INEQUALITIES FOR INTERPOLATION FUNCTIONS

DINH TRUNG HOA1* AND HIROYUKI OSAKA2

Communicated by M. Fujii

Abstract. In this paper, in relation with interpolation functions we study some generalized Powers-\textit{Størmer}'s type inequalities and monotonicity inequality of indefinite type which generalizes a result of Ando.

1. Introduction and preliminaries

Throughout this paper, M_n stands for the algebra of all $n \times n$ matrices. Denote by M_n^+ the set of all positive semi-definite matrices. A continuous function f on $I \subset \mathbb{R}$ is called \textit{matrix convex of order} n (or \textit{n-convex}) if the inequality

$$f(\lambda A + (1 - \lambda)B) \leq \lambda f(A) + (1 - \lambda)f(B)$$

holds for all self-adjoint matrices $A, B \in M_n$ with $\sigma(A), \sigma(B) \subset I$ and for all $\lambda \in [0, 1]$, where $\sigma(A)$ stands for the spectrum of A. Also, f is called a n-concave on I if $-f$ is n-convex on I.

A continuous function f on I is called \textit{matrix monotone of order} n or \textit{n-monotone}, if

$$A \leq B \implies f(A) \leq f(B)$$

for any pair of self-adjoint matrices $A, B \in M_n$ with $\sigma(A), \sigma(B) \subset I$. We call a function f \textit{operator convex} (resp. \textit{operator concave}) if f is k-convex (resp. k-concave) for any $k \in \mathbb{N}$, and \textit{operator monotone} if f is k-monotone for any $k \in \mathbb{N}$.

\textit{Date}: Received: Feb. 12, 2014; Accepted: Mar. 24, 2014.

* Corresponding author.

\textit{2010 Mathematics Subject Classification}. Primary 46L30; Secondary 15A45, 47A63.

\textit{Key words and phrases}. interpolation functions, operator monotone functions, traces, spaces with indefinite inner product, monotonicity inequality of indefinite type.
A function \(f : \mathbb{R}_+ \to \mathbb{R}_+ \) (where \(\mathbb{R}_+ = (0, \infty) \)) is called an interpolation function of order \(n \) if for any \(T, A \in M_n \) with \(A > 0 \) and \(T^* T \leq 1 \),
\[
T^* AT \leq A \quad \implies \quad T^* f(A) T \leq f(A).
\]

We denote by \(C_n \) the class of all interpolation functions of order \(n \).

Let \(\mathcal{P}(\mathbb{R}_+) \) be the set of all Pick functions on \(\mathbb{R}_+ \), and \(\mathcal{P}' \) the set of all positive Pick functions on \(\mathbb{R}_+ \), i.e., functions of the form
\[
h(s) = \int_{[0,\infty]} \frac{(1 + t)s}{s + t} d\rho(t), \quad s > 0,
\]
where \(\rho \) is some positive Radon measure on \([0, \infty]\).

Denote by \(\mathcal{P}'_n \) the set of all strictly positive \(n \)-monotone functions on \((0, \infty)\).

Theorem 1.1. ([2, Corollary 2.4]) A function \(f : \mathbb{R}_+ \to \mathbb{R}_+ \) belongs to \(C_n \) if and only if for every \(n \)-set \(\{\lambda_i\}_{i=1}^n \subset \mathbb{R}_+ \) there exists a function \(h \) from \(\mathcal{P}' \) such that
\[
f(\lambda_i) = h(\lambda_i) \quad \text{for} \quad i = 1, \ldots, n.
\]

Corollary 1.2. Let \(A \) be a positive definite matrix in \(M_n \) and \(f \in C_n \). Then there exists a positive Radon measure \(\rho \) on \([0, \infty]\) such that
\[
f(A) = \int_{[0,\infty]} A(1 + s)(A + s)^{-1} d\rho(s).
\]

Remark 1.3.

(i) \(\mathcal{P}' = \cap_{n=1}^\infty \mathcal{P}'_n \) \([13]\), \(\mathcal{P}' = \cap_{n=1}^\infty C_n \) \([7]\);
(ii) \(C_{n+1} \subseteq C_n \);
(iii) \(\mathcal{P}'_{n+1} \subseteq C_{2n+1} \subseteq C_{2n} \subseteq \mathcal{P}'_n \), \(\mathcal{P}'_n \nsubseteq C_n \) \([2]\);
(iv) \(C_{2n} \nsubseteq \mathcal{P}'_n \) \([14]\);
(v) \(C_n \cap C_n \subseteq C_n \);
(vi) A function \(f : \mathbb{R}_+ \to \mathbb{R}_+ \) belongs to \(C_n \) if and only if \(\frac{t}{f(t)} \) belongs to \(C_n \).

It is not known whether \(\mathcal{P}'_{n+1} \subseteq C_{2n+1} \) or not.

In this paper, we consider some inequalities with interpolation functions. More precisely, in Section 2, we extend Petz’s trace inequality \([15\), Theorem 11.18\) (Theorem 2.1) to the class of interpolation functions and give a new trace inequality (Theorem 2.5) which might play an important role in the quantum information theory. Moreover, in Section 3 we extend an Ando’s monotonicity inequality of indefinite type. We show that for \(f \in C_{2n} \) and any pair of \(J \)-selfadjoint matrices \(A, B \in M_n \) such that \(\sigma(A), \sigma(B) \subset (0, \infty) \),
\[
A \leq^J B \quad \implies \quad f(A) \leq^J f(B),
\]
where \(J \) is a selfadjoint involution and \(A \leq^J B \) means that \(JA^* J = A, JB^* J = B \), and \(JA \leq JB \).
Theorem 1.4. Let $f \in C_{2n}$. For positive definite matrices K and L in M_n, let Q be the projection onto the range of $(K - L)_+$. We have, then,
\[
\text{Tr}(QL(f(K) - f(L))) \geq 0. \tag{1.1}
\]

Proof. Let $\{\lambda_i\}_{i=1}^n$ and $\{\mu_i\}_{i=1}^n$ be sets of eigenvalues of K and L, respectively. Then by Theorem 1.1 there exists an interpolation function $h \in \mathcal{P}'$ such that $f(\lambda) = h(\lambda)$ for $\lambda \in \{\lambda_i\}_{i=1}^n \cup \{\mu_i\}_{i=1}^n$. By Corollary 1.2 there is some positive Radon measure ρ on $[0, \infty]$ such that

\[
f(K) - f(L) = \int_{[0, \infty]} K(1 + s)(K + s)^{-1}d\rho(s) - \int_{[0, \infty]} L(1 + s)(L + s)^{-1}d\rho(s)
= \int_{[0, \infty]} [(1 + s)(K + s)^{-1}K - L(1 + s)(L + s)^{-1}]d\rho(s)
= \int_{[0, \infty]} (1 + s)s(K + s)^{-1}(K - L)(L + s)^{-1}d\rho(s).
\]

Hence
\[
\text{Tr}(QL(f(K) - f(L))) = \int_{[0, \infty]} (1 + s)s \text{Tr}(QL(K + s)^{-1}(K - L)(L + s)^{-1})d\rho(s)
\]

Repeat the same steps in [15, Theorem 11.18], we get the conclusion. \hfill \square

Corollary 1.5. Let $f \in \mathcal{P}_{n+1}'$. For positive definite matrices K and L in M_n, let Q be the projection onto the range of $(K - L)_+$. We have, then,
\[
\text{Tr}(QL(f(K) - f(L))) \geq 0.
\]

Proof. It is suffices to mention that $\mathcal{P}_{n+1}' \subset C_{2n}$ by Remark 1.3. The conclusion follows from Theorem 1.4. \hfill \square

Using Theorem 1.4 we get a generalized Powers-Størmer’s type inequality. Another generalization of Powers-Størmer inequality can be found in [12]. We need the following lemmas.

Lemma 1.6. Let $h : (0, \infty) \to (0, \infty)$ be a function such that the function $th(t)$ is operator monotone. Then the inverse of $\frac{t}{h(t)}$ is operator monotone.

Proof. Since $th(t)$ is operator monotone, the function $\frac{1}{h(t)} = \frac{t}{th(t)}$ is operator monotone by [11, Corollary 2.6]. Hence the inverse of $\frac{t}{h(t)}$ is operator monotone from by [3, Lemma 5]. \hfill \square

Lemma 1.7. Let f be a function from $(0, \infty)$ into itself such that $tf(t) \in C_{2n}$. Then the inverse of $g(t) = \frac{t}{f(t)}$ ($t > 0$) belongs to $C_{2n}|_{g((0, \infty))}$.

Proof. Indeed, for any set $T \subset g((0, \infty))$ with $|T| = 2n$ we can write

\[
T = \{g(t_1), g(t_2), \ldots, g(t_{2n})\},
\]
where \(t_i \in (0, \infty) \) for \(1 \leq i \leq 2n \). Since \(tf(t) \in \mathcal{C}_{2n} \), there is an interpolation map \(k_T \in \mathcal{P}^\prime \) such that \(t_i f(t_i) = k_T(t_i) \) for \(1 \leq i \leq 2n \). Then we have

\[
g(t_i) = \frac{t_i}{f(t_i)} = t_i \frac{t_i}{k_T(t_i)} \quad (1 \leq i \leq 2n).
\]

Consequently,

\[
g^{-1}(g(t_i)) = t_i = \left(\frac{t^2}{k_T(t)} \right)^{-1} (g(t_i)) \quad (1 \leq i \leq 2n).
\]

From the above argument, it is clear that \(\left(\frac{t^2}{k_T(t)} \right)^{-1} \) is operator monotone. From (1.2) we conclude that the inverse \(g^{-1} \) of \(g \) belongs to \(C_{2n} |_{g((0,\infty))} \). \(\square \)

The main theorem of this section is as follows.

Theorem 1.8. Let \(f \) be a function from \((0, \infty)\) into itself such that \(t f(t) \in \mathcal{C}_{2n} \). Then for any pair of positive definite matrices \(A, B \in M_n \),

\[
\text{Tr}(A^2) + \text{Tr}(B^2) - \text{Tr}(|A^2 - B^2|) \leq 2 \text{Tr}(Af(A)^{1/2} g(B) f(A)^{1/2}),
\]

where \(g(t) = \frac{t}{f(t)}, \; t \in (0, \infty) \).

Proof. Let \(A, B \) be positive definite matrices and \(e(t) = tf(t) \) for \(t \in (0, \infty) \). Let \(Q \) be the projection on the range of \((g(A) - g(B))_+ \) and \(L = g(B) \).

Let \(S \) be the set of eigenvalues of \(g(A) \) and \(g(B) \). Since \(e \in \mathcal{C}_{2n} \), there is an interpolation map \(h \in \mathcal{P}^\prime \) such that \(e(\lambda) = h(\lambda) \) for \(\lambda \in S \). Since \(t(h(t)/t) = h(t) \) is operator monotone, the inverse of \(t^2/h(t) \) is operator monotone by Lemma 1.6. By Lemma 1.7 the inverse of \(g \) belongs to \(C_{2n} |_{g((0,\infty))} \). Consequently, \(e \circ g^{-1} \in C_{2n} |_{g((0,\infty))} \) by Remark 1.3(v).

Apply Theorem 1.4 for the function \(e \circ g^{-1} \), we get

\[
0 \leq \text{Tr}(Qg(B))(e \circ g^{-1})(g(A)) - (e \circ g^{-1})(g(B)) = \text{Tr}(Qg(B)(Af(A) - Bf(B))) = \text{Tr}(Qg(B)Af(A)) - \text{Tr}(QB^2).
\]

On the contrary,

\[
\text{Tr}(Q(A^2 - B^2)) - \text{Tr}(Af(A)Q(g(A) - g(B))) = \text{Tr}(QA^2) - \text{Tr}(QB^2) - \text{Tr}(Af(A)Qg(A)) + \text{Tr}(Af(A)Qg(B)) \quad (1.4)
\]

\[
= \text{Tr}(Qg(B)Af(A)) - \text{Tr}(QB^2) \geq 0.
\]

Hence we have

\[
\text{Tr}(Af(A)Q(g(A) - g(B))) \leq \text{Tr}(Q(A^2 - B^2)) \leq \text{Tr}((A^2 - B^2)_+). \quad (1.5)
\]

Therefore, from (1.4) and (1.5) we have
\[
\text{Tr}(Af(A)(g(A) - g(B))) \leq \text{Tr}(Af(A)(g(A) - g(B))_+)
\]
\[
= \text{Tr}(Af(A)Q(g(A) - g(B)))
\]
\[
\leq \text{Tr}((A^2 - B^2)_+)
\]
\[
= \frac{1}{2} \text{Tr}((A^2 - B^2) + |A^2 - B^2|),
\]
and
\[
\text{Tr}(A^2 + B^2 - |A^2 - B^2|) \leq 2 \text{Tr}(Af(A)g(B)).
\]

\[\square\]

Corollary 1.9. Let \(f \) be a function from \((0, \infty)\) into itself such that \(tf(t) \in \mathcal{P}'_{n+1} \). Then for any pair of positive definite matrices \(A, B \in M_n \),
\[
\text{Tr}(A^2) + \text{Tr}(B^2) - \text{Tr}(|A^2 - B^2|) \leq 2 \text{Tr}(Af(A)^{1/2}g(B)f(A)^{1/2}),
\]
where \(g(t) = \frac{1}{t(f(t))} \) for \(t \in (0, \infty) \).

Corollary 1.10 ([5]). Let \(A, B \) be positive definite matrices, then for all \(0 \leq s \leq 1 \)
\[
\text{Tr}(A + B - |A - B|) \leq 2 \text{Tr}(A^{1-s}B^s).
\]

Proof. By adding \(\varepsilon > 0 \) to \(A \) and \(B \), we may assume that \(A \) and \(B \) are positive invertible matrices.

Firstly, we consider the case \(s \in [\frac{1}{2}, 1] \). Let \(f(t) = t^{1-2s} \). Then \(tf(t) = t^{2-2s} \)
is operator monotone on \((0, \infty)\). Substitute \(X = A^{1/2} \) and \(Y = B^{1/2} \) into the inequality (1.3) in Theorem 1.8, we get
\[
\text{Tr}(A + B - |A - B|) \leq 2 \text{Tr}(A^{1-s}B^s).
\]
The remaining case \(0 \leq s \leq \frac{1}{2} \) obviously follows by interchanging the roles of \(A \) and \(B \). \(\square \)

Remark 1.11. In Lemma 1.6 and Lemma 1.7 operator monotonicity and \(C_{2n}\)-property of inverse functions were considered. There exists counterexample that the inverse of a \(n \)-matrix function may not be \(n \)-matrix. Indeed, it is well-known that \(f_s(t) = t^s(0 \leq s \leq 1) \) is operator monotone, but the inverse \(f_s^{-1}(t) = t^{1/s} \) of \(f_s \) is not \(2 \)-monotone. A similar picture for \(C_n \)-functions is still not clear.

Inequality (1.3) in Theorem 1.8 is different to generalized Powers-Størmer inequality in [12]. The proof of (1.3) is based on the fact that \((tf) \circ g^{-1} \in \mathcal{C}_{2n}|_{g((0, \infty))} \). If we have the condition \(f \circ g^{-1} \in \mathcal{C}_{2n}|_{g((0, \infty))} \), then by similar arguments above we can get the generalized Powers-Størmer inequality as in [12]. More precisely, we have the following theorem.

Theorem 1.12. Let \(f \) be a function in \(C_{2n} \) such that \(f \circ g^{-1} \in \mathcal{C}_{2n}|_{g((0, \infty))} \), where \(g(t) = \frac{t}{f(t)} \), \(t \in (0, \infty) \). Then for any pair of positive definite matrices \(A, B \in M_n \),
\[
\text{Tr}(A) + \text{Tr}(B) - \text{Tr}(|A - B|) \leq 2 \text{Tr}(f(A)^{1/2}g(B)f(A)^{1/2}).
\]
Since the proof of this theorem is done by the same steps in Theorem 1.8, the detail is left to reader.

2. Matrix monotonicity inequality of indefinite type

Let \(J (\neq I_n \text{ -- unit in } M_n) \) be a selfadjoint involution different to identity, that means, \(J = J^*, J^2 = I_n \). For a matrix \(A \) its \(J \)-adjoint \(A^J \) is defined as follows: \(A^J = JA^*J \). A matrix \(A \) is said to be \(J \)-selfadjoint if \(A = A^J \), or, \(JA = A^*J \).

For a pair of \(J \)-selfadjoint matrices \(A, B \), we define an indefinite order relation \(A \leq^J B \) as follows:
\[
A \leq^J B \text{ if } JA \leq JB.
\]

It is known as a result of Potapov-Ginzburg (see [6, Chapter 2, Section 4]) that \(\sigma(JA^*JA) \subset [0, +\infty) \) for any \(A \). If \(A \) is a \(J \)-selfadjoint operator with \(\sigma(A) \subset (0, \infty) \), then for any function \(f(t) \in C \alpha \) the matrix \(f(A) \) is well-defined by Corollary 1.2. Note that \(f(A) \) is \(J \)-selfadjoint.

It is well-known that any operator monotone function on \((-1, 1)\) has an integral representation
\[
f(t) = f(0) + \int_{-1}^{1} \frac{t}{1-t}\lambda d\mu(\lambda),
\]
where \(d\mu(\cdot) \) is a positive measure on \([-1, 1]\). T. Ando [4] used this fact to study operator monotonicity inequality of indefinite type.

Theorem 2.1 ([4], Theorem 4). Let \(J \) be a selfadjoint involution, and \(A, B \) be \(J \)-selfadjoint matrices with spectra in \((\alpha, \beta)\). Then
\[
A \leq^J B \implies f(A) \leq^J f(B)
\]
for any operator monotone function \(f(t) \) on \((\alpha, \beta)\).

For \(n \)-monotone functions his proof is not applicable, since an integral representation of \(n \)-monotone functions is not clear in general. Fortunately, we can extend Ando’s result to class \(C_2n \), with a help of Corollary 1.2.

The assertions of the following lemma were obtained in [4]. But for convenience of readers we give a proof.

Lemma 2.2. Let \(A, B \) be \(J \)-selfadjoint matrices in \(M_n \) such that \(\sigma(A), \sigma(B) \subset (0, +\infty) \). Then
\[
A \leq^J B \implies B^{-1} \leq^J A^{-1}.
\]

Proof. Mention that for any matrix \(C \in M_n \),
\[
JC^JBC - JC^JAC = C^\ast(JB - JA)C \geq 0, \text{ i.e. } C^JAC \leq^J C^JBC.
\]

Since \(\sigma(A) \subset (0, +\infty) \) and the function \(f(t) = t^{1/2} \) is operator monotone on \((0, \infty)\), the \(J \)-selfadjoint square root \(A^{1/2} \) is well defined and its reverse \(A^{-1/2} \) is also \(J \)-selfadjoint. In the case \(B = I_n \), we have
\[
A^{-1} - I_n = A^{-1/2}(I_n - A)A^{-1/2} \geq^J 0.
\]
(2.1)

In general case,
\[
I_n = B^{-1/2}BB^{-1/2} \geq^J B^{-1/2}AB^{-1/2} = [A^{1/2}B^{-1/2}]^J A^{1/2}B^{-1/2}.
\]
On account of a result of Potapov-Ginzburg mentioned, and since $B^{-1/2}AB^{-1/2}$ is invertible, the latter implies that $\sigma(B^{-1/2}AB^{-1/2}) \subset (0, +\infty)$. By (2.1), we obtain

$$I_n \leq^J (B^{-1/2}AB^{-1/2})^{-1} = B^{1/2}A^{-1}B^{1/2},$$

which equivalent to $A^{-1} \geq^J B^{-1}$.

Theorem 2.3. Let $f \in C_{2n}$. Then for any pair of J-selfadjoint matrices $A \leq^J B$ in M_n such that $\sigma(A), \sigma(B) \subset (0, \infty)$,

$$f(A) \leq^J f(B). \quad (2.2)$$

Proof. Let $\lambda_i \ (1 \leq i \leq n)$ and $\mu_j \ (1 \leq j \leq n)$ be the sets of eigenvalues of A and B, respectively.

Then there is an interpolation function $h \in C_{2n}$ such that $f(\lambda) = h(\lambda)$ for $\lambda \in \{\lambda_i, \mu_j\}_{1 \leq i, j \leq n}$. By Corollary 1.4, there is a positive Radon measure ρ on $[0, \infty]$ such that

$$f(\alpha) = \int_{[0,\infty]} \frac{\alpha(1+s)}{s+\alpha} d\rho(s) \quad (\alpha \in \{\lambda_i, \mu_j\}_{1 \leq i, j \leq n}).$$

Then inequality (2.2) is equivalent to the following:

$$\int_{[0,\infty]} A(1+s)(s+A)^{-1}d\rho(s) \leq^J \int_{[0,\infty]} B(1+s)(s+B)^{-1}d\rho(s).$$

Therefore, it suffices to prove that

$$A(s+A)^{-1} \leq^J B(s+B)^{-1} \quad (s > 0),$$

or equivalently,

$$(s+A)^{-1} \geq^J (s+B)^{-1} \quad (s > 0). \quad (2.3)$$

From $A \leq^J B$ it follows that $s+A \leq^J s+B \quad (s > 0)$. On the other hand, $\sigma(s+A), \sigma(s+B) \subset (s, \infty) \subset (0, \infty)$. On account of Lemma 2.2 we obtain (2.3). □

Remark 2.4. A similar conclusion for matrix convex functions on $[0, \infty)$ is wrong. Indeed, it is well-known that the function $f(t) = t^2 \ (t \in (0, \infty))$ is operator convex. Let A be an arbitrary J-positive matrix (that means, JA is positive) with spectrum in $(2, \infty)$. Put $B = A + J$. It is clear that $A \leq^J B$ and $\sigma(B) \subset (0, \infty)$. We have

$$f\left(\frac{A}{2} + \frac{B}{2}\right) \not\leq^J \frac{1}{2}f(A) + \frac{1}{2}f(B),$$

that is,

$$\frac{1}{2}(A^2 + B^2) - \left(\frac{A + B}{2}\right)^2 = \frac{1}{4}(B - A)^2 = \frac{1}{4}J^2 = \frac{I}{4} \not\leq^J 0.$$

Acknowledgement. This work was partially supported by the JSPS grant for Scientific Research No. 20540220. The Research partially supported by NAFOSTED Vietnam, Grant Number 101.04-2014.40.
References

1. Institute of Research and Development, Duy Tan University, Vietnam; Institute for Computational Science (INCOS) & Faculty of Civil Engineering, Ton Duc Thang University, Vietnam; Faculty of Economic Mathematics, University of Economics and Law, Vietnam National University - Ho Chi Minh City, Vietnam.

E-mail address: dinhtrunghoa@tdt.edu.vn; trunghoa.math@gmail.com

2. Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.

E-mail address: osaka@se.ritsumei.ac.jp