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Abstract. Conditions such that a locally k-convex inductive limit of a se-
quence of kn-normed algebras is a locally m-(k-convex) algebra, are given. It
is shown that every locally pseudoconvex inductive limit E of a sequence of
commutative locally m-pseudoconvex algebras is a commutative locally
m-pseudoconvex algebra if the multiplication in E is jointly continuous.

1. Introduction

A. Arosio asked in [4, p. 349] whether any locally convex inductive limit of
normed algebras is a locally m-convex algebra. An answer to this question has
been given in [3, p. 114] (see also [11, Theorem 15.4]), by showing that every
locally convex inductive limit of a countable family of normed algebras is a locally
m-convex algebra (another proof for this fact was given in [6, Theorem 1]). In this
paper we give an analogous result in case of locally k-convex inductive limit of
kn-normed algebras. Moreover, it is shown that a locally pseudoconvex inductive
limit E of commutative locally m-pseudoconvex algebras is a topological algebra
of the same type as the factors if the multiplication in E is jointly continuous. In
the locally convex case a similar result has been proved in [7].
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2. Preliminaries

Let E be a unital topological algebra over K, the field of real numbers R
or complex numbers C, with separately continuous multiplication (in short, a
topological algebra). If the underlying topological linear space of E is locally
pseudoconvex (see [12, p. 4] or [13, p. 4]), then E is called a locally pseudoconvex
algebra. In this case, E has a base U = {Uλ : λ ∈ Λ} of neighborhoods of zero
consisting of balanced (µUλ ⊂ Uλ when |µ|6 1) and pseudoconvex (Uλ+Uλ ⊂ µUλ

for µ > 2) sets. This base defines a set of numbers {kλ : λ ∈ Λ} in (0, 1] (see, for
instance, [13, pp. 3–6] or [9, pp. 161–162]) such that

Uλ + Uλ ⊂ 2
1

kλ Uλ

and

Γkλ
(Uλ) ⊂ 2

1
kλ Uλ for each λ ∈ Λ,

where

Γk(U) =
{ n∑

ν=1

µνuν : n ∈ N, u1, · · ·, un ∈ U, µ1, · · ·, µn ∈ K with
n∑

ν=1

| µν |k6 1
}

for any subset U of E and k ∈ (0, 1]. The set Γk(U) is the absolutely
k-convex hull of U in E. A subset U ⊂ E is called absolutely k-convex if
U = Γk(U) and absolutely pseudoconvex if U = Γk(U) for some k ∈ (0, 1]. In case
when

inf{kλ : λ ∈ Λ} = k > 0,

E is a locally k-convex algebra and when k = 1, then E is a locally convex
algebra. A locally m-pseudoconvex (multiplicative pseudoconvex) algebra is a
topological algebra which has a base of neighborhoods of zero which consist of
m-pseudoconvex (that is, idempotent and absolutely pseudoconvex) sets. A lo-
cally m-(k-convex) algebra is a topological algebra which has a base of neigh-
borhoods of zero, which are m-(k-convex) (that is, idempotent and absolutely
k-convex). In case when k = 1, E is a locally m-convex algebra.

The topology on a locally pseudoconvex algebra E can be defined by a family
P = {pλ : λ ∈ Λ} of kλ-homogeneous seminorms pλ (that is, pλ(µa) =| µ |kλpλ(a)
for each µ ∈ K and a ∈ E), defined by the base neighborhood Uλ of zero, where
kλ ∈ (0, 1] is the power of nonhomogeneity of pλ for each λ ∈ Λ and pλ has been
defined by

pλ(a) = inf{| µ |kλ : a ∈ µΓkλ
(Uλ)}

for each a ∈ E and λ ∈ Λ (see [13, pp. 3–6], [5, pp. 189 and 195] or [1, pp.
15–16]).

When the topology an of algebra E is defined by a k-homogeneous submulti-
plicative norm ‖ · ‖ for some k ∈ (0, 1], then E is called a k-normed algebra and
‖e‖ = 1 whenever E has a unit e.
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Let (En)n∈N be a sequence of locally pseudoconvex algebras and for every
m,n ∈ N with m 6 n let

fnm : Em → En

be a homomorphism such that

1) fnn = idEn for every n ∈ N
and

2) fon = fom ◦ fmn for any m, n, o ∈ N such that n 6 m 6 o.

The sequence of locally pseudoconvex algebras (En)n∈N with the maps fnm

defined above is called an inductive system of locally pseudoconvex algebras and
it is denoted by (En, fmn).

Let E0 be the disjoint union of algebras Eα. That is,

E0 =
⋃
n∈N

{(a, n) : a ∈ En}.

Then, x, y ∈ E0 (that is, x = (x0, n) with x0 ∈ En and y = (y0, m) with y0 ∈ Em

for some n and m in N) are equivalent (in short x ∼ y) if there exists o ∈ N such
that n 6 o, m 6 o and

fon(x0) = fom(y0).

The quotient set E0/∼ is called the inductive (or direct) limit of the inductive
system (En, fmn). We shall denote this by lim

−→
(En, fmn) or simply by lim

−→
En.

For every n ∈ N, let in : En → E0 be the canonical injection or natural injection
(that is, in(x) = (x, n) for each x ∈ En) and π : E0 → E0/∼ the quotient map.
Then,

fn = π ◦ in : En → E = lim
−→

En for every n ∈ N

is the canonical map from En to E.
We endow E0 with the disjoint union topology (that is, with the topology

{U ⊂ E0 : i−1
n (U) ∈ τn for every n ∈ N},

where τn denotes the topology of En. Here in is an open and closed continuous
map. When all algebras En are subalgebras of some algebra E, then every in is
an inclusion En → E. In this case, we endow E0 with the coherent topology

{U ⊂ E0 : U ∩ En ∈ τn for every n ∈ N})

and the inductive limit E we endow with the final topology τlim
−→

En (the inductive

limit topology), defined by the homomorphisms fn (that is

τlim
−→

En = {U ⊂ E : f−1
n (U) ∈ τn for every n ∈ N}).

A base of neighborhoods of zero in this topology is

{O ⊂ E : O is balanced and f−1
n (O) ∈ Nn for every n ∈ N},

(in particular, when every En is a subalgebra of E, then

{O ⊂ E : O is balanced and O ∩ En ∈ Nn for every n ∈ N}),
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where Nn denotes the set of all neighborhoods of zero in En. Then, fn is a
continuous (open) map for every n ∈ N. Since

E =
⋃
n∈N

fn(En)

and fm ◦ fmn = fn when n 6 m (because in(xn) ∼ im(fmn(xn))) we get fn(En) ⊆
fm(Em) for any m, n ∈ N with n 6 m.

The algebraic operations in lim
−→

En are defined as usual (see [10, p. 110]): for

every x, y ∈ E (then x ∈ fn(En) and y ∈ fm(Em) for some m, n ∈ N) there exists
o ∈ N such that m 6 o, n 6 o, x = fo(xo) and y = fo(yo) for some xo, yo ∈ Eo.
So, the algebraic operations in E are defined by

x + y = fo(xo + yo), λx = fo(λxo), xy = fo(xoyo)

for every λ ∈ K. With respect to such algebraic operations, (E, τlim
−→

En) is a

topological algebra (see [10, p. 115]).
Since the topology τlim

−→
En on E is not necessarily locally pseudoconvex, we

consider on E the final locally pseudoconvex topology τ (see [2, pp. 1952–1953])
defined by the base of neighborhoods at x ∈ En in the form

(1) Lx = {x + U : U is absolutely pseudoconvex in E and f−1
n (U) ∈ Nn}

where Nn denotes again the set of all neighborhoods of zero in En. Similarly as in
[10, pp. 115–116], it is easy to show that (E, τ) is a locally pseudoconvex algebra.

In this paper, we consider inductive limits of sequences (En)n∈N of locally pseu-
doconvex algebras such that En is a subalgebra of En+1 with continuous inclu-
sion and the locally pseudoconvex inductive limit topology τ induces a topology
coarser than the initial topology of En for each n ∈ N.

3. On locally k-convex inductive limit of a sequence of locally
kn-convex algebras

It was shown in [4, Proposition 12] that any commutative locally convex induc-
tive limit E of a countable family of normed algebras is locally m-convex. Later
on, in [3, Theorem 2.1], it was shown that the commutativity of E in this result
can be omitted (another proof of this fact has been given in [6, Theorem 1]). To
show a similar result in the case when E is a locally pseudoconvex inductive limit
of a sequence of kn-normed algebras (En, ‖ · ‖n) with kn ∈ (0, 1] for each n ∈ N,
we need the next.

Lemma 3.1. Let B, C be two subsets of an algebra and k ∈ (0, 1]. Then,
Γk(B)Γk(C) ⊂ Γk(BC). In particular, if U is an idempotent set, then Γk(U)
is also idempotent.

Proof. Take x ∈ Γk(B) and y ∈ Γk(C). Then,

x =

p∑
n=1

anxn and y =

q∑
m=1

bmym,
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where x1, . . . , xp ∈ B, y1, . . . , yq ∈ C,
p∑

n=1

| an |k≤ 1 and

q∑
m=1

| bm |k≤ 1.

Hence

xy =
( p∑

n=1

anxn

)( q∑
m=1

bmym

)
=

p∑
n=1

q∑
m=1

anbmxnym,

where xnym ∈ BC and
p∑

n=1

q∑
m=1

| anbm |k=
p∑

n=1

q∑
m=1

| an |k| bm |k=
( p∑

n=1

| an |k
)( q∑

m=1

| bm |k
)
≤ 1. �

Theorem 3.2. Let (E, τ) be a locally k-convex inductive limit of a sequence of
kn-normed algebras (En, ‖ · ‖n) with continuous inclusions. If k, kn ∈ (0, 1] and
k 6 kn for each n ∈ N, then (E, τ) is a locally m-(k-convex) algebra.

Proof. For any n ∈ N, let Bn = {x ∈ En : ‖x‖n 6 1} (the unit ball in En), and
let k ∈ (0, 1] be a number such that k 6 kn for each n ∈ N. Then, Bn is an
idempotent and absolutely k-convex set for each n ∈ N. Indeed, if a, b ∈ Bn and

| λ |k + | µ |k6 1,

then

‖λa + µb‖n 6| λ |kn ‖a‖n+ | µ |kn ‖b‖n 6| λ |kn + | µ |kn6| λ |k + | µ |k6 1.

Hence, λa + µb ∈ Bn. Taking this into account, we can assume that every norm
‖ · ‖n is k-homogeneous otherwise, instead of ‖ · ‖n, we consider the new norm

‖ · ‖
k

kn
n

which is k-homogeneous.
Moreover, we can assume that Bn−1 ⊆ Bn for each n > 1. Otherwise, we

replace k-norm ‖ · ‖n of the algebra En with equivalent k-norm ‖ · ‖′n such that
B′

n−1 ⊆ B′
n for each n > 1 where B′

n = {a ∈ En : ‖a‖′n 6 1}. Because the
injection En−1 → En is a continuous linear map, there exists Mn > 1 such that
‖a‖n 6 Mn‖a‖n−1 for each a ∈ En−1 (see [5, Proposition 4.3.11], both norms here
are k-homogeneous). We consider first the case when En−1 and En have the same
unit element en. Let ‖a‖′1 = ‖a‖1 (then ‖a‖2 6 M ′

2‖a‖′1 where M ′
2 = M2) and

‖a‖′2 = sup
c∈E2,q2(c)61

q2(ac)

where
q2(a) = sup

s∈B′1

‖sa‖2

for all a ∈ E2. Then

q2(λa) = |λ|kq2(a), q2(a + b) 6 q2(a) + q2(b),

‖a‖2 6 q2(a) 6 sup
s∈B′1

‖s‖2‖a‖2 6 M ′
2‖a‖2
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and
q2(ab) = sup

s∈B′1

‖s(ab)‖2 6 sup
s∈B′1

‖sa‖2‖b‖2 = q2(a)‖b‖2 6 q2(a)q2(b)

for each λ ∈ K and a, b ∈ E2. Hence, q2 is a k-norm on E2 which is equivalent to
‖ · ‖2. Taking this into account, ‖ · ‖′2 is a k-homogeneous norm on E2. Moreover,

‖ab‖′2 = (‖lab‖2)op = (‖la ◦ lb‖2)op 6 (‖la‖2)op(‖lb‖2)op = ‖a‖′2‖b‖′2
(here ‖a‖′2 is the operator norm (‖la‖2)op of the left regular representation la of a
on (E2, q2)),

q2(a) = q2(ae2) = M ′
2 q2(a

e2

M
′ 1
k

2

) 6 M ′
2 sup

c∈E2,q2(c)61

q2(ac) = M ′
2‖a‖′2

because q2(e2) 6 M ′
2 and

1

M ′
2

‖a‖2 6
1

M ′
2

q2(a) 6 ‖a‖′2 6 sup
c∈E2,q2(c)61

q2(a)q2(e2c) = q2(a)‖e2‖′2 6 M ′
2‖a‖2

for each a, b ∈ E2. Since

‖t‖′2 = sup
c∈E2,q2(c)61

q2(tc) = sup
c∈E2,q2(c)61

sup
s∈B′1

‖(st)c‖2 6 sup
c∈E2,q2(c)61

q2(c) = 1

for each t ∈ B′
1 (because B′

1 = B1 and B1t ⊂ B1), then ‖ · ‖′2 is a k-norm on E2,
which is equivalent to ‖ · ‖2, and satisfies the condition B′

1 ⊆ B′
2.

The norm ‖ · ‖′3 we define similarly, that is, we put

‖a‖′3 = sup
c∈E3,q3(c)61

q3(ac)

where
q3(a) = sup

s∈B′2

‖sa‖3

for all a ∈ E3. Now, similarly as above, we have ‖a‖3 6 M ′
3‖a‖′2 for M ′

3 = M3M2,
1

M ′
3
‖a‖3 6 ‖a‖′3 6 M ′

3‖a‖3 for each a ∈ E3 and ‖a‖′3 6 1 for each a ∈ B′
2. Hence,

B′
2 ⊆ B′

3. Continuing in the same way, for every fixed n > 4 we define

‖a‖′n = sup
c∈En,qn(c)61

qn(ac)

where
qn(a) = sup

s∈B′n−1

‖sa‖n

for all a ∈ En and show that B′
n−1 ⊆ B′

n.
Let now En−1 and En be arbitrary k-normed algebras. Instead of these algebras,

we consider direct products En−1 ×K and En ×K which are k-normed algebras
with respect to the algebraic operations (similarly as in case of the unitization)
and norm ‖(a, λ)‖k = ‖a‖k + |λ| for each (a, λ) ∈ Ek × K (here k is n − 1 or
n). Then En−1 × K and En × K have the same unit element (θ, 1), where θ
is the zero element in En−1 and En. Moreover, En−1 × K is a subalgebra of
En × K. Hence, there are equivalent k-norms ‖(·, ·)‖′n−1 and ‖(·, ·)‖′n such that
‖(a, λ)‖′n 6 ‖(a, λ)‖′n−1 if ‖(a, λ)‖′n−1 6 1. Thus

‖a‖′n = ‖(a, 0)‖′n 6 ‖(a, 0)‖′n−1 = ‖a‖′n−1
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for each a ∈ B′
n−1. Hence, B′

n−1 ⊆ B′
n for each fixed n > 1. Consequently, we

can assume that

B1 ⊆ B2 ⊆ · · · ⊆ Bn ⊆ · · ·
Since B1 is bounded in B2 (because ‖a‖2 6 M2‖a‖1 for each a ∈ E1) and B2 is a
neighborhood of zero in E2, then there is a number t1 > 1 such that B1 ⊂ t1B2.
We put B′

1 = B1 and

B′
n = Γk

(
I
(
Bn−1

⋃ 1

tn−1

Bn

))
= Γk

( ⋃
j∈N

(
Bn−1

⋃ 1

tn−1

Bn

)j)
for n > 1, where I(U) is the idempotent hull (see [8, pp. 26 and 27]) of
U ⊂ E. Then, B′

2 is an idempotent (by Lemma 3.1) and absolutely k-convex
set. Because

B1 ∪
1

t1
B2 ⊂ B2 ⊂ B2 ∪

1

t2
B3,

then B′
2 ⊂ B′

3 (it is clear that I(U) ⊂ I(V ) and Γk(U) ⊂ Γk(V ) if U ⊂ V ).
Since

1

t1
B2 ⊂

(
B1 ∪

1

t1
B2

)
⊆ I

(
B1 ∪

1

t1
B2

)
⊆ Γk

(
I
(
B1 ∪

1

t1
B2

))
= B′

2,

then, continuing in the same way, we have an increasing sequence {B′
n : n > 2}

of idempotent and absolutely k-convex sets B′
n such that

(2)
1

tn−1

Bn ⊂ B′
n.

Moreover, B′
2 ⊂ t1B2. Indeed, for x ∈ 1

t1

⋃
j∈N(B1 ∪ 1

t1
B2)

j we have

t1x ∈ (B1 ∪ 1
t1

B2)
j0 for some j0 ∈ N. Hence there is an element y ∈ B1 ∪ 1

t1
B2

such that t1x = yj0 . If y ∈ B1, then from t1x ∈ Bj0
1 ⊂ B1 ⊂ t1B2 follows that

x ∈ B2, otherwise y ∈ 1
t1

B2. Then, from t1x ∈ 1

t
j0
1

Bj0
2 ⊂ 1

t
j0
1

B2 follows that

x ∈ 1

t
j0+1
1

B2 ⊂ B2 provided that B2 is balanced. Arguing similarly, we have

(3) B′
n ⊂ tn−1Bn

where tn > 1 for each n ∈ N. Thus,

1

tn−1

Bn ⊂ B′
n ⊂ tn−1Bn

for all n ∈ N.
Now, we shall prove that

Lθ = {Γk(
⋃
n∈N

εnB
′
n) : εn ∈ (0, 1]}

is a base of neighborhoods of zero in E which consists of idempotent abso-
lutely k-convex sets. Clearly, every element of Lθ is absolutely k-convex, to
prove that every element V = Γk(

⋃
n∈N εnB

′
n) in Lθ is idempotent, we consider
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x, y ∈
⋃

n∈N εnB
′
n. Then, x ∈ εnB

′
n and y ∈ ε′mB′

m for some m, n ∈ N. If B′
n ⊆ B′

m

(the case B′
n ⊃ B′

m is similar), then

xy ∈ εnB
′
mε′mB′

m ⊆ εnε
′
mB′

mB′
m ⊆ εnB

′
m ⊂

⋃
n∈N

εnB
′
n,

that is,
⋃

n∈N εnB
′
n is idempotent and hence V is idempotent by Lemma 3.1.

To show that Lθ is a base of neighborhoods of zero for some topology τ ′ on E,
we show that Lθ satisfies the following conditions:

1) if V ∈ Lθ, then the zero element θ ∈ V ;
2) if V1, V2 ∈ Lθ, then there exists a set V3 ∈ Lθ such that V3 ⊂ V1 ∩ V2;
3) if V ∈ Lθ, then there exists a set V0 ∈ Lθ and for every y ∈ V0 a set

W = y + V0 such that W ⊂ V .

Clearly 1) holds. To show that 2) holds, we put V1 = Γk(
⋃

n∈N εnB
′
n),

V2 = Γk(
⋃

n∈N ε′nB
′
n) and ε′′n = inf{εn, ε

′
n} for every n ∈ N. Since ε′′n

εn
6 1 and

ε′′n
ε′n

6 1, then

ε′′nB
′
n ⊆ εnB

′
n, ε′′nB

′
n ⊆ ε′nB

′
n

and hence

ε′′nB
′
n ⊂ (

⋃
n∈N

εnB
′
n) ∩ (

⋃
n∈N

ε′nB
′
n) ⊂ V1 ∩ V2

for every n ∈ N. Thus, we can put

V3 = Γk(
⋃
n∈N

ε′′nB
′
n).

Then,

V3 ⊂ Γk(V1 ∩ V2) ⊂ Γk(V1) ∩ Γk(V2) = V1 ∩ V2.

3) If V ∈ Lθ, then

V = Γk(
⋃
n∈N

εnB
′
n)

for some sequence (εn), where εn ∈ (0, 1] for each n ∈ N. Since V is k-convex,

2−
1
k V + 2−

1
k V ⊂ V . Moreover, 2−

1
k V ∈ Lθ since 2−

1
k V = Γk(

⋃
n∈N 2−

1
k εnB

′
n),

where 2−
1
k εn ∈ (0, 1] for every n ∈ N. Thus V0 = 2−

1
k V ∈ Lθ and

W = y + V0 ⊂ V for every y ∈ V0. Consequently, by Theorem 4.5 from [14],
Lθ is a base of neighborhoods of zero for a locally m-(k-convex) topology τ ′ on
E.

Claim that τ = τ ′. For it, let O be a neighborhood of zero in the topology τ ′.
Then, there exists a neighborhood U of zero such that

U = Γk

( ⋃
n∈N

εnB
′
n

)
for some sequence (εn), where εn ∈ (0, 1] for each n ∈ N, and U ⊆ O. Take
n0 ∈ N and let fn0 : En0 → E be the canonical map (fn0 is the inclusion). Since
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1
tn0−1

Bn0 ⊂ B′
n0

by (2), then

f−1
n0

(U) = Γk(
⋃
n∈N

εnB
′
n) ∩ En0 ⊃ εn0B

′
n0
⊃ εn0

tn0−1

Bn0 ,

where
εn0

tn0−1
Bn0 is a neighborhood of zero in En0 . Thus, f−1

n (U) is a neighborhood

of zero in En for every n ∈ N. Hence, by (1), U is a neighborhood of zero in E
in the topology τ . Thus τ ′ ⊆ τ .

To prove that τ ⊆ τ ′, let U be a neighborhood of zero in the topology τ .
Then, there is in E an absolutely k-convex neighborhood V of zero such that
V ⊂ U and f−1

n (V ) = V ∩ En is a neighborhood of zero in En for every
n ∈ N. Since {εnBn : εn > 0} is a base of neighborhoods of zero in (En, τn)
(see [12, p. 14]), then εnBn ⊂ En∩V ⊂ V for some εn < 1. As it has been shown
in (3), B′

n ⊂ tn−1Bn with tn−1 > 1. Therefore εn

tn−1
B′

n ⊂ V , where εn

tn−1
∈ (0, 1] for

every n. Hence, from ⋃
n∈N

εn

tn−1

B′
n ⊂ V

it follows

Γk

( ⋃
n∈N

εn

tn−1

B′
n

)
⊂ Γk(V ) = V ⊂ U.

Hence, τ ⊆ τ ′. It means that τ = τ ′. �

Corollary 3.3. Locally k-convex inductive limit of a sequence of locally k-normed
algebras with continuous inclusions is a locally m-(k-convex) algebra for every
k ∈ (0, 1].

4. Locally pseudoconvex inductive limit of locally
m-pseudoconvex algebras

It is known that the inductive limit of locally m-convex algebras is not nec-
essarily a locally m-convex algebra (see the example in [6]). It was shown in
[7, Theorem, p. 150] that the locally convex inductive limit E of a sequence of
commutative locally m-convex algebras is a locally m-convex algebra if the mul-
tiplication in E is jointly continuous. Next we prove an analogous result for the
case of locally pseudoconvex inductive limit of a sequence of commutative locally
m-pseudoconvex algebras.

Theorem 4.1. Let E be a locally pseudoconvex inductive limit of a sequence of
commutative locally m-pseudoconvex algebras En with continuous inclusions. If
the multiplication is jointly continuous in E, then E is a commutative locally
m-pseudoconvex algebra.

Proof. Let U be a neighborhood of zero in E. Then, there is a neighborhood
V1 ⊂ U of zero such that Γk(V1) = V1 for some k ∈ (0, 1]. By the jointly
continuity of multiplication in E, there exists a neighborhood O1 of zero such
that O1O1 ⊂ V1. Now we put V2 = O1 ∩ V1. Then, by the jointly continuity
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of multiplication, there exists a neighborhood O2 of zero such that O2O2 ⊂ V2.
Inductively we define Vv+1 = Ov ∩ Vv for each v > 1. Since,

V1 ⊃ V2 ⊃ . . . ⊃ Vv ⊃ . . . ,

then Vv ⊂ U for every v ∈ N.
Since the canonical map (the inclusion) fn : En → E is continuous for every

n ∈ N, there exists for every v ∈ N an m-pseudoconvex neighborhood Vn,v of zero
in En such that Vn,v ⊂ Vv. Now, for every n ∈ N, we put V ′

n,1 = Vn,1 and

(4) V ′
n,v+1 = V ′

n,v ∩ Vn,v+1

for v > 1. Then,

(5) V ′
n,v+1 ⊂ V ′

n,v for all n, v ∈ N

and (V ′
n,v) is a sequence of idempotent neighborhoods of zero in En (since Vn,v is

an idempotent neighborhood of zero in En) for all n, v ∈ N.
Let n0 ∈ N and 1 6 p < n0 be fixed. We define a new sequence (V ′′

n,v) of
idempotent neighborhoods of zero in En as follows: we put V ′′

p,1 = Vp,1 and for
v > 1 put

(6) V ′′
p,v+1 = V ′

n0,v+1 ∩ V ′′
p,v

and

V ′′
n,v = V ′

n,v for n > n0 and v ∈ N.

So, by definition of (V ′′
n,v), (4), (5) and (6), we have that

(7) V ′′
n,v+1 ⊆ V ′′

n,v for all v, n ∈ N
and from

V ′′
n0,sV

′′
p,q ⊂ V ′′

n0,sV
′′
p,s ⊂ V ′

n0,sV
′
n0,s ⊂ V ′

n0,s ⊂ Vn0,s ⊂ Vs ⊂ V1

it follows that

(8) V ′′
n0,sV

′′
p,q ⊂ V ′′

n0,s ⊂ V1

for every natural number p with p 6 n0 and every natural numbers s and q with
s 6 q.

For any numbers v(1), . . . , v(r) ∈ N with 1 = v(0) < v(1) < v(2) < . . . < v(r)
and n(1), . . . , n(r+1) ∈ N (arbitrary r+1 (not necessarily different and ordered)
numbers) we show by induction on r ∈ N that

(9) V ′′
n(1),1V

′′
n(2),v(1) · · ·V ′′

n(r+1),v(r) ⊂ V1

For r = 1, (9) holds by (8) (if n(2) > n(1), we can rename these numbers).
Now, we suppose that (9) is true for r − 1 and prove that (9) is true for r

too. Again, we can assume that n(r) ≥ n(r + 1) (otherwise we can rename the
numbers). Then, using also (8), we get

(V ′′
n(1),1V

′′
n(2),v(1) · · ·V ′′

n(r−1),v(r−2))V
′′
n(r),v(r−1)V

′′
n(r+1),v(r) ⊂

(V ′′
n(1),1V

′′
n(2),v(1) · · ·V ′′

n(r−1),v(r−2))V
′′
n(r),v(r−1)

and by the induction hypothesis, we get the assertion.
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Now, we put Wn = V ′′
n,n. Then, using (7)

Wv(r) = V ′′
v(r),v(r) ⊂ V ′′

v(r),v(r)−1 ⊂ V ′′
v(r),v(r−1)

for each r ∈ N. Therefore

(10) Wv(1)Wv(2) · · ·Wv(r) ⊂ V ′′
v(1),1V

′′
v(2),v(1) · · ·V ′′

v(r),v(r−1) ⊂ V1

by (9) (which holds for any choice of r + 1 natural numbers n(1), . . . , n(r) and
n(r + 1)).

Take m(1), . . . ,m(s) ∈ N (arbitrary fixed not necessarily different s natural
numbers). We can find r ≤ s natural numbers v(1), . . . v(r) such that

1 < v(1) < v(2) < . . . < v(r)

and the set
{m(1), . . . ,m(s)} = {v(1), . . . , v(r)}.

By commutativity of En and idempotency of Wn, we have

Wm(1) · · ·Wm(s) =
r∏

i=1

W
|j : m(j)=v(i)|
v(i) ⊂

r∏
i=1

Wv(i) ⊂ V1

for every r ∈ N, see also (10). Put

W :=
⋃
s∈N

( ⋃
(m(1),...,m(s))∈Ns

Wm(1) · · ·Wm(s)

)
.

Then, W is an idempotent subset of V1. Indeed, if x, y ∈ W , then

x ∈
⋃

Wm(1) · · ·Wm(s0),

where the union is taken over all (m(1), . . . ,m(s0)) ∈ Ns0 and

y ∈
⋃

Wm(1) · · ·Wm(s1),

where the union is taken over all (m(1), . . . ,m(s1)) ∈ Ns1 for some s0 and s1.
Therefore,

x ∈ Wm′(1) · · ·Wm′(s0) and y ∈ Wm′′(1) · · ·Wm′′(s1)

for some (m′(1), . . . ,m′(s0)) ∈ Ns0 and (m′′(1), . . . ,m′′(s1)) ∈ Ns1 . Thus,

xy ∈ Wm′(1) · · ·Wm′(s0)Wm′′(1) · · ·Wm′′(s1) ⊂⋃
Wm(1) · · ·Wm(s0+s1) ⊂ W,

where the union is taken over all (m(1), . . . ,m(s0 +s1)) ∈ Ns0+s1 . By Lemma 3.1,
the absolutely k-convex hull of any idempotent set is idempotent and k-convex.
So,

W ′ := Γk(W ) ⊂ Γk(V1) = V1 ⊂ U

is an m-(k-convex) subset of U . Since

W ′ ∩ En = Γk(W ) ∩ En ⊃ W ∩ En ⊃ Wn = V ′′
n,n

for each n ∈ N and V ′′
n,n is an neighborhood of zero in En, then W ′ in E is an

absolutely m-(k-convex) neighborhood of zero.
Thus, E is a commutative locally m-pseudoconvex algebra in the locally pseu-

doconvex inductive limit topology on E. �
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A topological algebra is locally idempotent if it has a base of idempotent neigh-
borhoods of zero (see [1, p. 196]). Hence, every locally m-pseudoconvex (in
particular, locally m-convex) algebra is a locally idempotent algebra.

Theorem 4.2. Let E be a topological inductive limit of a sequence of commutative
locally idempotent algebras En with continuous inclusions. If the multiplication
is jointly continuous in E, then E is a commutative locally idempotent algebra.

Proof. The proof is similar that of Theorem 2. �
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The authors would like to thank the referee for careful reading of the manuscript
and for really useful remarks.

References

1. M. Abel, Structure of locally idempotent algebras, Banach J. Math. Anal. 1 (2007), no. 2,
195–207.
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