of this quantum algebra.

In the following preliminaries, we will introduce the inducing procedure given
in [9] with some minor simplifications fitting our setting.

0.1. Preliminaries. In this work an algebra is always an associative algebra with
unit over the field C. A ∗-algebra A is an algebra with involution, i.e. a conjugate
linear map ∗ : A → A, a 7→ a∗ fulfilling a∗∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A.
For a better reading experience, we will use negative exponents in the following
way: we denote (a∗)n by a−n for n ∈ N. The zero exponent is defined by a0 := 1A.
With this notation the exponentiation rule an+m = anam, m,n ∈ Z, does not hold
in general.

We denote the set of all linear operators from a linear vector space X over C
to itself by L(X). Let D be a dense linear subspace of a Hilbert space H. An
algebra homomorphism π : A → L(D) is called a ∗-representation if

⟨π(a)φ, ψ⟩H = ⟨φ, π(a∗)ψ⟩H
for all φ, ψ ∈ D, a ∈ A. We denote the corresponding dense linear subspace
to a ∗-representation π by D(π) and the corresponding Hilbert space by H(π).
Occasionally, we call D(π) the domain of π and H(π) the carrier Hilbert space of
π.

The graph topology of a ∗-representation π is the local convex topology on the
vector space D(π) induced by the family of semi-norms{

∥ · ∥+ ∥π(a) · ∥
}
a∈A

.

The closure of a ∗-representation π is the ∗-representation π defined by π(a) :=

π(a) ↾D(π), a ∈ A, where D(π) is the closure of D(π) in the graph topology

and π(a) is the closure of π(a) as an operator densely defined on H(π). A ∗-
representation π is closed if π = π.

The direct sum of two ∗-representations π1, π2 is denoted by π1⊕π2. It is defined
on the direct sumD(π1)⊕D(π2) and maps a 7→ π1(a)⊕π2(a). A ∗-representation π
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is called irreducible if for every two ∗-representations π1, π2 with π = π1⊕π2 one of
the domains D(π1) and D(π2) is zero. Two ∗-representations π1, π2 of a ∗-algebra
A are called unitarily equivalent if there is a unitary operator U : D(π1) −→ D(π2)
fulfilling U−1π2(a)U = π1(a) for all a ∈ A.

For an arbitrary set I, we denote the direct sum of a family of linear spaces
{Xi}i∈I by ⊕i∈IXi.

Definition 0.1. Let (G,+) be a (discrete) group. A G-graded ∗-algebra A is a
∗-algebra with linear subspaces Ag ⊂ A, g ∈ G, such that

A = ⊕g∈GAg, (0.1)

Ag1Ag2 ⊂ Ag1+g2 ∀ g1, g2 ∈ G, (0.2)

A∗
g ⊂ A−g ∀ g ∈ G. (0.3)

The linear subspace A0 of the neutral element of the group will be called the
zero ∗-subalgebra of A, which, indeed, is a ∗-subalgebra by properties (0.2) and
(0.3). We call the elements of a linear subspace Ag, g ∈ G, homogeneous elements.

We call the quadratic module
∑

A2 the finite sums of squares. It is defined by∑
A2 :=

{
n∑
i=1

a∗i ai

∣∣∣ a1, . . . , an ∈ A, n ∈ N

}
.

The subset
∑

A2 ∩ A0 of the finite sums of squares of A is called the positive
cone of A0. Its structure is described in the following lemma.

Lemma 0.2. An element a ∈ A0 belongs to the positive cone
∑

A2 ∩ A0 if
and only if it can be presented as a finite sum of squares

∑
x∈X x

∗x such that
X ⊂

∪
g∈GAg.

Let us assume that the zero ∗-subalgebra A0 of A is commutative and denote it
by B. We call a non-trivial ∗-representation of B onto C a character. A character
χ is positive if it is non-negative on the positive cone of B, i.e. if χ (

∑
A2 ∩ B) ⊆

R+
0 .
If for every g ∈ G there is an element cg ∈ Ag such that Ag = cgB, then χ is

positive if and only if

χ(c∗gcg) ≥ 0 for all g ∈ G. (0.4)

The set of characters will be denoted by B̂ and the set of positive characters

by B̂+. From [9] follows that for every positive character there is an induced
∗-representation Indχ of A.

Definition 0.3. Let χ ∈ B̂+ and g ∈ G. If there is an element ag ∈ Ag such that
χ(a∗gag) ̸= 0, we define the map χg : B → C by

χg(b) :=
χ(a∗gbag)

χ(a∗gag)
for all b ∈ B. (0.5)

Otherwise, we say that χg is not defined. For an element g ∈ G we denote by Dg

the set of all characters χ ∈ B̂+ such that χg is defined.
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Lemma 0.4. Let χ ∈ B̂+, g ∈ G and suppose χg is defined. Then χg is a positive
character.

Let us introduce three important definitions related to the partial group action.

For χ ∈ B̂+ the subset Gχ ⊂ G is defined by

Gχ :=
{
g ∈ G | χg is defined

}
,

the orbit of χ is defined by

Orbχ :=
{
χg | χg is defined

}
and the stabilizer of χ is defined by

Stχ :=
{
g ∈ G | χg is defined and equal to χ

}
.

Obviously, we have 0 ∈ Stχ ∩Gχ and χ ∈ Orbχ.

Proposition 0.5. Let χ ∈ B̂+. If ψ ∈ B̂+, then Orbψ ∩ Orbχ ̸= ∅ if and only if
Orbψ = Orbχ.

The next proposition gives explicit formulas for induced ∗-representations by
characters. Recall that the representation space H(π) of an induced ∗-representa-
tion π = Indχ, χ ∈ B̂+, is spanned by the vectors [a⊗ 1], a ∈ A.

Proposition 0.6. Let χ ∈ B̂+ and set π := Indχ. For all g ∈ Gχ fix elements
ag ∈ Ag such that χ(a∗gag) ̸= 0.

[(i)]The vectors

eg =
[ag ⊗ 1]√
χ(a∗gag)

, g ∈ Gχ,

form an orthonormal basis of the carrier Hilbert space H(π). For ch ∈
Ah, h ∈ G, we have

π(ch)eg =
χ(a∗h+gchag)√

χ(a∗h+gah+g)χ(a
∗
gag)

eh+g if h+ g ∈ Gχ

and π(ch)eg = 0 if h+ g /∈ Gχ. In particular, if b ∈ B, then we have

π(b)eg =
χ(a∗gbag)

χ(a∗gag)
eg = χg(b)eg.

For the next two propositions let B be countably generated and let G be count-
able.

Proposition 0.7. An induced ∗-representation Indχ, χ ∈ B̂+, is irreducible if
and only if the stabilizer Stχ is trivial.

Proposition 0.8. Two induced ∗-representations Indχ, Indψ, ψ, χ ∈ B̂+, are
unitarily equivalent if and only if Orbχ = Orbψ.
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1. The Quantum ∗-Algebra Uq(su1,1)

We shall induce ∗-representations of the quantum ∗-algebra Uq(su1,1) using a
Z-grading. Next, we compare the induced ∗-representations with the different
series of ∗-representations from I.M. Burban and A.U. Klimyk in [2]. These
∗-representations will be referred to as the classical or well-behaved ∗-representa-
tions or series.

Using a parametrization based on the computation of the positive characters,
we will be able to show a one-to-one correspondence of the induced equivalence
classes of ∗-representations and the classical series. Moreover, we will be able
to assign subsets of the induced equivalence classes to the various corresponding
classical series.

1.1. Definition and Z-Grading. In this section suppose q ∈ (0, 1) is fixed. The
∗-algebra Uq(su1,1) has the generators E,F,K,K−1 with the defining relations

KK−1 = K−1K = 1,

KEK−1 = qE, KFK−1 = q−1F,

[E,F ] =
K2 −K−2

q − q−1

and an involution defined by

E∗ = −F, F ∗ = −E, K∗ = K, K−1∗ = K−1.

Let us define a Z-grading on A := Uq(su1,1) by

E ∈ A1 and K,K−1 ∈ A0.

Looking at the defining relations and the involution of A, we see that this grading
is well-defined. Additionally, we see:

[(i)]The zero ∗-subalgebra B := A0 = C[EF,K,K−1] is commutative.
The linear subspaces of the Z-grading are Az = EzB, z ∈ Z.

From the theory of quantum ∗-algebras it is well-known that the quantum
Casimir element of Uq(su1,1) is

Cq = EF +
q−1K2 + qK−2

(q − q−1)2
.

Since the quantum Casimir element is part of the centralizer of Uq(su1,1) and
EF ∈ C[Cq, K,K−1], the zero ∗-subalgebra is B = C[Cq, K,K−1].

1.2. Inducing Procedure - First Part. Due to the generators of B each char-
acter χ is determined by two parameters (s, t) ∈ C × C̸=0 if χ(Cq) = s and
χ(K) = t. Therefore, we parametrize the characters by such tuples, and write

χs,t for an element of B̂. If χs,t is in B̂+, we denote the induced ∗-representation
of χs,t by πs,t.

Let χ be a positive character. To simplify notation, we denote an equivalence
class [A⊗λ] ∈ A⊗BC/Kχ by its representative A⊗λ. The one or zero dimensional
linear subspace of A⊗B C/Kχ spanned by {az ⊗ 1 | az ∈ Az} will be denoted by
Az ⊗ C for z ∈ Z.
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For the generators K and K−1, since K∗ = K and K−1∗ = K−1, we will use
the slightly inconsistent but intuitive notation K−z = (K−1)z for z ∈ Z.

As it is usual in this context, we use the notation of the q-Calculus [z] = [z]q =
qz−q−z

q−q−1 for z ∈ Z and write adapted to our special case [K2; z] = [K2; z]q =
qzK2−q−zK−2

q−q−1 , z ∈ Z.
The following lemma is a well-known fact from the analysis of the quantum

∗-algebra Uq(su2):

Lemma 1.1. For all n ∈ N, we have the equalities

[E,F n] = F n−1[n][K2; 1− n] and [En, F ] = En−1[n][K2;n− 1]

in Uq(su2) and Uq(su1,1).

Lemma 1.2. Let z ∈ Z. The following equations hold:

E∗zEz =
z∏

k=1

(
[k][K2; k − 1]− EF

)
for z > 0, (1.1)

and E∗zEz =

|z|∏
k=1

(
[1− k][K2;−k]− EF

)
for z < 0. (1.2)

(1)(2)(1)(2) Proof. We use Lemma 1.1 and show exemplary the case z > 0.
For z > 0 we have

E∗zEz = (−F )zEz = (−1)zF z−1(EzF − Ez−1[z][K2; z − 1])

= (−1)z
z∏

k=1

(
EF − [k][K2; k − 1]

)
=

z∏
k=1

(
[k][K2; k − 1]− EF

)
.

□
Lemma 1.3. A character χs,t is in B̂+ if and only if

χs,t (E
∗nEn) =

n∏
k=1

(
q2k−1t2 + q−2k+1t−2

(q − q−1)2
− s

)
≥ 0 (1.3)

and

χs,t (E
nE∗n) =

n∏
k=1

(
q2k−1t−2 + q−2k+1t2

(q − q−1)2
− s

)
≥ 0 (1.4)

for all n ∈ N.

Proof. Since Az = EzB for all z ∈ Z, we can use condition (0.4). Hence, a
character is positive if it is non-negative on the terms Ez∗Ez, z ∈ Z.

The factors of (1.1) are

[k][K2; k − 1]− EF =
q2k−1K2 − q−1K2 − qK−2 + q−2k+1K−2

(q − q−1)2
− EF

=
q2k−1K2 + q−2k+1K−2

(q − q−1)2
− Cq,
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and the factors of (1.2) are

[1− k][K2;−k]− EF =
q−2k+1K2 − q−1K2 − qK−2 + q2k−1K−2

(q − q−1)2
− EF

=
q2k−1K−2 + q−2k+1K2

(q − q−1)2
− Cq.

Applying χs,t on the right-hand side of (1.1) and (1.2) shows the assertion. □

Lemma 1.4. If χs,t ∈ B̂+, then (s, t) ∈ R× R̸=0.

Proof. Let χs,t ∈ B̂+. We have χs,t(EE
∗) = −χs,t(EF ) ≥ 0, which implies that

χs,t(EF ) is real. Since χs,t(K
2) = t2 ≥ 0, t2 and t are real. Further, since

Cq = EF + q−1K2+qK−2

(q−q−1)2
, s = χs,t(Cq) is real. □

In the following, if a character χs,t or a ∗-representation πs,t is introduced, we
assume that (s, t) ∈ R× R ̸=0 if the pair (s, t) is not defined explictly.

For every induced ∗-representation πs,t, we define

ek :=
Ek ⊗ 1

∥Ek ⊗ 1∥

and Ms,t := Gχs,t =
{
k ∈ Z | Ek ⊗ 1 ̸= 0 in H(πs,t)

}
.

(1.5)

Then, by Proposition 0.6, the family {ek}k∈Ms,t is an orthonormal system of the
carrier Hilbert space H(πs,t).

The action of an induced ∗-representation πs,t and the partial action of Z on
the positive characters are described in the next two propositions.

Proposition 1.5. The induced ∗-representation πs,t has the following action on
the basis vectors ek for all k ∈Ms,t:

πs,t(E)ek =

(
q2k+1t2 + q−2k−1t−2

(q − q−1)2
− s

) 1
2

ek+1,

πs,t(K)ek = qktek

where ek = 0 if k /∈Ms,t.

Proof. Let k ∈Ms,t. We use Proposition 0.6 (ii).
The operator πs,t(K) is acting on ek by

πs,t(K)ek = χks,t(K)ek =
χs,t

(
Ek∗KEk

)
χs,t (Ek∗Ek)

ek

= qkχs,t (K) ek = qktek.
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Suppose k + 1 ∈Ms,t, for k > 0 we get

πs,t(E)ek =
Ek+1 ⊗ 1

∥Ek ⊗ 1∥
=

(∏k+1
j=1

(
q2k−1t2+q−2k+1t−2

(q−q−1)2
− s
)) 1

2

(∏k
j=1

(
q2k−1t2+q−2k+1t−2

(q−q−1)2
− s
)) 1

2

Ek+1 ⊗ 1

∥Ek+1 ⊗ 1∥

=

(
q2k+1t2 + q−2k−1t−2

(q − q−1)2
− s

) 1
2

ek+1,

and for k < 0 we get

πs,t(E)ek = πs,t(E)
Ek ⊗ 1

∥Ek ⊗ 1∥

=
χs,t

(
Ek+1∗EEk

)√
χs,t (Ek+1∗Ek+1)χs,t (Ek∗Ek)

Ek+1 ⊗ 1

∥Ek+1 ⊗ 1∥

=

 ∏−k
l=1

(
q2l−1t−2+q−2l+1t2

(q−q−1)2
− s
)

∏−k−1
l=1

(
q2l−1t−2+q−2l+1t2

(q−q−1)2
− s
)


1
2

ek+1

=

(
q−2k−1t−2 + q2k+1t2

(q − q−1)2
− s

) 1
2

ek+1.

If k + 1 /∈Ms,t, the action stated in the assertion is obviously true.
□

Proposition 1.6. Let χs,t be a positive character. If χs,t ∈ Dk, the partial action
for k ∈ Z is

χks,t(Cq) = χs,t(Cq),

χks,t(K) = qkχs,t(K).

The stabilizer Stχs,t of each positive character is trivial. Therefore, every induced
∗-representation πs,t is irreducible.

Proof. Let χs,t ∈ B̂+, k ∈ Z. Since Cq is in the centralizer of A, we have

χks,t(Cq) =
χs,t(E

k∗CqE
k)

χs,t(Ek∗Ek)
=
χs,t(E

k∗Ek)χs,t(Cq)

χs,t(Ek∗Ek)
= χs,t(Cq) = s.

The evaluation of K is

χks,t(K) =
χs,t(E

k∗KEk)

χs,t(Ek∗Ek)
=
χs,t(E

k∗Ek)qkχs,t(K)

χs,t(Ek∗Ek)
= qkχs,t(K) = qkt.

Suppose χs′,t′ ∈ B̂+ and χs′,t′ = χks,t. Then, by the above calculation, we get

t′ = qkt. Therefore, we have χs′,t′ ̸= χks,t if k ̸= 0. This shows that the stabilizer
is trival. □
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1.3. Classical ∗-Representations of Uq(su1,1). For every ε ∈ [0, 1) define
Zε := {ν ∈ R | ν = z + ε, z ∈ Z}. The classical ∗-representations are denoted by
Taε with indices a ∈ R, ε ∈ [0, 1).

For each ∗-representation Taε there is a corresponding set Zaε ⊂ Zε and or-
thonormal vectors {bν}ν∈Zaε such that the domain of Taε isD(Taε) := span{bν}ν∈Zaε .

The ∗-representation Taε acts on bν ∈ D(Taε) by

Taε(K)bν = qνbν , (1.6)

Taε(E)bν = ([a+ ν + 1][−a+ ν])
1
2 bν+1

=

(
q2ν+1 + 1

q2ν+1 − (q2a+1 + 1
q2a+1 )

(q − q−1)2

) 1
2

bν+1, (1.7)

Taε(F )bν = − ([−a+ ν − 1][a+ ν])
1
2 bν−1 (1.8)

where bν = 0 if ν /∈ Zaε.
One sees directly that for each ∗-representation Taε there is a ∗-representation

T̃aε with the only difference to Taε being

T̃aε(K)bν = −qνbν .

We call Taε a ∗-representation of type one (type two) if the operator Taε(K) has
positive (negative) eigenvalues. In [2] the ∗-representations of type two were left
out.

The duality between ∗-representations of type one and type two also shows
up in the induced ∗-representations described in the previous subsection. For a
character χs,t, the positivity does not depend on the leading sign of t (see (1.3)
and (1.4)). Hence, for each induced ∗-representation πs,t there is an induced
∗-representation πs,−t.

Obviously, if a classical ∗-representation of type one is unitarily equivalent to
an induced ∗-representation πs,t with t ∈ R+, the corresponding ∗-representation
of type two is unitarily equivalent to πs,−t.

We restrict our analysis to ∗-representations of type one and induced ∗-represen-
tations with positive parameter t.

In [2] Burban and Klymik computed the following series of equivalence classes of
irreducible ∗-representations, which are all well-behaved irreducible ∗-representa-
tions of type one up to unitary equivalence:

We denote both the equivalence class and the representative by Taε.

• The principal unitary series Taε acts on {bν}ν∈Zε with

a = i ρ
h
− 1

2
for ρ ∈ [0, π], 0 ≤ ε < 1, ε ̸= 1

2
(1.9)

or

a = i ρ
h
− 1

2
for ρ ∈ (0, π], ε = 1

2
(1.10)

where we identify q = e
h
2 .
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• The strange series Taε acts on {bν}ν∈Zε with

0 ≤ ε < 1, (1.11)

ℑa =
π

h
, ℜa > −1

2
(1.12)

where we identify q = e
h
2 .

• The supplementary series Taε acts on {bν}ν∈Zε with

0 ≤ ε < 1
2

and ε− 1 < a < −1
2

(1.13)

or 1
2
< ε < 1 and − 1

2
< a < ε− 1. (1.14)

• The discrete series are

T+
a := Taε with a > −1, ε = a mod Z, ε ∈ [0, 1),

acting on {bν}ν>a
(1.15)

and T−
a := T−a,ε with a < 1, ε = a mod Z, ε ∈ [0, 1),

acting on {bν}ν<a.
(1.16)

Remark 1.7. In the literature one can find slightly different parameters for the
discrete and the supplementary series.

1.4. Inducing Procedure - Second Part. Since we restricted ourselves to
characters χs,t with t > 0, we can write the parameter t uniquely as t = qε+l with
ε ∈ [0, 1), l ∈ Z, and parametrize the characters by the triplet (s, ε, l). Therefore,
each positive character χ with χ(K) > 0 can be denoted by χs,t or χs,ε,l. In the
following, we will use this duality freely. Hence, for every introduced character
χs,t, we assume the existence of a tuple (ε, l) ∈ [0, 1)× Z which fulfills t = qε+l.

The condition for the positivity of a character χs,t can be written in a more
compact form by combining (1.3) and (1.4) to

χs,t(E
∗zEz) =

|z|∏
k=1

(
q2k−1t2sgn(z) + q−2k+1t−2sgn(z)

(q − q−1)2
− s

)
≥ 0 (1.17)

for all z ∈ Z.
Therefore, a sufficient and, if all factors of (1.17) are nonzero, necessary con-

dition on s for χs,t being positive is

s < min
z∈Z

q2z−1t2 + 1
q2z−1t2

(q − q−1)2
. (1.18)

Due to the duality introduced above, we can state the following lemma.

Lemma 1.8. Let χs,t ∈ B̂+. Then we have

min
z∈Z

q2z−1t2 + 1
q2z−1t2

(q − q−1)2
=
q2ε−1 + 1

q2ε−1

(q − q−1)2
≥ 2

(q − q−1)2
. (1.19)
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Proof. A short analysis of the function f : R+
̸=0 → R given by f(x) := x+ 1

x
shows

a global minimum at x = 1.
With this, the minimum of the nominator of the left hand term of (1.19) is

min
z∈Z

q2z−1t2 +
1

q2z−1t2
= min

z∈Z
q2z+2l+2ε−1 +

1

q2z+2l+2ε−1
= q2ε−1 +

1

q2ε−1
.

□
From (1.17), (1.18) and Lemma 1.8, we can deduce the following two corollaries.

Corollary 1.9. Let χs,t ∈ B̂+. The parameter s fulfills either

s =
q2z−1t2 + 1

q2z−1t2

(q − q−1)2
for z ∈ Z or s <

q2ε−1 + 1
q2ε−1

(q − q−1)2
.

Corollary 1.10. Let χs,t ∈ B̂+. If s fulfills the inequality

s <
q2ε−1 + 1

q2ε−1

(q − q−1)2
,

we have Dχs,t = Z.

First, we discuss the second case of Corollary 1.9.

Lemma 1.11. The unitary equivalence classes of all induced ∗-representations
by positive characters χs,t with s <

q2ε−1+ 1
q2ε−1

(q−q−1)2
can be parametrized by the set

[0, 1)× (−∞, 0).
A parametrization is given by (ζ, x) 7→ [πs,t] with

t = qζ ,

and s = x+
q2ζ−1 + 1

q2ζ−1

(q − q−1)2
.

Each such character χs,t has the orbit Orbχs,t = {χs,qkt | k ∈ Z}, and the index
set Ms,t of the orthonormal basis {ek}k∈Ms,t (see (1.5)) is Z.

Proof. If χs,t is in Dk, we have χks,t = χs,qkt. Therefore, two characters χs,t, χs′,t
are in different orbits for s ̸= s′.

Recall that for a character χs,t with t = qε+l the minimum in (1.19) only
depends on ε. Taking into account the partial action, we see that χs,t is in the

same orbit as χs,qkt for all k ∈ Z if s <
q2ε−1+ 1

q2ε−1

(q−q−1)2
.

Combining both arguments for the parameters shows that the stated mapping
in the assertion is a parametrization and that Orbχs,t = {χs,qkt | k ∈ Z}.

Since χs,t(E
∗zEz) in (1.17) is equal to ∥Ez ⊗ 1∥2 for all z ∈ Z, the index set

Ms,t is Z for s fulfilling (1.18). □
Proposition 1.12. The equivalence classes [πs,qε ] with the parameters

ε ∈ [0, 1) \ {1
2
} and

−2

(q − q−1)2
≤ s ≤ 2

(q − q−1)2
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or

ε = 1
2

and
−2

(q − q−1)2
≤ s <

2

(q − q−1)2

are unitarily equivalent to the principal unitary series.

Proof. Combining (1.19) with Lemma 1.11, we see that the equivalence classes
stated in the assertion are a subset of the equivalence classes parametrized in
Lemma 1.11.

Let Taε be an equivalence class of the principal unitary series. We set

t := qε

and

s :=
q2a+1 + 1

q2a+1

(q − q−1)2
=

eiρ + e−iρ

(q − q−1)2
=

2ℜeiρ

(q − q−1)2
.

This implies for ε ̸= 1
2
by (1.9) that −2

(q−q−1)2
≤ s ≤ 2

(q−q−1)2
and for ε = 1

2
by

(1.10) that −2
(q−q−1)2

≤ s < 2
(q−q−1)2

. Therefore χs,t is a positive character and the

induced ∗-representation πs,t exists.
We define a unitary operator U : H(πs,t) → H(Taε) by setting

U(ej) = bj+ε (1.20)

for all j ∈ Z.
This operator is well-defined since H(πs,t) = span{ek}k∈Z and for an operator

of the principal unitary series we have H(Taε) = span{bν}ν∈Zε .
Comparing the action of Taε in (1.6)-(1.8) with the action of πs,t in Proposition

1.5, we see that U−1TaεU = πs,t if and only if

t = qε, (1.21)

s =
q2a+1 + 1

q2a+1

(q − q−1)2
. (1.22)

Since we defined s and t this way, Taε and πs,t are unitarily equivalent.
We see that the construction above maps the principal unitary series bijectively

on the stated equivalence classes in the assertion if we vary the parameters of the
principal unitary series. This shows the assertion. □

Proposition 1.13. The equivalence classes [πs,qε ] with the parameters

ε ∈ [0, 1) and s <
−2

(q − q−1)2

are unitarily equivalent to the strange series.

Proof. The proof is the same as the proof of the previous Proposition with the
only difference being that for an operator Taε of the strange series we get by



HILBERT SPACE REPRESENTATIONS 273

(1.12):

s =
q2a+1 + 1

q2a+1

(q − q−1)2
=
q2i

π
h q2ℜa+1 + 1

q2i
π
h q2ℜa+1

(q − q−1)2
=

=
eiπq2ℜa+1 + 1

eiπq2ℜa+1

(q − q−1)2
= −

q2ℜa+1 + 1
q2ℜa+1

(q − q−1)2
<

−2

(q − q−1)2
.

□
Proposition 1.14. The equivalence classes [πs,qε ] with the parameters

ε ∈ [0, 1) \ {1
2
} and

2

(q − q−1)2
< s <

q2ε−1 + 1
q2ε−1

(q − q−1)2
(1.23)

are unitarily equivalent to the supplementary series.

Proof. Let Taε be an equivalence class of the supplementary series. We set

t := qε, s :=
q2a+1 + 1

q2a+1

(q − q−1)2
.

The parameters of the supplementary series fulfill

ε− 1 < a < −1
2

and 0 ≤ ε < 1
2
, (1.24)

or − 1
2
< a < ε− 1 and 1

2
< ε < 1. (1.25)

For the rest of the proof keep in mind the proof of Lemma 1.8.
If (1.24) holds, we have

|2ε− 1| = 1− 2ε > |2a+ 1| = −2a− 1 since a > ε− 1.

If (1.25) holds, we have

|2ε− 1| = 2ε− 1 > |2a+ 1| = 2a+ 1 since a < ε− 1.

Therefore, s fulfills inequality (1.18) and χs,t is a positive character. We in-
troduce the unitary operator U as defined in (1.20), which shows the unitary
equivalence of πs,t and Taε.

Again, as in the previous two proofs, we vary the parameters of the supple-
mentary series and show the surjectivity of the above construction of πs,t:

If 0 ≤ ε < 1
2
, we have 2ε − 1 < 0. Therefore, varying a gives all parameters

s fulfilling (1.23) since 2ε − 1 < 2a + 1 < 0 is equivalent to ε − 1 < a < −1
2
. If

1
2
< ε < 1, we can argue in an analog way with inverted inequalities.

□
Remark 1.15. With the last three propositions we have assigned all induced
∗-representations from the second case of Corollary 1.9.

To find induced ∗-representations fitting to the discrete series, we have to con-
sider the induced ∗-representations πs,t (recall t = ql+ε, ε ∈ [0, 1), l ∈ Z) with

s =
q2z−1t2 + 1

q2z−1t2

(q − q−1)2
=
q2(l+z)+2ε−1 + 1

q2(l+z)+2ε−1

(q − q−1)2
(1.26)
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for z ∈ Z, which have not been parametrized or assigned to classical ∗-represen-
tations yet.

Lemma 1.16. Let ε ∈ [0, 1). If l ∈ Z≤−1, equation (1.26) is fulfilled for an
induced ∗-representation πs,t

for ε ∈ (0, 1) only if 0 < z ≤ −l
and for ε = 0 only if 0 < z ≤ −l + 1.

If l ∈ Z≥0, equation (1.26) is fulfilled for an induced ∗-representation πs,t

for ε ∈ (0, 1) only if − l ≤ z ≤ 0

and for ε = 0 only if − l ≤ z ≤ 0 or − l ≤ z ≤ −l + 1.

Proof. The assertion is shown by straight forward computation. □

Proposition 1.17. Let t ∈ R>0 \ {1}. The unitary equivalence classes of all
induced ∗-representations πs,t with s fulfilling

s =
q2z−1t2 + 1

q2z−1t2

(q − q−1)2
, z ∈ Z, (1.27)

can be parametrized by [0, 1)×Z\{(0, 0)}. A parametrization is given by (ζ, r) 7→
[πs,t] with

t = qr+ζ , (1.28)

s =
q2(r+ζ)−sgn(r+ 1

2
) + 1

q2(r+ζ)−sgn(r+1
2 )

(q − q−1)2
(1.29)

acting as described in Proposition 1.5 on the orthonormal basis {ek}k<1 for r ≤ −1
and on {ek}k>−1 for r ≥ 0.

If t = 1, there is only the induced ∗-representation πs,1 with s =
q+ 1

q

(q−q−1)2
ful-

filling (1.27). It acts on H(πs,1) = span{e0} by the operators πs,1(K) = 1 and
πs,1(E) = πs,1(F ) = 0.

Proof. Let ε ∈ [0, 1) and l ∈ Z≤−1. Define t := qε+l.
Suppose

s =
q2(z+l)+2ε−1 + 1

q2(z+l)+2ε−1

(q − q−1)2

where z ∈ N with 0 < z ≤ −l for ε ∈ (0, 1) and 0 < z ≤ −l + 1 for ε = 0.
By Lemma 1.16 all positive characters χs,t fulfilling (1.26) have a parameter z

which is of this form. Moreover, since for ε = 0 the parameter s is the same for
z = −l + 1 and z = −l, we can assume 0 < z ≤ −l in this case too.
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Now, for the character χs,t and n ≥ z, we have

χs,t (E
∗nEn) =

n∏
k=1

(
q2k−1t2 + q−2k+1t−2

(q − q−1)2
− s

)

=
n∏
k=1

(
q2(k+l)+2ε−1 + 1

q2(k+l)+2ε−1

(q − q−1)2
− s

)
= 0

and s fulfills

s < min
k<z

q2k−1t2 + 1
q2k−1t2

(q − q−1)2
.

This shows that χs,t is a positive character. Further, we have Ek⊗1 = 0 ⇐⇒ k ≥
z, and {ek}k<z , ek :=

Ek⊗1
∥Ek⊗1∥ , is the orthonormal basis of H(πs,t) (see Proposition

1.5).
Therefore, the partial action χks,t = χs,qkt is defined for all k < z, and the

induced ∗-representation πs,qkt acts on en with n < z − k ∈ [1,∞). Setting
k = z − 1, we see that

πs,t ∈ [πs,ql+z−1+ε ], (1.30)

where πs,ql+z−1+ε acts on en with n < 1.
Combining (1.30) with the partial action from Proposition 1.6, we can conclude

that two characters χs1,t1 and χs2,t2 with parameters ε1 = ε2 ∈ [0, 1), l1, l2 ∈ Z≤−1,

s1 =
q2(z1+l1)+2ε1−1 + 1

q2(z1+l1)+2ε1−1

(q − q−1)2
, 0 < z1 ≤ −l1,

and

s2 =
q2(z2+l2)+2ε2−1 + 1

q2(z2+l2)+2ε2−1

(q − q−1)2
, 0 < z2 ≤ −l2,

are in the same orbit if and only if s1 = s2. This implies z1 + l1 = z2 + l2 for
ε1 ̸= 0 and, since z1+ l1 ≤ 0, z2+ l2 ≤ 0, it implies z1+ l1 = z2+ l2 for ε1 = 0 too.
Hence, the induced ∗-representations πs1,t1 and πs2,t2 are unitarily equivalent if
and only if z1 + l1 = z2 + l2.

Therefore, the equivalence classes for l ≤ −1 and fixed ε can be parametrized
by z+l−1. That is, we can define a parametrization (ζ, r) 7→ [πs,t] on [0, 1)×Z≤−1

given by

t = qr+ζ , s =
q2(r+ζ)+1 + 1

q2(r+ζ)+1

(q − q−1)2
,

where πs,t acts on {ek}k<1.
A similar argumentation shows the case ε ∈ [0, 1) and l ∈ Z≥0.

□

Proposition 1.18. The unitary equivalence classes parametrized in Proposition
1.17 are unitarily equivalent to the discrete series.
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By terms of that parametrization, the discrete series T−
a are unitarily equivalent

to the induced unitary equivalence classes with parameters (ζ, r) ∈ [0, 1)× Z≤−1,
and the discrete series T+

a are unitarily equivalent to the induced unitary equiva-
lence classes with parameters (ζ, r) ∈ [0, 1)× Z≥0 \ {(0, 0)}.

Proof. We use the parametrization of Proposition 1.17. Let (ζ, r) be in [0, 1) ×
Z≤−1 and suppose [πs,t] is the corresponding induced equivalence class for the
parameters (ζ, r).

Choose z0, k0 ∈ Z such that z0 − k0 = r + 1. Let {bν}ν∈Iζ,r be an orthonormal
basis with an index set Iζ,r ⊂ Zζ defined by

Iζ,r :=
{
z0 − 1 + ζ + j

∣∣ j ∈ Z, z0 − 1 + ζ + j < r + 1 + ζ
}
.

For all j ∈ Z the inequality z0−1+ζ+ j < r+1+ζ is equivalent to k0+ j < 1.
Next, we define a unitary operator U : D(πs,t) → span{bν}ν∈Iζ,r given by

ek0+j 7→ bz0−1+ζ+j

for all j ∈ Z with k0 + j < 1.
The ∗-representation Uπs,tU−1 is T−

a with a = r + ζ + 1 and ε = ζ:
Uπs,t(K)U−1 acts on bν by

Uπs,t(K)U−1bz0−1+ζ+j = Uπs,t(K)ek0+j =

Uqk0+jqr+ζek0+j = qk0+jqr+ζbz0−1+ζ+j = qz0−1+ζ+jbz0−1+ζ+j.

Uπs,t(E)U
−1 acts on bν by

Uπs,t(E)U
−1bz0−1+ζ+j = Uπs,t(E)ek0+j =

U

(
q2(k0+j)+1(qr+ζ)2 + q−2(k0+j)−1(qr+ζ)−2

(q − q−1)2
−
q2(r+ζ)+1 + 1

q2(r+ζ)+1

(q − q−1)2

) 1
2

ek0+j+1 =(
q2(k0+j)+1(qr+ζ)2 + q−2(k0+j)−1(qr+ζ)−2

(q − q−1)2
−
q2(r+ζ)+1 + 1

q2(r+ζ)+1

(q − q−1)2

) 1
2

bz0−1+ζ+j+1.

In the left fraction of the term above, we can replace k0+j+r+ζ by z0−1+ζ+j.
In the right fraction the sum r + ζ can be replaced by −r − ζ − 1. Hence, we
see the equality between Uπs,tU

−1 and T−r−ζ−1,ζ acting on {bν | ν < r + ζ + 1},
which is T−

r+ζ+1.
The map [0, 1)×Z≤−1 → (−∞, 1) with (ζ, r) 7→ r+ ζ+1 is a bijection. There-

fore, the discrete series T−
a are unitarily equivalent to the unitary equivalence

classes parametrized by ζ ∈ [0, 1), r ∈ Z≤−1.
A similar argumentation shows the assertion for (ζ, r) ∈ [0, 1)×Z≥0 \ {(0, 0)}.

□

Summing up, we get the following theorem. Recall the duality introduced in
subsection 1.3.

Theorem 1.19. Let {Az}z∈Z be the Z-grading on Uq(su1,1) defined by E ∈ A1,
K,K−1 ∈ A0.
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Then there is a one-to-one correspondence between the induced equivalence
classes of ∗-representations by characters and the classical (or well-behaved) equiv-
alence classes of ∗-representations.

Proposition 1.12, Proposition 1.13, Proposition 1.14 and Proposition 1.18 as-
sign subfamilies of the induced equivalence classes with positive second parameter
to the corresponding classical series of well-behaved ∗-representations of type one.
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