

Banach J. Math. Anal. 9 (2015), no. 2, 83–95 http://doi.org/10.15352/bjma/09-2-7 ISSN: 1735-8787 (electronic) http://projecteuclid.org/bjma

HYPERCYCLIC ABELIAN SEMIGROUPS OF AFFINE MAPS ON \mathbb{C}^n

YAHYA N'DAO

Communicated by P. K. Sahoo

ABSTRACT. We give a characterization of hypercyclic abelian semigroup \mathcal{G} of affine maps on \mathbb{C}^n . If \mathcal{G} is finitely generated, this characterization is explicit. We prove in particular that no abelian group generated by n affine maps on \mathbb{C}^n has a dense orbit.

1. INTRODUCTION

Let $M_n(\mathbb{C})$ be the set of all square matrices of order $n \geq 1$ with entries in \mathbb{C} and $GL(n, \mathbb{C})$ be the group of all invertible matrices of $M_n(\mathbb{C})$. A map $f : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ is called an affine map if there exist $A \in M_n(\mathbb{C})$ and $a \in \mathbb{C}^n$ such that $f(x) = Ax + a, x \in \mathbb{C}^n$. We denote f = (A, a), we call A the *linear part* of f. The map f is invertible if $A \in GL(n, \mathbb{C})$. Denote by $MA(n, \mathbb{C})$ the vector space of all affine maps on \mathbb{C}^n and $GA(n, \mathbb{C})$ the group of all invertible affine maps of $MA(n, \mathbb{C})$.

Let \mathcal{G} be an abelian affine sub-semigroup of $MA(n, \mathbb{C})$. For a vector $v \in \mathbb{C}^n$, we consider the orbit of \mathcal{G} through $v: \mathcal{G}(v) = \{f(v): f \in \mathcal{G}\} \subset \mathbb{C}^n$. Denote by \overline{E} the closure of a subset $E \subset \mathbb{C}^n$. The group \mathcal{G} is called *hypercyclic* if there exists a vector $v \in \mathbb{C}^n$ such that $\overline{\mathcal{G}(v)} = \mathbb{C}^n$. For an account of results and bibliography on hypercyclicity, we refer to the books [7] and [13].

The notion of hypercyclicity was investigated by many authors. More specific questions which arise naturally is to characterize this property for special types of matrices. N.S. Feldman proves in [12], that there are hypercyclic semigroup generated by (n + 1) diagonal matrices on \mathbb{C}^n and that there are no hypercyclic

Date: Received: Sep. 20, 2013; Revised: Mar. 16, 2014; Accepted: Jun. 16, 2014.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A16; Secondary 37C85.

Key words and phrases. Affine, hypercyclic, dense, orbit, abelian semigroup.

semigroup generated by n diagonalizable matrices on \mathbb{C}^n . In [9], G. Costakis, D. Hadjiloucas and A. Manoussos prove that for every positive integer n = 2there exist A_1, \ldots, A_n of $n \times n$ non-(simultaneously) diagonalizable matrices over \mathbb{R} generating an abelian hypercyclic semigroup. C.Costakis and I.Parissis prove in [11], that the minimum number of $n \times n$ matrices in Jordan form over \mathbb{R} which generating an abelian hypercyclic semigroup is n + 1. In [15], M.Javaheri constructs an explicit example of a 2-generator dense subsemigroup of 2×2 real matrices, and in [16], he proves that in both real and complex cases, there exists a pair of matrices that generates a dense subsemigroup of the set of $n \times n$ matrices. Moreover, he gives in [14], some examples of $n \times n$ matrices A and B over the filed $\mathbb{K} = \mathbb{R}$ or \mathbb{C} such that for almost every $x \in \mathbb{K}^n$, the orbit of x under the action of the semigroup generated by A and B is dense in \mathbb{K}^n . S.Shkarin proves in [19], that the minimal number of matrices generating an abelian hypercyclic semigroup on \mathbb{C}^n (respectively, on \mathbb{R}^n) is n+1 (respectively, $\frac{n}{2} + \frac{5+(-1)^n}{4}$). H.Abel and A.Manoussos bring together in [2], some results about the density of subsemigroups of abelian Lie groups, the minimal number of topological generators of abelian Lie groups and a result about actions of algebraic groups. In [10], G. Costakis, D. Hadjiloucas and A. Manoussos give some results of locally hypercyclic abelian semigroup.

In this paper we will explore these notions to abelian semigroup affine.

We let $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$, $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ and $\mathbb{N}_0 = \mathbb{N} \setminus \{0\}$. Let $n \in \mathbb{N}_0$ be fixed, denote by:

• $\mathcal{B}_0 = (e_1, \ldots, e_{n+1})$ the canonical basis of \mathbb{C}^{n+1} and I_{n+1} the identity matrix of $GL(n+1, \mathbb{C})$.

For each $m = 1, 2, \ldots, n + 1$, denote by:

• $\mathbb{T}_m(\mathbb{C})$ the set of matrices over \mathbb{C} of the form

$$\begin{bmatrix} \mu & & 0 \\ a_{2,1} & \mu & & \\ \vdots & \ddots & \ddots & \\ a_{m,1} & \dots & a_{m,m-1} & \mu \end{bmatrix}$$
(1.1)

Let $r \in \mathbb{N}$ and $\eta = (n_1, \ldots, n_r) \in \mathbb{N}_0^r$ such that $n_1 + \cdots + n_r = n + 1$. In particular, $r \leq n + 1$. Write

• $\mathcal{K}_{\eta,r}(\mathbb{C}) := \mathbb{T}_{n_1}(\mathbb{C}) \oplus \cdots \oplus \mathbb{T}_{n_r}(\mathbb{C})$. In particular if r = 1, then $\mathcal{K}_{\eta,1}(\mathbb{C}) = \mathbb{T}_{n+1}(\mathbb{C})$ and $\eta = (n+1)$.

• exp: $\mathbb{M}_{n+1}(\mathbb{C}) \longrightarrow \mathrm{GL}(n+1,\mathbb{C})$ is the matrix exponential map; set $\exp(M) = e^M$, $M \in M_{n+1}(\mathbb{C})$.

• Define the map $\Phi : GA(n, \mathbb{C}) \longrightarrow GL(n+1, \mathbb{C})$

$$f = (A, a) \longmapsto \begin{bmatrix} 1 & 0 \\ a & A \end{bmatrix}$$

We have the following composition formula

$$\begin{bmatrix} 1 & 0 \\ a & A \end{bmatrix} \begin{bmatrix} 1 & 0 \\ b & B \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ Ab + a & AB \end{bmatrix}.$$

Then Φ is an injective homomorphism of groups. It is continuous and it forms a bijection unto its image. Write

- $G = \Phi(\mathcal{G})$, it is an abelian sub-semigroup of $GL(n+1, \mathbb{C})$.
- Define the map $\Psi : MA(n, \mathbb{C}) \longrightarrow M_{n+1}(\mathbb{C})$

$$f = (A, a) \longmapsto \begin{bmatrix} 0 & 0 \\ a & A \end{bmatrix}$$

We can see that Ψ is injective and linear. Hence $\Psi(MA(n, \mathbb{C}))$ is a vector subspace of $M_{n+1}(\mathbb{C})$. We prove (see Lemma 2.5) that Φ and Ψ are related by the following property

$$\exp(\Psi(MA(n,\mathbb{C}))) = \Phi(GA(n,\mathbb{C})).$$

Let consider the normal form of \mathcal{G} : By Proposition 2.2, there exists a $P \in \Phi(\operatorname{GA}(n,\mathbb{C}))$ and a partition η of (n+1) such that $G' = P^{-1}GP \subset \mathcal{K}_{\eta,r}(\mathbb{C}) \cap \Phi(MA(n,\mathbb{C}))$. For such a choice of matrix P, we let

• $g = \exp^{-1}(G) \cap (P(\mathcal{K}_{\eta,r}(\mathbb{C}))P^{-1})$. If $G \subset \mathcal{K}^*_{\eta,r}(\mathbb{C})$, we have $P = I_{n+1}$ and $g = \exp^{-1}(G) \cap \mathcal{K}_{\eta,r}(\mathbb{C})$.

• $\mathbf{q} = \Psi^{-1}(\mathbf{g} \cap \Psi(MA(n, \mathbb{C}))) \subset MA(n, \mathbb{C})$. Then \mathbf{q} is an additive sub-semigroup of $MA(n, \mathbb{C})$ and we have $\Psi(\mathbf{q}) = \mathbf{g}^1$. By Corollary 2.9, we have $exp(\Psi(\mathbf{q})) = \Phi(\mathcal{G})$. • $\mathbf{q}_v = \{f(v), f \in \mathbf{q}\} \subset \mathbb{C}^n, v \in \mathbb{C}^n$.

For groups of affine maps on \mathbb{K}^n ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}), their dynamics were recently initiated for some classes in different point of view, (see for instance, [17], [18], [8], [6]). The purpose here is to give analogous results as for linear abelian subsemigroup of $GL(n, \mathbb{C})$ [4, Theorem 1.1].

Our main results are the following:

Theorem 1.1. Let \mathcal{G} be an abelian sub-semigroup of $MA(n, \mathbb{C})$. Then the following are equivalent:

- (i) \mathcal{G} is hypercyclic.
- (ii) the orbit $\mathcal{G}(w_0)$ is dense in \mathbb{C}^n .
- (iii) \mathfrak{q}_{w_0} is an additive sub-semigroup dense in \mathbb{C}^n .

Where w_0 is a particular point in \mathbb{C}^n , defined in section 3 and has a form related to \mathcal{G} .

For a vector $v \in \mathbb{C}^n$, we write $v = \operatorname{Re}(v) + i\operatorname{Im}(v)$ where $\operatorname{Re}(v)$ and $\operatorname{Im}(v) \in \mathbb{R}^n$. The next result can be stated as follows:

Theorem 1.2. Let \mathcal{G} be an abelian sub-semigroup of $MA(n, \mathbb{C})$ and let $f_1, \ldots, f_p \in \mathcal{G}$ generating \mathcal{G}^* and let $f'_1, \ldots, f'_p \in \mathfrak{q}$ be such that $e^{\Psi(f'_1)} = \Phi(f_1), \ldots, e^{\Psi(f'_p)} = \Phi(f_p)$. Then the following are equivalent:

(i) \mathcal{G} is hypercyclic. (ii) $\mathbf{q}_{w_0} = \begin{cases} \sum_{k=1}^{p} \mathbb{N} f'_k(w_0) + 2i\pi \sum_{k=2}^{r} \mathbb{Z}(p_2(Pe^{(k)})), & \text{if } r \ge 2\\ \sum_{k=1}^{p} \mathbb{N} f'_k(w_0), & \text{if } r = 1 \end{cases}$

is an additive sub-semigroup dense in \mathbb{C}^n . (The projection p_2 and the vectors $e^{(k)}$ are defined in the section 3).

Corollary 1.3. Let \mathcal{G} be an abelian sub-semigroup of $MA(n, \mathbb{C})$ and $G = \Phi(\mathcal{G})$. Let $P \in \Phi(GA(n, \mathbb{C}))$ such that $P^{-1}GP \subset \mathcal{K}_{\eta,r}(\mathbb{C})$ where $1 \leq r \leq n+1$ and $\eta = (n_1, \ldots, n_r) \in \mathbb{N}_0^r$. If \mathcal{G} is generated by 2n - r + 1 commuting invertible affine maps, then it has no dense orbit.

Corollary 1.4. Let \mathcal{G} be an abelian sub-semigroup of $MA(n, \mathbb{C})$. If \mathcal{G} is generated by n commuting invertible affine maps, then it has no dense orbit.

2. Normal form of Abelian Affine Groups

The concept of a normal form of linear abelian groups was introduced in [4], by A.Ayadi and H.Marzougui which was generalized in [5], to the abelian linear semigroups. In [3], A.Ayadi gave the following normal form for any abelian group of affine maps of \mathbb{C}^n . Let $r \in \mathbb{N}$ and $\eta = (n_1, \ldots, n_r) \in \mathbb{N}_0^r$ such that $n_1 + \cdots + n_r = n + 1$.

Proposition 2.1. [5] Let G' be an abelian sub-semigroup of $M_m(\mathbb{C})$, $m \geq 1$. 1. Then there exists $P \in GL(m,\mathbb{C})$ such that $P^{-1}G'P$ is a sub-semigroup of $\mathcal{K}_{\eta',r'}(\mathbb{C})$, for some $r' \leq m$ and $\eta' = (n'_1, \ldots, n'_{r'}) \in \mathbb{N}_0^{r'}$.

Denote by $\mathcal{K}^*_{n,r}(\mathbb{C}) := \mathcal{K}_{\eta,r}(\mathbb{C}) \cap \mathrm{GL}(n+1, \mathbb{C}).$

Proposition 2.2. [3, Proposition 2.1] Let \mathcal{G} be an abelian subgroup of $GA(n, \mathbb{C})$ and $G = \Phi(\mathcal{G})$. Then there exists $P \in \Phi(GA(n, \mathbb{C}))$ such that $P^{-1}GP$ is a subgroup of $\mathcal{K}_{n,r}^*(\mathbb{C}) \cap \Phi(GA(n, \mathbb{C}))$, for some $r \leq n+1$ and $\eta = (n_1, \ldots, n_r) \in \mathbb{N}_0^r$.

A more computational version of Proposition 2.2 for the semigroup case, is the following:

Proposition 2.3. Let \mathcal{G} be an abelian sub-semigroup of $MA(n,\mathbb{C})$ and $G = \Phi(\mathcal{G})$. Then there exists $P \in \Phi(GA(n,\mathbb{C}))$ such that $P^{-1}GP$ is a subgroup of $\mathcal{K}^*_{n,r}(\mathbb{C}) \cap \Phi(GA(n,\mathbb{C}))$, for some $r \leq n+1$ and $\eta = (n_1, \ldots, n_r) \in \mathbb{N}^r_0$.

Proof. Suppose first, $G \subset \operatorname{GL}(n+1,\mathbb{C})$. Let \widehat{G} be the group generated by G. Then \widehat{G} is abelian and by Proposition 2.2, there exists a $P \in \Phi(GA(n,\mathbb{C}))$ such that $P^{-1}\widehat{G}P$ is an abelian subgroup of $\mathcal{K}^*_{\eta,r}(\mathbb{C})$, for some $r \in \{1,\ldots,n+1\}$ and $\eta \in (\mathbb{N}_0)^r$. In particular, $P^{-1}GP \subset \mathcal{K}^*_{\eta,r}(\mathbb{C})$.

Suppose now, $G \subset M_{n+1}(\mathbb{C})$. For every $A \in G$, there exists $\lambda_A \in \mathbb{C}$ such that $(A - \lambda_A I_{n+1}) \in \operatorname{GL}(n+1,\mathbb{C})$ (one can take λ_A non eigenvalue of A). Write \widehat{L} be the group generated by $L := \{A - \lambda_A I_{n+1} : A \in G\}$. Then \widehat{L} is an abelian subsemigroup of $GL(n+1,\mathbb{C})$. Hence by above, there exists a $P \in \Phi(GA(n,\mathbb{C}))$ such that $P^{-1}\widehat{L}P \subset \mathcal{K}^*_{n,r}(\mathbb{C})$, for some $\eta \in (\mathbb{N}_0)^r$. As

$$P^{-1}LP = \{P^{-1}AP - \lambda_A I_{n+1} : A \in G\}$$

then $P^{-1}GP \subset \mathcal{K}_{\eta,r}(\mathbb{C})$. This proves the proposition.

The group $G' = P^{-1}GP$ is called the *normal form* of G. Since $P \in \Phi(GA(n, \mathbb{C}))$ and $G \subset \Phi(MA(n, \mathbb{C}))$ then $G' \subset \Phi(MA(n, \mathbb{C}))$. As Φ is an injective homomorphism, $\mathcal{G}' := \Phi^{-1}(G')$ is an abelian semigroup of $MA(n, \mathbb{C})$ which is called the *normal form* of \mathcal{G} .

The proof of Theorem 1.1 is broken up into a series of lemmata.

Lemma 2.4. [4, Proposition 3.2] $exp(\mathcal{K}_{\eta,r}(\mathbb{C})) = \mathcal{K}_{n,r}^*(\mathbb{C}).$

Lemma 2.5. [3, Lemma 2.8] $exp(\Psi(MA(n, \mathbb{C})) = GA(n, \mathbb{C}))$.

Lemma 2.6. [3, Lemma 2.9] If $N \in P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1}$ such that $e^N \in \Phi(GA(n,\mathbb{C}))$, then there exists $k \in \mathbb{Z}$ such that $N - 2ik\pi I_{n+1} \in \Psi(MA(n,\mathbb{C}))$.

Denote by $G^* = G \cap GL(n+1, \mathbb{C}).$

Lemma 2.7. [4, Lemma 4.2] One has $exp(g) = G^*$.

Denote by: • $g^1 = g \cap \Psi(MA(n, \mathbb{C}))$. It is an additive sub-semigroup of $M_{n+1}(\mathbb{C})$ (because by Lemma 3.2, g is an additive sub-semigroup of $M_{n+1}(\mathbb{C})$). • $g^1_u = \{Bu: B \in g^1\} \subset \mathbb{C}^{n+1}, \ u \in \mathbb{C}^{n+1}$.

Corollary 2.8. [3, Corollary 2.11] Let $G = \Phi(\mathcal{G})$. We have $g = g^1 + 2i\pi \mathbb{Z}I_{n+1}$.

We let $\mathcal{G}^* = \mathcal{G} \cap GA(n, \mathbb{C}).$

Corollary 2.9. We have $exp(\Psi(\mathfrak{q})) = \Phi(\mathcal{G}^*)$.

Proof. By Lemmas 2.7 and 2.8, We have $G = exp(g) = exp(g^1 + 2i\pi\mathbb{Z}I_{n+1}) = exp(g^1)$. Since $g^1 = \Psi(\mathfrak{q})$, we get $exp(\Psi(\mathfrak{q})) = \Phi(\mathcal{G})$.

Y. N'DAO

3. Proof of Theorem 1.1

Let \widetilde{G} be the semigroup generated by G and $\mathbb{C}I_{n+1} = \{\lambda I_{n+1} : \lambda \in \mathbb{C}\}$. Then \widetilde{G} is an abelian sub-semigroup of $GL(n+1,\mathbb{C})$. By Proposition 2.2, there exists $P \in \Phi(GA(n,\mathbb{C}))$ such that $P^{-1}GP$ is a sub-semigroup of $\mathcal{K}^*_{\eta,r}(\mathbb{C})$ for some $r \leq n+1$ and $\eta = (n_1, \ldots, n_r) \in \mathbb{N}^r_0$ and this also implies that $P^{-1}\widetilde{G}P$ is a sub-semigroup of $\mathcal{K}^*_{\eta,r}(\mathbb{C})$. Set $\widetilde{g} = exp^{-1}(\widetilde{G}) \cap (P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1})$ and $\widetilde{g}_{v_0} = \{Bv_0 : B \in \widetilde{g}\}$. Denote by: • $u_0 = (e_{1,1}, \ldots, e_{r,1}) \in \mathbb{C}^{n+1}$ where $e_{k,1} = (1, 0, \ldots, 0) \in \mathbb{C}^{n_k}$, for $k = 1, \ldots, r$. So $u_0 \in \{1\} \times \mathbb{C}^n$. • $p_2 : \mathbb{C} \times \mathbb{C}^n \longrightarrow \mathbb{C}^n$ the second projection defined by $p_2(x_1, \ldots, x_{n+1}) = (x_2, \ldots, x_{n+1})$. • $e^{(k)} = \begin{cases} 0 \in \mathbb{C}^{n_j} & \text{if } j \neq k \\ e_{k,1} & \text{if } j = k \end{cases}$ for every $1 \leq j, \ k \leq r$.

- $v_0 = Pu_0$. So $v_0 \in \{1\} \times \mathbb{C}^n$, since $P \in \Phi(GA(n, \mathbb{C}))$.
- $w_0 = p_2(v_0) \in \mathbb{C}^n$. We have $v_0 = (1, w_0)$.

Since $P \in \Phi(GA(n, \mathbb{C}))$, we have $Pu_0 = v_0 \in \{1\} \times \mathbb{C}^n$. Then we have the following theorem, applied to \widetilde{G} :

Theorem 3.1. [5, Theorem 1.1] Under the notations above, the following properties are equivalent:

- (i) \widetilde{G} has a dense orbit in \mathbb{C}^{n+1} .
- (ii) the orbit $\widetilde{G}(v_0)$ is dense in \mathbb{C}^{n+1} .
- (iii) \widetilde{g}_{v_0} is an additive sub-semigroup dense in \mathbb{C}^{n+1} .

Lemma 3.2. [4, Lemma 4.1] The sets g and \widetilde{g} are additive subgroups of $M_{n+1}(\mathbb{C})$. In particular, g_{v_0} and \widetilde{g}_{v_0} are additive subgroups of \mathbb{C}^{n+1} .

Recall that $g^1 = g \cap \Psi(MA(n, \mathbb{C}))$ and $q = \Psi^{-1}(g^1) \subset MA(n, \mathbb{C})$.

Lemma 3.3. Under the notations above, one has:

(i)
$$\widetilde{\mathbf{g}} = \mathbf{g}^1 + \mathbb{C}I_{n+1}$$
.
(ii) $\{0\} \times \mathbf{q}_{w_0} = \mathbf{g}_{v_0}^1$.

Proof. (i) Let $B \in \widetilde{g}$, then $e^B \in \widetilde{G}$. One can write $e^B = \lambda A$ for some $\lambda \in \mathbb{C}^*$ and $A \in G$. Let $\mu \in \mathbb{C}$ such that $e^{\mu} = \lambda$, then $e^{B-\mu I_{n+1}} = A$. Since $B - \mu I_{n+1} \in P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1}$, so $B - \mu I_{n+1} \in exp^{-1}(G) \cap P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1} = g$. By Corollary 2.8, there exists $k \in \mathbb{Z}$ such that $B' := B - \mu I_{n+1} + 2ik\pi I_{n+1} \in g^1$. Then $B \in g^1 + \mathbb{C}I_{n+1}$ and hence $\widetilde{g} \subset g^1 + \mathbb{C}I_{n+1}$. Since $g^1 \subset \widetilde{g}$ and $\mathbb{C}I_{n+1} \subset \widetilde{g}$, it follows that $g^1 + \mathbb{C}I_{n+1} \subset \widetilde{g}$ (since \widetilde{g} is an additive group, by Lemma 3.2). This

proves (i). (*ii*) Since $\Psi(\mathbf{q}) = \mathbf{g}^1$ and $v_0 = (1, w_0)$, we obtain for every $f = (B, b) \in \mathbf{q}$,

$$\Psi(f)v_0 = \begin{bmatrix} 0 & 0 \\ b & B \end{bmatrix} \begin{bmatrix} 1 \\ w_0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ b + Bw_0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ f(w_0) \end{bmatrix}.$$

Hence $\mathbf{g}_{v_0}^1 = \{0\} \times \mathbf{q}_{w_0}$.

Lemma 3.4. The following assertions are equivalent:

(i) $\begin{aligned} & \overline{\mathbf{q}_{w_0}} = \mathbb{C}^n. \\ & (\text{ii}) \quad \overline{\mathbf{g}_{v_0}^1} = \{0\} \times \mathbb{C}^n. \\ & (\text{iii}) \quad \overline{\widetilde{\mathbf{g}}_{v_0}} = \mathbb{C}^{n+1}. \end{aligned}$

Proof. (i) \iff (ii) follows from the fact that $\{0\} \times \mathfrak{q}_{w_0} = g_{v_0}^1$ (Lemma 3.3,(ii)). (ii) \implies (iii) : By Lemma 3.3,(ii), $\tilde{g}_{v_0} = g_{v_0}^1 + \mathbb{C}v_0$. Since $v_0 = (1, w_0) \notin \{0\} \times \mathbb{C}^n$ and $\mathbb{C}I_{n+1} \subset \tilde{g}$, we obtain $\mathbb{C}v_0 \subset \tilde{g}_{v_0}$ and so $\mathbb{C}v_0 \subset \overline{\tilde{g}_{v_0}}$. Therefore $\mathbb{C}^{n+1} =$ $\{0\} \times \mathbb{C}^n \oplus \mathbb{C}v_0 = \overline{g_{v_0}^1} \oplus \mathbb{C}v_0 \subset \overline{\tilde{g}_{v_0}}$ (since, by Lemma 3.2, \tilde{g}_{v_0} is an additive subsemigroup of \mathbb{C}^{n+1}). Thus $\overline{\tilde{g}_{v_0}} = \mathbb{C}^{n+1}$.

 $\begin{array}{ll} (iii) \implies (ii) : \text{Let } x \in \mathbb{C}^n, \text{ then } (0,x) \in \overline{\widetilde{g}_{v_0}} \text{ and there exists a sequence} \\ (A_m)_{m \in \mathbb{N}} \subset \widetilde{g} \text{ such that } \lim_{m \to +\infty} A_m v_0 = (0,x). \text{ By Lemma } 3.3, \text{ we can write} \\ A_m v_0 = \lambda_m v_0 + B_m v_0 \text{ with } \lambda_m \in \mathbb{C} \text{ and } B_m = \begin{bmatrix} 0 & 0 \\ b_m & B_m^1 \end{bmatrix} \in g^1 \text{ for every } m \in \mathbb{N}. \\ \text{Since } B_m v_0 \in \{0\} \times \mathbb{C}^n \text{ for every } m \in \mathbb{N} \text{ then } A_m v_0 = (\lambda_m, b_m + B_m^1 w_0 + \lambda_m w_0). \\ \text{It follows that } \lim_{m \to +\infty} \lambda_m = 0 \text{ and } \lim_{m \to +\infty} A_m v_0 = \lim_{m \to +\infty} B_m v_0 = (0, x), \text{ thus} \\ (0, x) \in \overline{g_{v_0}^1}. \text{ Hence } \{0\} \times \mathbb{C}^n \subset \overline{g_{v_0}^1}. \text{ Since } g^1 \subset \Psi(MA(n, \mathbb{C})), g_{v_0}^1 \subset \{0\} \times \mathbb{C}^n \\ \text{ then we conclude that } \overline{g_{v_0}^1} = \{0\} \times \mathbb{C}^n. \end{array}$

Lemma 3.5. Let $x \in \mathbb{C}^n$ and $G = \Phi(\mathcal{G})$. The following are equivalent:

(i)
$$\overline{\underline{\mathcal{G}}(x)} = \mathbb{C}^n$$
.
(ii) $\overline{\underline{\mathcal{G}}(1,x)} = \{1\} \times \mathbb{C}^n$.
(iii) $\overline{\widetilde{\mathcal{G}}(1,x)} = \mathbb{C}^{n+1}$.

Proof. (i) \iff (ii) : is obvious since $\{1\} \times \mathcal{G}(x) = G(1, x)$ by construction. (iii) \implies (ii) : Let $y \in \mathbb{C}^n$ and $(B_m)_m$ be a sequence in \widetilde{G} such that $\lim_{m \to +\infty} B_m(1, x) = (1, y)$. One can write $B_m = \lambda_m \Phi(f_m)$, with $f_m \in \mathcal{G}$ and $\lambda_m \in \mathbb{C}^*$, thus $B_m(1, x) = (\lambda_m, \lambda_m f_m(x))$, so $\lim_{m \to +\infty} \lambda_m = 1$. Therefore, $\lim_{m \to +\infty} \Phi(f_m)(1, x) = \lim_{m \to +\infty} \frac{1}{\lambda_m} B_m(1, x) = (1, y)$. Hence, $(1, y) \in \overline{G(1, x)}$.

 $(ii) \Longrightarrow (iii)$: Since $\mathbb{C}^{n+1} \setminus (\{0\} \times \mathbb{C}^n) = \bigcup_{\lambda \in \mathbb{C}^*} \lambda (\{1\} \times \mathbb{C}^n)$ and for every $\lambda \in \mathbb{C}^*$, $\lambda G(1, x) \subset \widetilde{G}(1, x)$, we get

$$\mathbb{C}^{n+1} = \mathbb{C}^{n+1} \setminus (\{0\} \times \mathbb{C}^n)$$
$$= \overline{\bigcup_{\lambda \in \mathbb{C}^*} \lambda(\{1\} \times \mathbb{C}^n)}$$
$$= \overline{\bigcup_{\lambda \in \mathbb{C}^*} \lambda \overline{G(1,x)}} \subset \overline{\widetilde{G}(1,x)}$$

Hence $\mathbb{C}^{n+1} = \overline{\widetilde{G}(1,x)}.$

An orbit O of G is called somewhere dense orbit if the interior of its closure $\overset{\circ}{\overline{O}} \neq \emptyset$.

Proposition 3.6. Let G be an abelian subsemigroup of $M_n(\mathbb{C})$ and $G^* = G \cap GL(n, \mathbb{C})$. Then G is hypercyclic (resp. has a somewhere dense orbit) if and only if so is (resp. has) G^* .

Proof. Suppose that $\overrightarrow{G^*(u)} \neq \emptyset$, for some $u \in \mathbb{K}^n$. Then $\emptyset \neq \overrightarrow{G^*(u)} \subset \overrightarrow{G(u)}$ and so $\overrightarrow{G(u)} \neq \emptyset$. Conversely, suppose that $\overrightarrow{G(u)} \neq \emptyset$, for some $u \in \mathbb{C}^n$. By proposition 2.1, one can suppose that G is an abelian sub-semigroup of $\mathcal{K}_{\eta,r}(\mathbb{C})$. Write $G' := (G \setminus G^*) \cup \{I_n\}$. then G' is a sub-semigroup of G.

- If $G' = \{I_n\}$ then $G = G^*$ and so G^* has a somewhere dense orbit. - If $G' \neq \{I_n\}$ then

$$G(u) \subset \left(\bigcup_{A \in (G' \setminus \{I_n\})} Im(A)\right) \cup G^*(u).$$

As every $A \in (G' \setminus \{I_n\})$, is non invertible, then $Im(A) \subset \bigcup_{k=1}^r H_k$ where

$$H_k := \left\{ u = [u_1, \dots, u_r]^T \in \mathbb{C}^n, \ u_j \in \mathbb{C}^{n_j}, \ u_k \in \{0\} \times \mathbb{C}^{n_k - 1} \quad 1 \le j \le r, \\ j \ne k \right\}.$$

It follows that

$$G(u) \subset \left(\bigcup_{k=1}^{r} H_k\right) \cup G^*(u),$$

and so

$$\overline{G(u)} \subset \left(\bigcup_{k=1}^r H_k\right) \cup \overline{G^*(u)}.$$

Since dim $H_k = n - 1$, $\overset{\circ}{H_k} = \emptyset$, for every $1 \le k \le r$ and therefore $\overline{G^*(u)} \ne \emptyset$.

Lemma 3.7. Let G be an abelian subsemigroup of $\mathcal{K}_{\eta,r}(\mathbb{C})$, $G^* = G \cap GL(n,\mathbb{C})$ and $g^* = exp^{-1}(G^*) \cap \mathcal{K}_{\eta,r}(\mathbb{C})$. Then $g = g^*$.

Proof. Let $G' = G \setminus G^*$. Since $e^A \in GL(n, \mathbb{C})$ for every $A \in M_n(\mathbb{C})$ and $G' \subset M_n(\mathbb{C}) \setminus GL(n, \mathbb{C})$ then $exp^{-1}(G^*) = \emptyset$. As $g = (exp^{-1}(G') \cap \mathcal{K}_{\eta,r}(\mathbb{C})) \cup g^*$ then $g = g^*$.

Proof of Theorem 1.1. $(ii) \Longrightarrow (i)$: is obvious. $(i) \Longrightarrow (ii)$: Suppose that \mathcal{G} is hypercyclic, so $\overline{\mathcal{G}(x)} = \mathbb{C}^n$ for some $x \in \mathbb{C}^n$. By Lemma 3.5, $(iii), \quad \overline{\widetilde{G}(1,x)} = \mathbb{C}^{n+1}$ and by Theorem 3.1, $\quad \overline{\widetilde{G}(v_0)} = \mathbb{C}^{n+1}$. Then by Lemma 3.5, $\quad \overline{\mathcal{G}(w_0)} = \mathbb{C}^n$, since $v_0 = (1, w_0)$. $(ii) \Longrightarrow (iii)$: Suppose that $\quad \overline{\mathcal{G}(w_0)} = \mathbb{C}^n$. By Lemma 3.5, $\quad \overline{\widetilde{G}(v_0)} = \mathbb{C}^{n+1}$ and by Theorem 3.1, $\quad \overline{\widetilde{g}_{v_0}} = \mathbb{C}^{n+1}$. Then by Lemma 3.4, $\quad \overline{\mathfrak{q}_{w_0}} = \mathbb{C}^n$. $(iii) \Longrightarrow (ii)$: Suppose that $\quad \overline{\mathfrak{q}_{w_0}} = \mathbb{C}^n$. By Lemma 3.4, $\quad \overline{\widetilde{g}_{v_0}} = \mathbb{C}^{n+1}$ and by Theorem 3.1, $\quad \overline{\widetilde{G}(v_0)} = \mathbb{C}^{n+1}$. Then by Lemma 3.5, $\quad \overline{\mathcal{G}(w_0)} = \mathbb{C}^n$.

4. Finitely generated subgroups

Recall the following result proved in [5] which applied to G can be stated as following:

Proposition 4.1. [5, Proposition 5.1] Let G be an abelian sub-semigroup of $M_n(\mathbb{C})$ such that G^* is generated by A_1, \ldots, A_p and let $B_1, \ldots, B_p \in g$ such that $A_k = e^{B_k}$, $k = 1, \ldots, p$ and $P \in GL(n + 1, \mathbb{C})$ satisfying $P^{-1}GP \subset \mathcal{K}_{\eta,r}(\mathbb{C})$. Then:

$$g = \sum_{k=1}^{p} \mathbb{N}B_{k} + 2i\pi \sum_{k=1}^{r} \mathbb{Z}PJ_{k}P^{-1} \text{ and } g_{v_{0}} = \sum_{k=1}^{p} \mathbb{N}B_{k}v_{0} + \sum_{k=1}^{r} 2i\pi \mathbb{Z}Pe^{(k)},$$

where $J_k = \operatorname{diag}(J_{k,1}, \ldots, J_{k,r})$ with $J_{k,i} = 0 \in \mathbb{T}_{n_i}(\mathbb{C})$ if $i \neq k$ and $J_{k,k} = I_{n_k}$.

Proposition 4.2. Let \mathcal{G} be an abelian sub-semigroup of $GA(n, \mathbb{C})$ such that \mathcal{G}^* is generated by f_1, \ldots, f_p and let $f'_1, \ldots, f'_p \in \mathfrak{q}$ such that $e^{\Psi(f'_k)} = \Phi(f_k), k = 1, \ldots, p$. Let P be as in Proposition 2.2. Then:

$$\mathbf{q}_{w_0} = \begin{cases} \sum_{k=1}^{p} \mathbb{N}f'_k(w_0) + \sum_{k=2}^{r} 2i\pi \mathbb{Z}p_2(Pe^{(k)}), & \text{if } r \ge 2\\ \sum_{k=1}^{p} \mathbb{N}f'_k(w_0), & \text{if } r = 1 \end{cases}$$

Y. N'DAO

Proof. Let $G = \Phi(\mathcal{G})$. Then G is generated by $\Phi(f_1), \ldots, \Phi(f_p)$. Apply Proposition 4.1 to $G, A_k = \Phi(f_k), B_k = \Psi(f'_k) \in g^1$, then we have

$$g = \sum_{k=1}^{p} \mathbb{Z}\Psi(f'_{k}) + 2i\pi\mathbb{Z}\sum_{k=1}^{r} PJ_{k}P^{-1}.$$

We have $\sum_{k=1}^{p} \mathbb{Z}\Psi(f'_{k}) \subset \Psi(MA(n,\mathbb{C}))$. Moreover, for every $k = 2, \ldots, r, J_{k} \in \Psi(MA(n,\mathbb{C}))$, hence $PJ_{k}P^{-1} \in \Psi(MA(n,\mathbb{C}))$, since $P \in \Phi(GA(n,\mathbb{C}))$. However, $mPJ_{1}P^{-1} \notin \Psi(MA(n,\mathbb{C}))$ for every $m \in \mathbb{Z} \setminus \{0\}$, since J_{1} has the form $J_{1} = \text{diag}(1, J')$ where $J' \in M_{n}(\mathbb{C})$. As $g^{1} = g \cap \Psi(MA(n,\mathbb{C}))$, then $mPJ_{1}P^{-1} \notin g^{1}$ for every $m \in \mathbb{Z} \setminus \{0\}$. Hence we obtain:

$$g^{1} = \begin{cases} \sum_{k=1}^{p} \mathbb{N}\Psi(f'_{k}) + \sum_{k=2}^{r} 2i\pi \mathbb{Z}PJ_{k}P^{-1}, & if \ r \ge 2\\ \sum_{k=1}^{p} \mathbb{N}\Psi(f'_{k}), & if \ r = 1 \end{cases}$$

Since $J_k u_0 = e^{(k)}$, we get

$$\mathbf{g}_{v_0}^{1} = \begin{cases} \sum_{k=1}^{p} \mathbb{N}\Psi(f'_k)v_0 + \sum_{k=2}^{r} 2i\pi \mathbb{Z}Pe^{(k)}, & \text{if } r \ge 2\\ \sum_{k=1}^{p} \mathbb{N}\Psi(f'_k)v_0, & \text{if } r = 1 \end{cases}$$

By Lemma 3.3,(iii), one has $\{0\} \times \mathfrak{q}_{w_0} = g_{v_0}^1$ and $\Psi(f'_k)v_0 = (0, f'_k(w_0))$, so $\mathfrak{q}_{w_0} = p_2(g_{v_0}^1)$. It follows that

$$\mathfrak{q}_{w_0} = \begin{cases} \sum_{k=1}^{p} \mathbb{N}f'_k(w_0) + \sum_{k=2}^{r} 2i\pi \mathbb{Z}p_2(Pe^{(k)}), & \text{if } r \ge 2\\ \sum_{k=1}^{p} \mathbb{N}f'_k(w_0), & \text{if } r = 1 \end{cases}$$

The proof is completed.

Proof of Theorem 1.2: This follows directly from Theorem 1.1, Proposition 4.2.

Proof of Corollary 1.3: First, by Proposition ??, if $F = \mathbb{Z}u_1 + \cdots + \mathbb{Z}u_m$, $u_k \in \mathbb{C}^n$ with $m \leq 2n$, then F cannot be dense in \mathbb{C}^n . Now, by the form of \mathfrak{q}_{w_0} in Proposition 4.2, \mathfrak{q}_{w_0} cannot be dense in \mathbb{C}^n and so Corollary 1.3 follows by Theorem 1.2.

Proof of Corollary 1.4: Since $n \leq 2n - r + 1$ (because $r \leq n + 1$), Corollary 1.4 follows from Corollary 1.3.

5. Example

Lemma 5.1. [12, Lemma 2.2] Let $\alpha_1, \ldots, \alpha_n$ be *n* positive numbers linearly independent over \mathbb{Q} . Then $H = \{(m_1 - m_0\alpha_1, \ldots, m_n - m_0\alpha_n) : m_0, \ldots, m_n \in \mathbb{N}\}$ is dense in \mathbb{R}^n .

We identify \mathbb{C}^n to \mathbb{R}^{2n} and by applying the Lemma 5.1, we obtain the following result:

Lemma 5.2. Let $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n$ be 2n positive numbers linearly independent over \mathbb{Q} . Then $H = \mathbb{N}^n + i\mathbb{N}^n - \mathbb{N}(\alpha_1 + i\beta_1, \ldots, \alpha_n + i\beta_n)$ is dense in \mathbb{C}^n .

Lemma 5.3. [1] The elements of the set $\{\sqrt{m}, m \in \mathbb{N} \text{ and } \sqrt{m} \notin \mathbb{N}\}$ are linearly independent over \mathbb{Q} .

Example 5.4. Let \mathcal{G} the sub-semigroup of $GA(2, \mathbb{C})$ generated by $f_1 = (A_1, a_1)$, $f_2 = (A_2, a_2), f_3 = (A_3, a_3)$ and $f_4 = (A_4, a_4)$ where $A_1 = I_2, a_1 = (2i\pi, 0),$ $A_2 = diag(1, e^{2\pi}), a_2 = (0, 0), A_3 = I_2,$ $a_3 = (2i\pi, 0), A_4 = dig(1, e^{-2\sqrt{5}-2i\sqrt{7}}) a_4 = (-2\sqrt{2}-2i\sqrt{3}, 0).$ Then \mathcal{G} is hypercyclic.

Proof. First one can check that \mathcal{G} is abelian: $f_i f_j = f_j f_i$ for every i, j = 1, 2, 3, 4. Denote by $G = \Phi(\mathcal{G})$. Then G is generated by

$$\Phi(f_1) = \begin{bmatrix} 1 & 0 & 0 \\ 2\pi & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \Phi(f_2) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{2\pi} \end{bmatrix},$$
$$\Phi(f_3) = \begin{bmatrix} 1 & 0 & 0 \\ 2i\pi & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \Phi(f_4) = \begin{bmatrix} 1 & 0 & 0 \\ -2\sqrt{2} - 2i\sqrt{3} & 1 & 0 \\ 0 & 0 & e^{-2\sqrt{5} - 2i\sqrt{7}} \end{bmatrix}.$$
Let $f'_i = (B_i, b_i), \ i = 1, 2, 3, 4$ where
$$B_1 = \operatorname{diag}(0, 0) = 0, \ b_1 = (2\pi, 0),$$

$$B_2 = \text{diag}(0, 2\pi), \quad b_2 = (0, 0),$$

$$B_3 = \text{diag}(0, 0), \quad b_3 = (2i\pi, 0),$$

$$B_4 = \text{diag}(0, -2\sqrt{5} - 2i\sqrt{7}), \quad b_4 = (-2\sqrt{2} - 2i\sqrt{3}, 0)$$

Then we have $e^{\Psi(f'_i)} = \Phi(f_i), i = 1, 2, 3, 4.$

Here r = 2, $\eta = (2, 1)$, G is an abelian sub-semigroup of $\mathcal{K}^*_{(2,1),2}(\mathbb{C})$. We have $P = I_2, u_0 = v_0 = (1, 0, 1), e^{(2)} = (0, 0, 1)$ and $w_0 = (0, 1)$. By Proposition 4.2, $\mathfrak{q}_{w_0} = \sum_{k=1}^4 \mathbb{N} f'_k(w_0) + 2i\pi \mathbb{Z} p_2(e^{(2)})$. Then $H \subset \mathfrak{q}_{w_0}$, where $H = \mathbb{N}(2\pi, 0) + \mathbb{N}(0, 2\pi) + \mathbb{N}(2i\pi, 0) - 2\mathbb{N}(\sqrt{2} + i\sqrt{3}, \sqrt{5} + i\sqrt{7}) + \mathbb{N}(0, 2i\pi)$.

By Lemma 5.3, one has $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ and $\sqrt{7}$ are rationally independent, then by Lemma 5.2, H is dense in \mathbb{C}^2 , so is \mathfrak{q}_{w_0} . By Theorem 1.2, \mathcal{G} is hypercyclic. \Box **Example 5.5.** Let \mathcal{G} the sub-semigroup of $GA(3, \mathbb{C})$ generated by $f_1 = (A_1, a_1)$, $f_2 = (A_2, a_2), f_3 = (A_3, a_3), f_4 = (A_4, a_4)$ and $f_5 = (A_5, a_5)$ where $A_1 = I_3, a_1 = (2\pi, 0, 0), A_2 = \text{diag}(1, e^{2\pi}, 1), a_2 = (0, 2\pi), A_3 = \text{diag}(1, 1, e^{2i\pi}), a_3 = (2i\pi, 0, 0), A_4 = \text{diag}(1, 1, e^{2\pi}), a_4 = (0, 0, 0)$ and

$$A_5 = \text{diag}(1, e^{-2\sqrt{5}-2i\sqrt{7}}, e^{-2\sqrt{11}-2i\sqrt{13}}), \quad a_5 = (-2\sqrt{2}-2i\sqrt{3}, 0, 0).$$

Then \mathcal{G} is hypercyclic.

Proof. First one can check that \mathcal{G} is abelian: $f_i f_j = f_j f_i$ for every i, j = 1, 2, 3, 4, 5. Denote by $G = \Phi(\mathcal{G})$. Then G is generated by

$$\Phi(f_1) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2\pi & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \Phi(f_2) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{2\pi} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$
$$\Phi(f_3) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2i\pi & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \Phi(f_4) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{2\pi} \end{bmatrix},$$

and

$$\Phi(f_5) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2\sqrt{2} - 2i\sqrt{3} & 1 & 0 & 0 \\ 0 & 0 & e^{-2\sqrt{5} - 2i\sqrt{7}} & 0 \\ 0 & 0 & 0 & e^{-2\sqrt{11} - 2i\sqrt{13}} \end{bmatrix}$$

Let $f'_i = (B_i, b_i), i = 1, 2, 3, 4, 5$ where

$$B_1 = 0, \quad b_1 = (2\pi, \ 0, \ 0),$$

$$B_2 = \text{diag}(0, \ 2\pi, \ 0), \quad b_2 = (0, \ 0, \ 0),$$

$$B_3 = \text{diag}(0, \ 0, \ 2i\pi), \quad b_3 = (2i\pi, \ 0, \ 0),$$

$$B_4 = \text{diag}(0, \ 0, \ 2\pi), \quad b_4 = (0, \ 0, \ 0),$$

 $B_5 = \text{diag}(0, -2\sqrt{5} - 2i\sqrt{7}, -2\sqrt{11} - 2i\sqrt{13}), \quad b_5 = (-2\sqrt{2} - 2i\sqrt{3}, 0, 0).$ Then we have $e^{\Psi(f'_i)} = \Phi(f_i), i = 1, 2, 3, 4, 5.$

Here r = 2, $\eta = (2, 1, 1)$, G is an abelian sub-semigroup of $\mathcal{K}^*_{(2,1,1),3}(\mathbb{C})$. We have $P = I_4$, $u_0 = v_0 = (1, 0, 1, 1)$, $e^{(2)} = (0, 0, 1, 0)$, $e^{(3)} = (0, 0, 0, 1)$ and $w_0 = (0, 1, 1)$. By Proposition 4.2, $\mathfrak{q}_{w_0} = \sum_{k=1}^4 \mathbb{N} f'_k(w_0) + 2i\pi \mathbb{Z} p_2(e^{(2)}) + 2i\pi \mathbb{Z} p_2(e^{(3)})$. Then $H \subset \mathfrak{q}_{w_0}$, where

$$H = 2\pi \mathbb{N}^3 + 2i\pi \mathbb{N}^3 - 2\mathbb{N}(\sqrt{2} + i\sqrt{3}, \sqrt{5} + i\sqrt{7}, \sqrt{11} + i\sqrt{13}).$$

By Lemma 5.3, one has $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{7}$, $\sqrt{11}$ and $\sqrt{13}$ are rationally independent then by Lemma 5.2, H is dense in \mathbb{C}^3 , so is \mathfrak{q}_{w_0} . By Theorem 1.2, \mathcal{G} is hypercyclic.

References

- Z. Abel, My Favorite Problem: Bert and Ernie, Harvard College Math. Rev. 1-2 (2007), 78–83.
- 2. H. Abels and A. Manoussos, Topological generators of abelian Lie groups and hypercyclic finitely generated abelian semigroups of matrices, Adv. Math. **229** (2012), 1862–1872.
- A. Ayadi, Hypercyclic abelian groups of affine maps on Cⁿ, Canad. Math. Bull. 56 (2013), no. 3, 477–490.
- A. Ayadi and H. Marzougui, Dense orbits for abelian subgroups of GL(n, C), Foliations 2005, 47–69, World Sci. Publ., Hackensack, NJ, 2006.
- A. Ayadi and H. Marzougui Abelian semigroups of matrices on Cⁿ and hypercyclicity, P. Edinburgh Math. Soc. 57 (2014), 323–338.
- A. Ayadi and Y. N'dao, Global dynamic of abelian groups of affine maps on Cⁿ, Topology Appl. 160 (2013), 1444–1455.
- F. Bayart and E. Matheron, *Dynamics of Linear Operators*, Cambridge Tracts in Math. 179, (2009).
- V. Bergelson, M. Misiurewicz and S. Senti, Affine actions of a free semigroup on the real line Ergodic Theory Dynam. Systems 26 (2006), no. 5, 1285–1305.
- G. Costakis, D. Hadjiloucas and A. Manoussos, *Dynamics of tuples of matrices*, Proc. Amer. Math. Soc. 137 (2009), 1025–1034.
- G.Costakis, D. Hadjiloucas and A. Manoussos, On the minimal number of matrices which form a locally hypercyclic, non-hypercyclic tuple, J. Math. Anal. Appl. 365 (2010), 229–237.
- G. Costakis and I. Parissis, Dynamics of tuples of matrices in Jordan form, Oper. Matrices 7 (2013), no. 1, 131–157.
- N.S. Feldman, Hypercyclic tuples of operators and somewhere dense orbits, J. Math. Anal. Appl. 346 (2008), 82–98.
- K.G. Grosse-Erdmann and A. Peris-Manguillot, *Linear Chaos*, Universitext, Springer, London, 2011.
- 14. M. Javaheri, Semigroups of matrices with dense orbits, Dyn. Syst. 26 (2011), no. 3, 235–243.
- M. Javaheri, Dense 2-generator subsemigroups of matrices, J. Math. Anal. Appl. 387 (2012), 103–113.
- M. Javaheri, Maximally transitive semigroups of n × n matrices, J. Math. Anal. Appl. 401 (2013), 743–753.
- 17. M. Javaheri, A generalization of Dirichlet approximation theorem for the affine actions on real line, J. Number Theory **128** (2008), 1146–1156.
- R.S. Kulkarni, Dynamics of linear and affine maps, Asian J. Math. 12 (2008), no. 3, 321– 344.
- 19. S. Shkarin, Hypercyclic tuples of operators on \mathbb{C}^n and \mathbb{R}^n , Linear Multilinear Algebra **60** (2012), 885–896.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF MONCTON, CANADA. *E-mail address*: yahiandao@yahoo.fr; yahiandao@voila.fr