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Abstract. We obtain the estimate of the Lebesgue measure of the spectrum
for the direct integral of matrix-valued functions. These estimates are appli-
cable for a wide class of discrete periodic operators. For example these results
give new and sharp spectral bounds for 1D periodic Jacobi matrices and 2D
discrete periodic Schrodinger operators.

1. Introduction

The direct integral plays important role in the theory of periodic operators
of mathematical physics [6]. For example the Schrodinger operator, the discrete
approximations of elastic wave equations, etc. are unitarily equivalent to the
direct integrals of some analytic families of finite matrices. So the spectrum of
discrete periodic operators coincides with the spectrum of corresponding direct
integrals. The main goal of this paper is to provide simple and efficient estimates
of the total measure of spectra for such direct integrals. In particular, the spectral
estimates for Jacobi matrices in terms of its components, presented in this paper
improve well-known estimates obtained by different way (by using monodromy
matrix approach and special polynomials).

We start from some well-known definitions, see e.g. [6]. Let K be a compact
metric space with a regular Borel measure µ, which satisfies 0 < µ(G) < +∞
for any open subset G ⊂ K. Define the Hilbert space L2

N = ⊕N
n=1L

2(K) of all
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quadratic-summable vector-valued functions f : K → CN . Let A : L2
N → L2

N be
some bounded self-adjoint operator given by

A(f)(k) = A(k)f(k), ∀k ∈ K, (1.1)

where A : K → CN×N is some continuous matrix-valued function. The matrices
A(k) are self-adjoint with dimension N ×N for any k ∈ K. It is well known (see
e.g. [6]) that the spectrum of the operator A consists of spectra of A(k)

σ(A) =
⋃
k∈K

σ(A(k)).

Denoting eigenvalues of A(k) as λ1(k) 6 · · · 6 λN(k) we obtain

σ(A) =
N⋃

n=1

λn(K). (1.2)

Note that all λn : K → R are continuous functions, since A is a continuous
function on K. Our goal is to obtain estimates of the Lebesgue measure of the
spectrum mes(σ(A)) in terms of A(k), but without calculating eigenvalues λn(k).
Simple estimate immediately gives us

mes(σ(A)) 6 2‖A‖ = 2 max
k∈K

‖A(k)‖, (1.3)

but usually this estimate is not very accurate. For example if A(k) = A0 = const,
k ∈ K then (1.3) gives us mes(σ(A)) 6 2‖A0‖ but in fact mes(σ(A)) = 0.

We restrict our consideration to the case in which the matrices A(k) are of the
form

A(k) =
M∑

j=1

(ϕj(k)Aj + ϕj(k)A∗
j), (1.4)

where ∗ denotes hermitian conjugate, z denotes complex conjugate, Am are con-
stant matrices (not necessarily self-adjoint) and ϕm : K → C are some continuous
functions. For any subset S ⊂ C we denote

diam(S) = sup{|z1 − z2|, z1, z2 ∈ S}.

Theorem 1.1. For the operator A (1.1) with A(k) satisfied (1.4) the following
estimate for the Lebesgue measure of the spectrum is fulfilled

mes(σ(A)) 6 2
M∑

j=1

diam(ϕj(K)) Tr(A∗
jAj)

1
2 . (1.5)

This Theorem can be extended to the case of ”piecewise” continuous functions
ϕm. The bound (1.5) can be improved when some terms in (1.4) have overlapping
spectra. To find absolute gap in the spectrum of A we can apply estimates of
spectral curves λ−n 6 λn(k) 6 λ+

n (2.4), where λ±n do not depend on k.
Usually, the discrete Schrödinger operators on periodic graphs are unitarily

equivalent to the direct integrals of matrices A(k) of the form (1.4). This allows
us to obtain efficient bounds of the total length of the spectral bands of such
operators. Now we consider some of the most common discrete periodic operators.



ESTIMATES OF LENGTH OF SPECTRUM 3

1D Jacobi matrices with matrix valued periodic coefficients. Consider
1D periodic Jacobi matrix J : `2

m(Z) → `2
m(Z) given by

J y = a∗n−1yn−1 + bnyn + anyn+1, yn ∈ Cm, (1.6)

where matrices an, bn ∈ Cm×m satisfy

an+p = an, bn+p = bn, bn = b∗n, for all n ∈ Z

for some period p ∈ N. This operator is unitarily equivalent to A (3.1). Applying
Theorem 1.1 we obtain

Theorem 1.2. The following estimate is fulfilled

mes(σ(J )) 6 4 min
n

Tr(a∗nan)
1
2 . (1.7)

For m = 1 (1.7) improves the well known estimate from [1] (and [5] for the
almost periodic case)

mes(σ(J )) 6 4|a1 · · · ap|
1
p . (1.8)

For example if p > 1 and all an = T except one an0 = 1 inside the period, then

(1.7) gives mes(σ(J )) 6 1 while (1.8) gives mes(σ(J )) 6 T
p−1

p →∞ for T →∞.
For m > 1 we are unaware of existence in the literature of any estimates similar

to (1.7). Moreover, estimate (1.7) is sharp. In particular, inequality (3.2) becomes
the equality in the case of an = Im (identity matrix) and bn = diag(4k)m

1 for all
n (see example below (3.2)).

2D discrete periodic Schrodinger operator. Consider the operator

J1yn,m = yn,m−1 + yn,m+1 + yn−1,m + yn+1,m + qn,myn,m, n, m ∈ Z

with N, M -periodic sequence qn,m, i.e.

qn+N,m+M = qn,m ∈ R for all n, m ∈ Z.

The operator J1 is unitarily equivalent to the multiplication by the matrix J1(k1, k2)
(4.3). Applying Theorem 1.1 to this case leads to

Theorem 1.3. For any N, M-periodic sequence qn,m ∈ R the following estimate
is fulfilled

mes(σ(J1)) 6 4(N + M). (1.9)

For N = M = 1 (1.9) reaches equality in the case of qn,m = const.
For arbitrary periods N, M we construct the example (5.1) with |σ(J1)| ≈

4 max(N, M), which is 2 times worse than (1.9). This example shows us that the
power of N, M in (1.9) is precisely 1 but common factor equal to 4 in (1.9) may
probably be reduced. For the moment, it can only be claimed that the exact
value of this common factor lies between 2 and 4.

2. Proof of Theorem 1.1

For self-adjoint matrices B, C we will write B 6 C iff C − B is a positive-
semidefinite matrix, i.e. x∗(C − B)x > 0 for all x ∈ CN . Also we denote

|B| = (B∗B)
1
2 (see [7]). The matrix |B| is positive-semidefinite and self-adjoint.
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Lemma 2.1. For any complex matrix B the following inequalities are fulfilled

−|B| − |B∗| 6 B + B∗ 6 |B|+ |B∗|. (2.1)

Proof. There exists unitary matrix U (U−1 = U∗) which satisfies B = U |B| (polar
decomposition). Then B∗ = |B|U∗ and |B∗| = U |B|U∗. For any x, y ∈ CN we
denote (x, y)1 ≡ x∗|B|y, which is a Hermitian form. Note that (y, y)1 > 0 for any
y ∈ CN . Substituting y = U∗x + x, x ∈ CN into (y, y)1 > 0 we obtain

0 6 (U∗x + x, U∗x + x)1 = (U∗x, U∗x)1 + (x, x)1 + (U∗x, x)1 + (x, U∗x)1 =

x∗U |B|U∗x + x∗|B|x + x∗U |B|x + x∗|B|U∗x = x∗(|B∗|+ |B|+ B + B∗)x,

which gives us the first inequality in (2.1). Analogously substituting y = U∗x−x,
x ∈ CN into (y, y)1 > 0 we obtain the second inequality in (2.1). �

Proof of Theorem 1.1. There exist points sj ∈ C, j = 1, · · · , M for which

1

2
diam(ϕj(K)) = max{|s− sj|, s ∈ ϕj(K)}. (2.2)

Denote

B0 =
M∑

j=1

(sjAj + sjA
∗
j).

Using (2.1) and (2.2) we deduce that

A(k)−B0 =
M∑

j=1

((ϕj(k)− sj)Aj + (ϕj(k)− sj)A
∗
j) 6

M∑
j=1

|ϕj(k)− sj|(|Aj|+ |A∗
j |) 6

1

2

M∑
j=1

diam(ϕj(K))(|Aj|+ |A∗
j |) ≡ B1 (2.3)

and analogously −B1 6 A(k)−B0. Then we obtain two-sided inequalities

B0 −B1 6 A(k) 6 B0 + B1,

where B0, B1 do not depend on k. Thus for eigenvalues of A(k) (see above (1.2))
we deduce that

λ−n 6 λn(k) 6 λ+
n , (2.4)

where λ±1 6 · · · 6 λ±N are eigenvalues of B0±B1 respectively. Identity (1.2) gives
us

σ(A) =
N⋃

n=1

λn(K) ⊂
N⋃

n=1

[λ−n , λ+
n ].

Since λ±n do not depend on k, we obtain

mes(σ(A)) 6
N∑

n=1

(λ+
n − λ−n ) = Tr(B0 + B1)− Tr(B0 −B1) = 2 Tr B1. (2.5)

Combining (2.5) with the definition of B1 (2.3) and with the identity Tr |C| =
Tr |C∗| for any complex matrix C gives us (1.5).
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3. Proof of Theorem 1.2

The operator J (1.6) is unitarily equivalent to the operator A : L2
mp → L2

mp

(see e.g. [3], [4]), where L2
mp = ⊕mp

n=1L
2[0, 2π] and

A(f)(k) = A(k)f(k), f ∈ L2
mN , A(k) =


b1 a1 0 · · · e−ika∗0
a∗1 b2 a2 · · · 0
0 a∗2 b3 · · · 0
· · · · · · · · · · · · · · ·

eika0 0 0 · · · bN

 .

(3.1)
Then A(k) = A0 +ϕ0(k)B0 +ϕ0(k)B∗

0 , where ϕ0 = eik and constant matrices A0,
B0 are given by

A0 =


b1 a1 0 · · · 0
a∗1 b2 a2 · · · 0
0 a∗2 b3 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · bN

 , B0 =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
· · · · · · · · · · · · · · ·
a0 0 0 · · · 0

 .

Applying Theorem 1.1 to this case we deduce that

mes(σ(A)) 6 2diam(ϕ0([0, 2π])) Tr(B∗
0B0)

1
2 = 4 Tr(a∗0a0)

1
2 .

Since we may shift sequences an, bn, it follows that any element an may be chosen
instead of a0 and thus we obtain

mes(σ(J )) = mes(σ(A)) 6 4 min
n

Tr(a∗nan)
1
2 , (3.2)

which coincides with (1.7) in Theorem 1.2. Estimate (3.2) is sharp. Let J be
the Jacobi matrix with elements an = Im (m × m identity matrix) and bn =
diag(4k)m

k=1 for any n. Since all an and bn are diagonal matrices, J is unitarily
equivalent to the direct sum of scalar Jacobi operators. In our case this is the
direct sum of shifted discrete Shrödinger operators ⊕m

k=1(J
0 +4kI) (J0 is a scalar

Jacobi matrix with a0
n = 1, b0

n = 0 and I is an identity operator). Then

σ(J) =
m⋃

k=1

σ(J0 + 4kI) =
m⋃

k=1

[−2 + 4k, 2 + 4k] = [2, 2 + 4m],

which gives us mes(σ(J)) = 4m = 4 Tr(ana
∗
n)

1
2 .

Remark. Now we restrict the operator A on some interval [α, β] ⊂ [0, π], i.e.
consider Aαβ : ⊕mN

n=1L
2[α, β] → ⊕mN

n=1L
2[α, β] given by (3.1). Then Theorem 1.1

gives us

mes(σ(Aαβ)) 6 4 sin
β − α

2
min

n
Tr(a∗nan)

1
2 ,

since diam(ϕ0([α, β])) = 2 sin β−α
2

.
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4. Proof of the Theorem 1.3

Introduce the following self-adjoint N ×N matrices

S(k1) =


0 0 · · · e−2πik1

0 0 · · · 0
· · · · · · · · · · · ·

e2πik1 0 · · · 0

 , Am =


q1,m 1 · · · 0
1 q2,m · · · 0
· · · · · · · · · · · ·
0 0 · · · qN,m

 , k1 ∈ R,

(4.1)
where the matrix S contains two non-zero components and A is a tridiagonal
matrix. Also introduce the following self-adjoint NM ×NM matrices

R(k2) =


0 0 · · · e−2πik2I
0 0 · · · 0
· · · · · · · · · · · ·

e2πik2I 0 · · · 0

 , B =


A1 I · · · 0
I A2 · · · 0
· · · · · · · · · · · ·
0 0 · · · AM

 , k2 ∈ R,

(4.2)

C(k1) = diag(S(k1))
M
1 , J1(k1, k2) = B + C(k1) + R(k2). (4.3)

We apply the standard scheme of rewriting periodic operator into the direct
integral of operators with the discrete spectrum (see e.g. [6], XIII.16, p.279).
Define the following unitary operator

U : `2(Z2) →
⊕∫

k1,k2∈[0,1]

CNMdk1dk2, U(un,m) = (vn,m(k1, k2))
N,M
1,1 ,

where

vn,m(k1, k2) =
∑

n1,m1∈Z

exp(2πi(n1k1 + m1k2))un+n1N,m+m1M .

It can be shown that the operator J1 : `2(Z2) → `2(Z2) (1.1) is unitarily equiva-
lent to the operator of multiplying by the matrix J(k1, k2)

UJ1U−1v = J1(k1, k2)v, ∀v = (vn,m(k1, k2))
N,M
1,1 .

By the analogy with the Proof of Theorem 1.2, applying the Theorem 1.1 to the
operator of multiplication by the matrix J1(k1, k2) (see (4.1)-(4.3)) leads to the
results of Theorem 1.3.

5. 2D discrete periodic Schrodinger operator with large
spectrum

Without loss of generality we assume M > N . Introduce the potential

qn,m = ε−1m, n = 1, · · · , N, m = 1, · · · , M, ε > 0. (5.1)

Then the matrix J1 (4.3) is

J1(k1, k2) = ε−1(J0 + εD(k1, k2)), where J0 = diag(mI)M
1 , (5.2)
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D(k1, k2) =


S1(k1) I · · · e−2πik2

I S1(k1) · · · 0
· · · · · · · · · · · ·

e2πik2 0 · · · S1(k1)

 , S1 =


0 1 · · · e−2πik1

1 0 · · · 0
· · · · · · · · · · · ·

e2πik1 0 · · · 0

 .

For identifying the spectrum of J we will apply the regular perturbation theory
with small parameter ε. The eigenvalues of J0 (5.2) are

λ(j)
n (0) = j, n = 1, · · · , N, j = 1, · · · , M,

with the corresponding eigenvectors

e(j)
n = en+N(j−1), where ei = (δij)

NM
1

and δ is a Kronecker symbol. Each eigenvalue j has multiplicity N . The pertur-
bation theory for multiple eigenvalues (see e.g. [2]) tells us that the eigenvalues
of J (5.2) satisfy

λ(j)
n (ε) = ε−1(j + ελ̃(j)

n + O(ε2)), (5.3)

where λ̃
(j)
n ≡ λ̃

(j)
n (k1, k2), n = 1, · · · , N are eigenvalues of the matrix

(e
(j)
1 ..e

(j)
N )>D(k1, k2)(e

(j)
1 ..e

(j)
N ) = S1.

It is well known that the spectrum of
∫ ⊕

k1∈[0,1]
S1(k1) coincides with [−2, 2] (since

S1 corresponds to the 1D discrete non-perturbed Schrodinger operator), i.e.

N⋃
n=1

⋃
k1,k2∈[0,1]

{λ̃(j)
n (k1, k2)} = [−2, 2]. (5.4)

So, using (5.3) with (5.4) we deduce that

N,M⋃
n,j=1

⋃
k1,k2∈[0,1]

{λ(j)
n (ε)} = 4M + O(ε),

since intervals [−2, 2] + ε−1j do not overlap each other for sufficiently small ε.
Then the spectrum σ(J1) of J1 with the potential (5.1) has Lebesgue measure

mes(σ(J1)) = 4M + O(ε) = 4 max{N, M}+ O(ε).
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