

Banach J. Math. Anal. 9 (2015), no. 2, 276–288 http://doi.org/10.15352/bjma/09-2-18 ISSN: 1735-8787 (electronic) http://projecteuclid.org/bjma

LOCALLY PSEUDOCONVEX INDUCTIVE LIMIT OF SEQUENCES OF LOCALLY PSEUDOCONVEX ALGEBRAS

MATI ABEL¹ AND REYNA MARÍA PÉREZ-TISCAREÑO^{2*}

Communicated by M. Joiţa

ABSTRACT. Conditions such that a locally k-convex inductive limit of a sequence of k_n -normed algebras is a locally m-(k-convex) algebra, are given. It is shown that every locally pseudoconvex inductive limit E of a sequence of commutative locally m-pseudoconvex algebras is a commutative locally m-pseudoconvex algebra if the multiplication in E is jointly continuous.

1. INTRODUCTION

A. Arosio asked in [4, p. 349] whether any locally convex inductive limit of normed algebras is a locally *m*-convex algebra. An answer to this question has been given in [3, p. 114] (see also [11, Theorem 15.4]), by showing that every locally convex inductive limit of a countable family of normed algebras is a locally *m*-convex algebra (another proof for this fact was given in [6, Theorem 1]). In this paper we give an analogous result in case of locally *k*-convex inductive limit of k_n -normed algebras. Moreover, it is shown that a locally pseudoconvex inductive limit *E* of commutative locally *m*-pseudoconvex algebras is a topological algebra of the same type as the factors if the multiplication in *E* is jointly continuous. In the locally convex case a similar result has been proved in [7].

Date: Received: Mar. 16, 2014; Revised: Jun. 16, 2014; Accepted: Aug. 28, 2014.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46H05; Secondary 46H20.

Key words and phrases. Topological algebra, locally m-pseudoconvex algebra, locally m-(k-convex) algebra, k-normed algebra, locally pseudoconvex inductive limit of topological algebras.

2. Preliminaries

Let E be a unital topological algebra over \mathbb{K} , the field of real numbers \mathbb{R} or complex numbers \mathbb{C} , with separately continuous multiplication (in short, a *topological algebra*). If the underlying topological linear space of E is locally pseudoconvex (see [12, p. 4] or [13, p. 4]), then E is called a *locally pseudoconvex algebra*. In this case, E has a base $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ of neighborhoods of zero consisting of balanced ($\mu U_{\lambda} \subset U_{\lambda}$ when $|\mu| \leq 1$) and pseudoconvex ($U_{\lambda}+U_{\lambda} \subset \mu U_{\lambda}$ for $\mu \geq 2$) sets. This base defines a set of numbers $\{k_{\lambda} : \lambda \in \Lambda\}$ in (0, 1] (see, for instance, [13, pp. 3–6] or [9, pp. 161–162]) such that

$$U_{\lambda} + U_{\lambda} \subset 2^{\frac{1}{k_{\lambda}}} U_{\lambda}$$

and

$$\Gamma_{k_{\lambda}}(U_{\lambda}) \subset 2^{\frac{1}{k_{\lambda}}} U_{\lambda}$$
 for each $\lambda \in \Lambda$,

where

$$\Gamma_k(U) = \left\{ \sum_{\nu=1}^n \mu_\nu u_\nu : n \in \mathbb{N}, u_1, \cdots, u_n \in U, \mu_1, \cdots, \mu_n \in \mathbb{K} \text{ with } \sum_{\nu=1}^n |\mu_\nu|^k \leqslant 1 \right\}$$

for any subset U of E and $k \in (0,1]$. The set $\Gamma_k(U)$ is the absolutely k-convex hull of U in E. A subset $U \subset E$ is called absolutely k-convex if $U = \Gamma_k(U)$ and absolutely pseudoconvex if $U = \Gamma_k(U)$ for some $k \in (0,1]$. In case when

$$\inf\{k_{\lambda}: \lambda \in \Lambda\} = k > 0,$$

E is a *locally k-convex algebra* and when k = 1, then *E* is a *locally convex algebra*. A *locally m-pseudoconvex* (multiplicative pseudoconvex) *algebra* is a topological algebra which has a base of neighborhoods of zero which consist of *m*-pseudoconvex (that is, idempotent and absolutely pseudoconvex) sets. A *locally m-(k-convex)* algebra is a topological algebra which has a base of neighborhoods of zero, which are *m-(k-convex)* (that is, idempotent and absolutely *k-convex*). In case when k = 1, *E* is a *locally m-convex algebra*.

The topology on a locally pseudoconvex algebra E can be defined by a family $\mathcal{P} = \{p_{\lambda} : \lambda \in \Lambda\}$ of k_{λ} -homogeneous seminorms p_{λ} (that is, $p_{\lambda}(\mu a) = |\mu|^{k_{\lambda}} p_{\lambda}(a)$ for each $\mu \in \mathbb{K}$ and $a \in E$), defined by the base neighborhood U_{λ} of zero, where $k_{\lambda} \in (0, 1]$ is the power of nonhomogeneity of p_{λ} for each $\lambda \in \Lambda$ and p_{λ} has been defined by

$$p_{\lambda}(a) = \inf\{|\mu|^{k_{\lambda}}: a \in \mu \Gamma_{k_{\lambda}}(U_{\lambda})\}$$

for each $a \in E$ and $\lambda \in \Lambda$ (see [13, pp. 3–6], [5, pp. 189 and 195] or [1, pp. 15–16]).

When the topology an of algebra E is defined by a k-homogeneous submultiplicative norm $\|\cdot\|$ for some $k \in (0, 1]$, then E is called a k-normed algebra and $\|e\| = 1$ whenever E has a unit e.

Let $(E_n)_{n \in \mathbb{N}}$ be a sequence of locally pseudoconvex algebras and for every $m, n \in \mathbb{N}$ with $m \leq n$ let

$$f_{nm}: E_m \to E_n$$

be a homomorphism such that

1) $f_{nn} = id_{E_n}$ for every $n \in \mathbb{N}$ and

2) $f_{on} = f_{om} \circ f_{mn}$ for any $m, n, o \in \mathbb{N}$ such that $n \leq m \leq o$.

The sequence of locally pseudoconvex algebras $(E_n)_{n \in \mathbb{N}}$ with the maps f_{nm} defined above is called an *inductive system of locally pseudoconvex algebras* and it is denoted by (E_n, f_{mn}) .

Let E_0 be the disjoint union of algebras E_{α} . That is,

$$E_0 = \bigcup_{n \in \mathbb{N}} \{ (a, n) : a \in E_n \}$$

Then, $x, y \in E_0$ (that is, $x = (x_0, n)$ with $x_0 \in E_n$ and $y = (y_0, m)$ with $y_0 \in E_m$ for some n and m in \mathbb{N}) are *equivalent* (in short $x \sim y$) if there exists $o \in \mathbb{N}$ such that $n \leq o, m \leq o$ and

$$f_{on}(x_0) = f_{om}(y_0).$$

The quotient set E_0/\sim is called the *inductive* (or *direct*) *limit* of the inductive system (E_n, f_{mn}) . We shall denote this by $\lim(E_n, f_{mn})$ or simply by $\lim E_n$.

For every $n \in \mathbb{N}$, let $i_n : E_n \to E_0$ be the canonical injection or natural injection (that is, $i_n(x) = (x, n)$ for each $x \in E_n$) and $\pi : E_0 \to E_0/\sim$ the quotient map. Then,

$$f_n = \pi \circ i_n : E_n \to E = \lim E_n \text{ for every } n \in \mathbb{N}$$

is the *canonical map* from E_n to E.

We endow E_0 with the *disjoint union topology* (that is, with the topology

$$\{U \subset E_0 : i_n^{-1}(U) \in \tau_n \text{ for every } n \in \mathbb{N}\},\$$

where τ_n denotes the topology of E_n . Here i_n is an open and closed continuous map. When all algebras E_n are subalgebras of some algebra E, then every i_n is an inclusion $E_n \to E$. In this case, we endow E_0 with the *coherent topology*

$$\{U \subset E_0 : U \cap E_n \in \tau_n \text{ for every } n \in \mathbb{N}\})$$

and the inductive limit E we endow with the final topology $\tau_{\underset{i}{\text{lim}E_n}}$ (the inductive limit topology), defined by the homomorphisms f_n (that is

$$\tau_{\lim E_n} = \{ U \subset E : f_n^{-1}(U) \in \tau_n \text{ for every } n \in \mathbb{N} \} \}.$$

A base of neighborhoods of zero in this topology is

 $\{O \subset E : O \text{ is balanced and } f_n^{-1}(O) \in \mathcal{N}_n \text{ for every } n \in \mathbb{N}\},\$

(in particular, when every E_n is a subalgebra of E, then

 $\{O \subset E : O \text{ is balanced and } O \cap E_n \in \mathcal{N}_n \text{ for every } n \in \mathbb{N}\}\},\$

278

where \mathcal{N}_n denotes the set of all neighborhoods of zero in E_n . Then, f_n is a continuous (open) map for every $n \in \mathbb{N}$. Since

$$E = \bigcup_{n \in \mathbb{N}} f_n(E_n)$$

and $f_m \circ f_{mn} = f_n$ when $n \leq m$ (because $i_n(x_n) \sim i_m(f_{mn}(x_n))$) we get $f_n(E_n) \subseteq f_m(E_m)$ for any $m, n \in \mathbb{N}$ with $n \leq m$.

The algebraic operations in $\lim_{n \to \infty} E_n$ are defined as usual (see [10, p. 110]): for every $x, y \in E$ (then $x \in f_n(E_n)$ and $y \in f_m(E_m)$ for some $m, n \in \mathbb{N}$) there exists $o \in \mathbb{N}$ such that $m \leq o, n \leq o, x = f_o(x_o)$ and $y = f_o(y_o)$ for some $x_o, y_o \in E_o$. So, the algebraic operations in E are defined by

$$x + y = f_o(x_o + y_o), \quad \lambda x = f_o(\lambda x_o), \quad xy = f_o(x_o y_o)$$

for every $\lambda \in \mathbb{K}$. With respect to such algebraic operations, $(E, \tau_{\lim E_n})$ is a topological algebra (see [10, p. 115]).

Since the topology $\tau_{\lim E_n}$ on E is not necessarily locally pseudoconvex, we consider on E the final locally pseudoconvex topology τ (see [2, pp. 1952–1953]) defined by the base of neighborhoods at $x \in E_n$ in the form

(1)
$$\mathcal{L}_x = \{x + U : U \text{ is absolutely pseudoconvex in } E \text{ and } f_n^{-1}(U) \in \mathcal{N}_n\}$$

where \mathcal{N}_n denotes again the set of all neighborhoods of zero in E_n . Similarly as in [10, pp. 115–116], it is easy to show that (E, τ) is a locally pseudoconvex algebra.

In this paper, we consider inductive limits of sequences $(E_n)_{n \in \mathbb{N}}$ of locally pseudoconvex algebras such that E_n is a subalgebra of E_{n+1} with continuous inclusion and the locally pseudoconvex inductive limit topology τ induces a topology coarser than the initial topology of E_n for each $n \in \mathbb{N}$.

3. On locally k-convex inductive limit of a sequence of locally k_n -convex algebras

It was shown in [4, Proposition 12] that any commutative locally convex inductive limit E of a countable family of normed algebras is locally *m*-convex. Later on, in [3, Theorem 2.1], it was shown that the commutativity of E in this result can be omitted (another proof of this fact has been given in [6, Theorem 1]). To show a similar result in the case when E is a locally pseudoconvex inductive limit of a sequence of k_n -normed algebras $(E_n, \|\cdot\|_n)$ with $k_n \in (0, 1]$ for each $n \in \mathbb{N}$, we need the next.

Lemma 3.1. Let B, C be two subsets of an algebra and $k \in (0, 1]$. Then, $\Gamma_k(B)\Gamma_k(C) \subset \Gamma_k(BC)$. In particular, if U is an idempotent set, then $\Gamma_k(U)$ is also idempotent.

Proof. Take $x \in \Gamma_k(B)$ and $y \in \Gamma_k(C)$. Then,

$$x = \sum_{n=1}^{p} a_n x_n$$
 and $y = \sum_{m=1}^{q} b_m y_m$,

where $x_1, \ldots, x_p \in B, y_1, \ldots, y_q \in C$,

$$\sum_{n=1}^{p} |a_{n}|^{k} \le 1 \text{ and } \sum_{m=1}^{q} |b_{m}|^{k} \le 1.$$

Hence

$$xy = \left(\sum_{n=1}^{p} a_n x_n\right) \left(\sum_{m=1}^{q} b_m y_m\right) = \sum_{n=1}^{p} \sum_{m=1}^{q} a_n b_m x_n y_m$$

where $x_n y_m \in BC$ and

$$\sum_{n=1}^{p} \sum_{m=1}^{q} |a_n b_m|^k = \sum_{n=1}^{p} \sum_{m=1}^{q} |a_n|^k |b_m|^k = \left(\sum_{n=1}^{p} |a_n|^k\right) \left(\sum_{m=1}^{q} |b_m|^k\right) \le 1.$$

Theorem 3.2. Let (E, τ) be a locally k-convex inductive limit of a sequence of k_n -normed algebras $(E_n, \|\cdot\|_n)$ with continuous inclusions. If $k, k_n \in (0, 1]$ and $k \leq k_n$ for each $n \in \mathbb{N}$, then (E, τ) is a locally m-(k-convex) algebra.

Proof. For any $n \in \mathbb{N}$, let $B_n = \{x \in E_n : ||x||_n \leq 1\}$ (the unit ball in E_n), and let $k \in (0, 1]$ be a number such that $k \leq k_n$ for each $n \in \mathbb{N}$. Then, B_n is an idempotent and absolutely k-convex set for each $n \in \mathbb{N}$. Indeed, if $a, b \in B_n$ and

 $\mid \lambda \mid^{k} + \mid \mu \mid^{k} \leqslant 1,$

then

$$\|\lambda a + \mu b\|_n \leqslant |\lambda|^{k_n} \|a\|_n + |\mu|^{k_n} \|b\|_n \leqslant |\lambda|^{k_n} + |\mu|^{k_n} \leqslant |\lambda|^k + |\mu|^k \leqslant 1.$$

Hence, $\lambda a + \mu b \in B_n$. Taking this into account, we can assume that every norm $\|\cdot\|_n$ is k-homogeneous otherwise, instead of $\|\cdot\|_n$, we consider the new norm

$$\|\cdot\|_n^{rac{k}{k_n}}$$

which is k-homogeneous.

Moreover, we can assume that $B_{n-1} \subseteq B_n$ for each n > 1. Otherwise, we replace k-norm $\|\cdot\|_n$ of the algebra E_n with equivalent k-norm $\|\cdot\|'_n$ such that $B'_{n-1} \subseteq B'_n$ for each n > 1 where $B'_n = \{a \in E_n : \|a\|'_n \leq 1\}$. Because the injection $E_{n-1} \to E_n$ is a continuous linear map, there exists $M_n \ge 1$ such that $\|a\|_n \leq M_n \|a\|_{n-1}$ for each $a \in E_{n-1}$ (see [5, Proposition 4.3.11], both norms here are k-homogeneous). We consider first the case when E_{n-1} and E_n have the same unit element e_n . Let $\|a\|'_1 = \|a\|_1$ (then $\|a\|_2 \leq M'_2 \|a\|'_1$ where $M'_2 = M_2$) and

$$||a||'_2 = \sup_{c \in E_2, q_2(c) \leqslant 1} q_2(ac)$$

where

$$q_2(a) = \sup_{s \in B_1'} \|sa\|_2$$

for all $a \in E_2$. Then

$$q_2(\lambda a) = |\lambda|^k q_2(a), \quad q_2(a+b) \leqslant q_2(a) + q_2(b),$$
$$\|a\|_2 \leqslant q_2(a) \leqslant \sup_{s \in B'_1} \|s\|_2 \|a\|_2 \leqslant M'_2 \|a\|_2$$

280

and

$$q_2(ab) = \sup_{s \in B'_1} \|s(ab)\|_2 \leqslant \sup_{s \in B'_1} \|sa\|_2 \|b\|_2 = q_2(a) \|b\|_2 \leqslant q_2(a)q_2(b)$$

for each $\lambda \in \mathbb{K}$ and $a, b \in E_2$. Hence, q_2 is a k-norm on E_2 which is equivalent to $\|\cdot\|_2$. Taking this into account, $\|\cdot\|'_2$ is a k-homogeneous norm on E_2 . Moreover,

$$\|ab\|_{2}' = (\|l_{ab}\|_{2})_{op} = (\|l_{a} \circ l_{b}\|_{2})_{op} \leq (\|l_{a}\|_{2})_{op} (\|l_{b}\|_{2})_{op} = \|a\|_{2}' \|b\|_{2}'$$

(here $||a||'_2$ is the operator norm $(||l_a||_2)_{op}$ of the left regular representation l_a of a on (E_2, q_2)),

$$q_2(a) = q_2(ae_2) = M'_2 q_2(a\frac{e_2}{{M'_2}^{\frac{1}{k}}}) \leqslant M'_2 \sup_{c \in E_2, q_2(c) \leqslant 1} q_2(ac) = M'_2 ||a||'_2$$

because $q_2(e_2) \leq M'_2$ and

$$\frac{1}{M_2'} \|a\|_2 \leqslant \frac{1}{M_2'} q_2(a) \leqslant \|a\|_2' \leqslant \sup_{c \in E_2, q_2(c) \leqslant 1} q_2(a) q_2(e_2c) = q_2(a) \|e_2\|_2' \leqslant M_2' \|a\|_2$$

for each $a, b \in E_2$. Since

$$||t||'_{2} = \sup_{c \in E_{2}, q_{2}(c) \leq 1} q_{2}(tc) = \sup_{c \in E_{2}, q_{2}(c) \leq 1} \sup_{s \in B'_{1}} ||(st)c||_{2} \leq \sup_{c \in E_{2}, q_{2}(c) \leq 1} q_{2}(c) = 1$$

for each $t \in B'_1$ (because $B'_1 = B_1$ and $B_1 t \subset B_1$), then $\|\cdot\|'_2$ is a k-norm on E_2 , which is equivalent to $\|\cdot\|_2$, and satisfies the condition $B'_1 \subseteq B'_2$.

The norm $\|\cdot\|'_3$ we define similarly, that is, we put

$$||a||'_3 = \sup_{c \in E_3, q_3(c) \le 1} q_3(ac)$$

where

$$q_3(a) = \sup_{s \in B'_2} \|sa\|_3$$

for all $a \in E_3$. Now, similarly as above, we have $||a||_3 \leq M'_3 ||a||'_2$ for $M'_3 = M_3 M_2$, $\frac{1}{M'_3} ||a||_3 \leq ||a||'_3 \leq M'_3 ||a||_3$ for each $a \in E_3$ and $||a||'_3 \leq 1$ for each $a \in B'_2$. Hence, $B'_2 \subseteq B'_3$. Continuing in the same way, for every fixed $n \geq 4$ we define

$$||a||'_n = \sup_{c \in E_n, q_n(c) \leq 1} q_n(ac)$$

where

$$q_n(a) = \sup_{s \in B'_{n-1}} \|sa\|_n$$

for all $a \in E_n$ and show that $B'_{n-1} \subseteq B'_n$.

Let now E_{n-1} and E_n be arbitrary k-normed algebras. Instead of these algebras, we consider direct products $E_{n-1} \times \mathbb{K}$ and $E_n \times \mathbb{K}$ which are k-normed algebras with respect to the algebraic operations (similarly as in case of the unitization) and norm $||(a, \lambda)||_k = ||a||_k + |\lambda|$ for each $(a, \lambda) \in E_k \times \mathbb{K}$ (here k is n-1 or n). Then $E_{n-1} \times \mathbb{K}$ and $E_n \times \mathbb{K}$ have the same unit element $(\theta, 1)$, where θ is the zero element in E_{n-1} and E_n . Moreover, $E_{n-1} \times \mathbb{K}$ is a subalgebra of $E_n \times \mathbb{K}$. Hence, there are equivalent k-norms $||(\cdot, \cdot)||'_{n-1}$ and $||(\cdot, \cdot)||'_n$ such that $||(a, \lambda)||'_n \leq ||(a, \lambda)||'_{n-1}$ if $||(a, \lambda)||'_{n-1} \leq 1$. Thus

$$||a||'_{n} = ||(a,0)||'_{n} \leq ||(a,0)||'_{n-1} = ||a||'_{n-1}$$

for each $a \in B'_{n-1}$. Hence, $B'_{n-1} \subseteq B'_n$ for each fixed n > 1. Consequently, we can assume that

$$B_1 \subseteq B_2 \subseteq \cdots \subseteq B_n \subseteq \cdots$$

Since B_1 is bounded in B_2 (because $||a||_2 \leq M_2 ||a||_1$ for each $a \in E_1$) and B_2 is a neighborhood of zero in E_2 , then there is a number $t_1 \geq 1$ such that $B_1 \subset t_1 B_2$. We put $B'_1 = B_1$ and

$$B'_{n} = \Gamma_{k} \left(I \left(B_{n-1} \bigcup \frac{1}{t_{n-1}} B_{n} \right) \right) = \Gamma_{k} \left(\bigcup_{j \in \mathbb{N}} \left(B_{n-1} \bigcup \frac{1}{t_{n-1}} B_{n} \right)^{j} \right)$$

for n > 1, where I(U) is the idempotent hull (see [8, pp. 26 and 27]) of $U \subset E$. Then, B'_2 is an idempotent (by Lemma 3.1) and absolutely k-convex set. Because

$$B_1 \cup \frac{1}{t_1} B_2 \subset B_2 \subset B_2 \cup \frac{1}{t_2} B_3,$$

then $B'_2 \subset B'_3$ (it is clear that $I(U) \subset I(V)$ and $\Gamma_k(U) \subset \Gamma_k(V)$ if $U \subset V$). Since

$$\frac{1}{t_1}B_2 \subset \left(B_1 \cup \frac{1}{t_1}B_2\right) \subseteq I\left(B_1 \cup \frac{1}{t_1}B_2\right) \subseteq \Gamma_k\left(I\left(B_1 \cup \frac{1}{t_1}B_2\right)\right) = B_2',$$

then, continuing in the same way, we have an increasing sequence $\{B'_n : n \ge 2\}$ of idempotent and absolutely k-convex sets B'_n such that

(2)
$$\frac{1}{t_{n-1}}B_n \subset B'_n$$

Moreover, $B'_2 \subset t_1B_2$. Indeed, for $x \in \frac{1}{t_1} \bigcup_{j \in \mathbb{N}} (B_1 \cup \frac{1}{t_1}B_2)^j$ we have $t_1x \in (B_1 \cup \frac{1}{t_1}B_2)^{j_0}$ for some $j_0 \in \mathbb{N}$. Hence there is an element $y \in B_1 \cup \frac{1}{t_1}B_2$ such that $t_1x = y^{j_0}$. If $y \in B_1$, then from $t_1x \in B_1^{j_0} \subset B_1 \subset t_1B_2$ follows that $x \in B_2$, otherwise $y \in \frac{1}{t_1}B_2$. Then, from $t_1x \in \frac{1}{t_1^{j_0}}B_2^{j_0} \subset \frac{1}{t_1^{j_0}}B_2$ follows that $x \in \frac{1}{t_1^{j_0+1}}B_2 \subset B_2$ provided that B_2 is balanced. Arguing similarly, we have

$$(3) B'_n \subset t_{n-1}B_n$$

where $t_n \ge 1$ for each $n \in \mathbb{N}$. Thus,

$$\frac{1}{t_{n-1}}B_n \subset B'_n \subset t_{n-1}B_n$$

for all $n \in \mathbb{N}$.

Now, we shall prove that

$$\mathcal{L}_{\theta} = \{ \Gamma_k(\bigcup_{n \in \mathbb{N}} \varepsilon_n B'_n) : \varepsilon_n \in (0, 1] \}$$

is a base of neighborhoods of zero in E which consists of idempotent absolutely k-convex sets. Clearly, every element of \mathcal{L}_{θ} is absolutely k-convex, to prove that every element $V = \Gamma_k(\bigcup_{n \in \mathbb{N}} \varepsilon_n B'_n)$ in \mathcal{L}_{θ} is idempotent, we consider $x, y \in \bigcup_{n \in \mathbb{N}} \varepsilon_n B'_n$. Then, $x \in \varepsilon_n B'_n$ and $y \in \varepsilon'_m B'_m$ for some $m, n \in \mathbb{N}$. If $B'_n \subseteq B'_m$ (the case $B'_n \supset B'_m$ is similar), then

$$xy \in \varepsilon_n B'_m \varepsilon'_m B'_m \subseteq \varepsilon_n \varepsilon'_m B'_m B'_m \subseteq \varepsilon_n B'_m \subset \bigcup_{n \in \mathbb{N}} \varepsilon_n B'_n,$$

that is, $\bigcup_{n \in \mathbb{N}} \varepsilon_n B'_n$ is idempotent and hence V is idempotent by Lemma 3.1.

To show that \mathcal{L}_{θ} is a base of neighborhoods of zero for some topology τ' on E, we show that \mathcal{L}_{θ} satisfies the following conditions:

1) if $V \in \mathcal{L}_{\theta}$, then the zero element $\theta \in V$;

2) if $V_1, V_2 \in \mathcal{L}_{\theta}$, then there exists a set $V_3 \in \mathcal{L}_{\theta}$ such that $V_3 \subset V_1 \cap V_2$;

3) if $V \in \mathcal{L}_{\theta}$, then there exists a set $V_0 \in \mathcal{L}_{\theta}$ and for every $y \in V_0$ a set $W = y + V_0$ such that $W \subset V$.

Clearly 1) holds. To show that 2) holds, we put $V_1 = \Gamma_k(\bigcup_{n \in \mathbb{N}} \varepsilon_n B'_n)$, $V_2 = \Gamma_k(\bigcup_{n \in \mathbb{N}} \varepsilon'_n B'_n)$ and $\varepsilon''_n = \inf \{\varepsilon_n, \varepsilon'_n\}$ for every $n \in \mathbb{N}$. Since $\frac{\varepsilon''_n}{\varepsilon_n} \leq 1$ and $\frac{\varepsilon''_n}{\varepsilon'} \leq 1$, then

$$\varepsilon_n''B_n' \subseteq \varepsilon_n B_n', \quad \varepsilon_n''B_n' \subseteq \varepsilon_n'B_n'$$

and hence

$$\varepsilon_n''B_n' \subset (\bigcup_{n\in\mathbb{N}}\varepsilon_nB_n')\cap (\bigcup_{n\in\mathbb{N}}\varepsilon_n'B_n')\subset V_1\cap V_2$$

for every $n \in \mathbb{N}$. Thus, we can put

$$V_3 = \Gamma_k(\bigcup_{n \in \mathbb{N}} \varepsilon_n'' B_n').$$

Then,

$$V_3 \subset \Gamma_k(V_1 \cap V_2) \subset \Gamma_k(V_1) \cap \Gamma_k(V_2) = V_1 \cap V_2.$$

3) If $V \in \mathcal{L}_{\theta}$, then

$$V = \Gamma_k(\bigcup_{n \in \mathbb{N}} \varepsilon_n B'_n)$$

for some sequence (ε_n) , where $\varepsilon_n \in (0,1]$ for each $n \in \mathbb{N}$. Since V is k-convex, $2^{-\frac{1}{k}}V + 2^{-\frac{1}{k}}V \subset V$. Moreover, $2^{-\frac{1}{k}}V \in \mathcal{L}_{\theta}$ since $2^{-\frac{1}{k}}V = \Gamma_k(\bigcup_{n\in\mathbb{N}}2^{-\frac{1}{k}}\varepsilon_n B'_n)$, where $2^{-\frac{1}{k}}\varepsilon_n \in (0,1]$ for every $n \in \mathbb{N}$. Thus $V_0 = 2^{-\frac{1}{k}}V \in \mathcal{L}_{\theta}$ and $W = y + V_0 \subset V$ for every $y \in V_0$. Consequently, by Theorem 4.5 from [14], \mathcal{L}_{θ} is a base of neighborhoods of zero for a locally m-(k-convex) topology τ' on E.

Claim that $\tau = \tau'$. For it, let O be a neighborhood of zero in the topology τ' . Then, there exists a neighborhood U of zero such that

$$U = \Gamma_k \big(\bigcup_{n \in \mathbb{N}} \varepsilon_n B'_n\big)$$

for some sequence (ε_n) , where $\varepsilon_n \in (0,1]$ for each $n \in \mathbb{N}$, and $U \subseteq O$. Take $n_0 \in \mathbb{N}$ and let $f_{n_0} : E_{n_0} \to E$ be the canonical map $(f_{n_0}$ is the inclusion). Since

 $\frac{1}{t_{n_0-1}}B_{n_0} \subset B'_{n_0}$ by (2), then

$$f_{n_0}^{-1}(U) = \Gamma_k(\bigcup_{n \in \mathbb{N}} \varepsilon_n B'_n) \cap E_{n_0} \supset \varepsilon_{n_0} B'_{n_0} \supset \frac{\varepsilon_{n_0}}{t_{n_0-1}} B_{n_0},$$

where $\frac{\varepsilon_{n_0}}{t_{n_0-1}}B_{n_0}$ is a neighborhood of zero in E_{n_0} . Thus, $f_n^{-1}(U)$ is a neighborhood of zero in E_n for every $n \in \mathbb{N}$. Hence, by (1), U is a neighborhood of zero in E in the topology τ . Thus $\tau' \subseteq \tau$.

To prove that $\tau \subseteq \tau'$, let U be a neighborhood of zero in the topology τ . Then, there is in E an absolutely k-convex neighborhood V of zero such that $V \subset U$ and $f_n^{-1}(V) = V \cap E_n$ is a neighborhood of zero in E_n for every $n \in \mathbb{N}$. Since $\{\varepsilon_n B_n : \varepsilon_n > 0\}$ is a base of neighborhoods of zero in (E_n, τ_n) (see [12, p. 14]), then $\varepsilon_n B_n \subset E_n \cap V \subset V$ for some $\varepsilon_n < 1$. As it has been shown in (3), $B'_n \subset t_{n-1}B_n$ with $t_{n-1} \ge 1$. Therefore $\frac{\varepsilon_n}{t_{n-1}}B'_n \subset V$, where $\frac{\varepsilon_n}{t_{n-1}} \in (0, 1]$ for every n. Hence, from

$$\bigcup_{n\in\mathbb{N}}\frac{\varepsilon_n}{t_{n-1}}B_n'\subset V$$

it follows

$$\Gamma_k \Big(\bigcup_{n \in \mathbb{N}} \frac{\varepsilon_n}{t_{n-1}} B'_n \Big) \subset \Gamma_k(V) = V \subset U.$$

Hence, $\tau \subseteq \tau'$. It means that $\tau = \tau'$.

Corollary 3.3. Locally k-convex inductive limit of a sequence of locally k-normed algebras with continuous inclusions is a locally m-(k-convex) algebra for every $k \in (0, 1]$.

4. Locally pseudoconvex inductive limit of locally *m*-pseudoconvex algebras

It is known that the inductive limit of locally *m*-convex algebras is not necessarily a locally *m*-convex algebra (see the example in [6]). It was shown in [7, Theorem, p. 150] that the locally convex inductive limit E of a sequence of commutative locally *m*-convex algebras is a locally *m*-convex algebra if the multiplication in E is jointly continuous. Next we prove an analogous result for the case of locally pseudoconvex inductive limit of a sequence of commutative locally *m*-pseudoconvex algebras.

Theorem 4.1. Let E be a locally pseudoconvex inductive limit of a sequence of commutative locally m-pseudoconvex algebras E_n with continuous inclusions. If the multiplication is jointly continuous in E, then E is a commutative locally m-pseudoconvex algebra.

Proof. Let U be a neighborhood of zero in E. Then, there is a neighborhood $V_1 \subset U$ of zero such that $\Gamma_k(V_1) = V_1$ for some $k \in (0, 1]$. By the jointly continuity of multiplication in E, there exists a neighborhood O_1 of zero such that $O_1O_1 \subset V_1$. Now we put $V_2 = O_1 \cap V_1$. Then, by the jointly continuity

284

of multiplication, there exists a neighborhood O_2 of zero such that $O_2O_2 \subset V_2$. Inductively we define $V_{v+1} = O_v \cap V_v$ for each $v \ge 1$. Since,

$$V_1 \supset V_2 \supset \ldots \supset V_v \supset \ldots,$$

then $V_v \subset U$ for every $v \in \mathbb{N}$.

Since the canonical map (the inclusion) $f_n : E_n \to E$ is continuous for every $n \in \mathbb{N}$, there exists for every $v \in \mathbb{N}$ an *m*-pseudoconvex neighborhood $V_{n,v}$ of zero in E_n such that $V_{n,v} \subset V_v$. Now, for every $n \in \mathbb{N}$, we put $V'_{n,1} = V_{n,1}$ and

(4)
$$V'_{n,v+1} = V'_{n,v} \cap V_{n,v+1}$$

for $v \ge 1$. Then,

(5)
$$V'_{n,v+1} \subset V'_{n,v}$$
 for all $n, v \in \mathbb{N}$

and $(V'_{n,v})$ is a sequence of idempotent neighborhoods of zero in E_n (since $V_{n,v}$ is an idempotent neighborhood of zero in E_n) for all $n, v \in \mathbb{N}$.

Let $n_0 \in \mathbb{N}$ and $1 \leq p < n_0$ be fixed. We define a new sequence $(V''_{n,v})$ of idempotent neighborhoods of zero in E_n as follows: we put $V''_{p,1} = V_{p,1}$ and for $v \geq 1$ put

(6)
$$V''_{p,v+1} = V'_{n_0,v+1} \cap V''_{p,v}$$

and

$$V_{n,v}'' = V_{n,v}'$$
 for $n \ge n_0$ and $v \in \mathbb{N}$.

So, by definition of $(V''_{n,v})$, (4), (5) and (6), we have that

(7)
$$V_{n,v+1}'' \subseteq V_{n,v}'' \text{ for all } v, n \in \mathbb{N}$$

and from

$$V_{n_0,s}''V_{p,q}'' \subset V_{n_0,s}''V_{p,s}'' \subset V_{n_0,s}'V_{n_0,s}' \subset V_{n_0,s} \subset V_{n_0,s} \subset V_s \subset V_1$$

it follows that

(8)
$$V_{n_0,s}''V_{p,q}'' \subset V_{n_0,s}'' \subset V_1$$

for every natural number p with $p \leq n_0$ and every natural numbers s and q with $s \leq q$.

For any numbers $v(1), \ldots, v(r) \in \mathbb{N}$ with $1 = v(0) < v(1) < v(2) < \ldots < v(r)$ and $n(1), \ldots, n(r+1) \in \mathbb{N}$ (arbitrary r+1 (not necessarily different and ordered) numbers) we show by induction on $r \in \mathbb{N}$ that

(9)
$$V''_{n(1),1}V''_{n(2),v(1)}\cdots V''_{n(r+1),v(r)} \subset V_1$$

For r = 1, (9) holds by (8) (if n(2) > n(1), we can rename these numbers).

Now, we suppose that (9) is true for r-1 and prove that (9) is true for r too. Again, we can assume that $n(r) \ge n(r+1)$ (otherwise we can rename the numbers). Then, using also (8), we get

$$(V_{n(1),1}''V_{n(2),v(1)}''\cdots V_{n(r-1),v(r-2)}'')V_{n(r),v(r-1)}''V_{n(r+1),v(r)}'' \subset (V_{n(1),1}'V_{n(2),v(1)}''\cdots V_{n(r-1),v(r-2)}'')V_{n(r),v(r-1)}''$$

and by the induction hypothesis, we get the assertion.

Now, we put $W_n = V_{n,n}^{\prime\prime}$. Then, using (7)

$$W_{v(r)} = V_{v(r),v(r)}'' \subset V_{v(r),v(r)-1}'' \subset V_{v(r),v(r-1)}''$$

for each $r \in \mathbb{N}$. Therefore

(10)
$$W_{v(1)}W_{v(2)}\cdots W_{v(r)} \subset V_{v(1),1}'' V_{v(2),v(1)}'' \cdots V_{v(r),v(r-1)}'' \subset V_1$$

by (9) (which holds for any choice of r + 1 natural numbers $n(1), \ldots, n(r)$ and n(r+1)).

Take $m(1), \ldots, m(s) \in \mathbb{N}$ (arbitrary fixed not necessarily different s natural numbers). We can find $r \leq s$ natural numbers $v(1), \ldots v(r)$ such that

 $1 < v(1) < v(2) < \ldots < v(r)$

and the set

$$\{m(1), \dots, m(s)\} = \{v(1), \dots, v(r)\}$$

By commutativity of E_n and idempotency of W_n , we have

$$W_{m(1)}\cdots W_{m(s)} = \prod_{i=1}^{r} W_{v(i)}^{|j:m(j)=v(i)|} \subset \prod_{i=1}^{r} W_{v(i)} \subset V_{1}$$

for every $r \in \mathbb{N}$, see also (10). Put

$$W := \bigcup_{s \in \mathbb{N}} \left(\bigcup_{(m(1), \dots, m(s)) \in \mathbb{N}^s} W_{m(1)} \cdots W_{m(s)} \right).$$

Then, W is an idempotent subset of V_1 . Indeed, if $x, y \in W$, then

$$x \in \bigcup W_{m(1)} \cdots W_{m(s_0)},$$

where the union is taken over all $(m(1), \ldots, m(s_0)) \in \mathbb{N}^{s_0}$ and

$$y \in \bigcup W_{m(1)} \cdots W_{m(s_1)},$$

where the union is taken over all $(m(1), \ldots, m(s_1)) \in \mathbb{N}^{s_1}$ for some s_0 and s_1 . Therefore,

$$x \in W_{m'(1)} \cdots W_{m'(s_0)}$$
 and $y \in W_{m''(1)} \cdots W_{m''(s_1)}$
for some $(m'(1), \ldots, m'(s_0)) \in \mathbb{N}^{s_0}$ and $(m''(1), \ldots, m''(s_1)) \in \mathbb{N}^{s_1}$. Thus,

$$xy \in W_{m'(1)} \cdots W_{m'(s_0)} W_{m''(1)} \cdots W_{m''(s_1)} \subset$$

$$\bigcup W_{m(1)}\cdots W_{m(s_0+s_1)} \subset W,$$

where the union is taken over all $(m(1), \ldots, m(s_0 + s_1)) \in \mathbb{N}^{s_0 + s_1}$. By Lemma 3.1, the absolutely k-convex hull of any idempotent set is idempotent and k-convex. So,

 $W' := \Gamma_k(W) \subset \Gamma_k(V_1) = V_1 \subset U$

is an m-(k-convex) subset of U. Since

$$W' \cap E_n = \Gamma_k(W) \cap E_n \supset W \cap E_n \supset W_n = V_{n,m}''$$

for each $n \in \mathbb{N}$ and $V_{n,n}''$ is an neighborhood of zero in E_n , then W' in E is an absolutely m-(k-convex) neighborhood of zero.

Thus, E is a commutative locally *m*-pseudoconvex algebra in the locally pseudoconvex inductive limit topology on E.

A topological algebra is *locally idempotent* if it has a base of idempotent neighborhoods of zero (see [1, p. 196]). Hence, every locally *m*-pseudoconvex (in particular, locally *m*-convex) algebra is a locally idempotent algebra.

Theorem 4.2. Let E be a topological inductive limit of a sequence of commutative locally idempotent algebras E_n with continuous inclusions. If the multiplication is jointly continuous in E, then E is a commutative locally idempotent algebra.

Proof. The proof is similar that of Theorem 2.

Acknowledgement. Research is in part supported by institutional research funding IUT20-57 of the Estonian Ministry of Education and Research, by the European Union through the European Social Fund (MOBILITAS grant No. MJD247) and by Consejo Nacional de Ciencia y Tecnología (CONACyT), Meéxico.

The authors would like to thank the referee for careful reading of the manuscript and for really useful remarks.

References

- M. Abel, Structure of locally idempotent algebras, Banach J. Math. Anal. 1 (2007), no. 2, 195–207.
- M. Abel and R.M. Pérez-Tiscareño, Locally pseudoconvex inductive limit of topological algebras, Mediterr. J. Math. 4 (2013), no. 10, 1949–1963.
- M. Akkar and C. Nacir, Structure m-convexe d'une algèbre limite inductive localement convexe d'algèbres de Banach, Rend. Sem. Mat. Univ. Padova 95 (1996), 107–126.
- A. Arosio, Locally convex inductive limits of normed algebras, Rend. Sem. Mat. Univ. Padova 51 (1974), 333–359.
- V.K. Balachandran, *Topological Algebras*, North-Holland Math. Studies 185, Elsevier, Amsterdam, 2000.
- S. Dierolf and J. Wengenroth, *Inductive limits of topological algebras*, Linear Topol. Spaces Complex Anal. 3 (1997), 45–49.
- T. Heintz and J. Wengenroth, *Inductive limits of locally m-convex algebras*, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), no. 1, 149–152.
- H. Hogbe-Nlend, Les fondements de la théorie spectrale des algèbres bornologiques, Bol. Soc. Brasi. Mat. 3 (1972), 19–56.
- 9. G. Köthe, Topological vector spaces I, Springer-Verlag, Berlin, Heiderberg, 1969.
- 10. A. Mallios, Topological Algebras. Selected Topics, North-Holland, Amsterdam, 1986.
- E.A. Michael, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc. 1952 (1952). no. 11, 79 pp.
- 12. M.P. Turpin, Sur une classe d'algebres topologiques generalisant les algebres localement bornees, Ph. D. Thesis, Faculty of sciences, University of Grenoble, 1966.
- L. Waelbroeck, *Topological vector spaces and algebras*, Lecture Notes in Math. 230, Springer-Verlag, Berlin, New York, 1971.
- S. Willard, *General Topology*, Addison-Wesley Publ. Co., Reading, Mass.-London-Don Mills, Ont., 1970.

¹ Institute of Mathematics, University of Tartu, 2 J. Liivi Str., room 614, 50409 Tartu, Estonia.

E-mail address: mati.abel@ut.ee

 2 Departament of Mathematics, Autonomous Metropolitan University (UAM) Iztapalapa (Ixtapalapa) Campus, Av San Rafael Atlixco No.186 Col.Vicentina, room AT-242, 09340 Mexico DF, Mexico.

E-mail address: reynapt@xanum.uam.mx