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Abstract. In this paper, we study disjoint, strongly disjoint and weakly dis-
joint g-frames in Hilbert spaces and we provide necessary and sufficient condi-
tions for disjointness, strongly disjointness and weakly disjointness of g-frames.
Also, by using the orthogonal projections in Hilbert spaces, we prove that dual
g-frames for a Hilbert space can be dilated to a g-Riesz basis for some larger
Hilbert space and its dual g-Riesz basis.

1. Introduction and preliminaries

Let H be a separable Hilbert space. We call a sequence F = {fi}i∈I ⊆ H a
frame for H if there exist two positive constants A,B such that

A‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B‖f‖2, f ∈ H. (1.1)

If in (1.1), A = B = 1 we say that F = {fi}i∈I is a Parseval frame for H. Let
F = {fi}i∈I be a frame for H, then the operator

TF : l2(I) → H, TF ({ci}i∈I) =
∑
i∈I

cifi

is well define and onto, also its adjoint is

T ∗F : H → l2(I), T ∗F (f) = {〈f, fi〉}i∈I .

The operators TF and T ∗F are called the synthesis and analysis operators of frame
F = {fi}i∈I . The operator SF = TFT

∗
F is called the frame operator of frame
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F = {fi}i∈I which is bounded, invertible and positive. Also, for each f ∈ H, we
have

f =
∑
i∈I

〈f, fi〉S−1
F fi =

∑
i∈I

〈f, S−1
F fi〉fi. (1.2)

We recall that if F = {fi}i∈I and G = {gi}i∈I are frame for a Hilbert space H,
then G is called a dual frame of F if

f =
∑
i∈I

〈f, gi〉fi, f ∈ H.

In this case, we say that F,G are dual frames for H. Let F = {fi}i∈I be a frame

for a Hilbert space H and f̃i = S−1
F fi, for all i ∈ I, then F̃ = {f̃i}i∈I is a frame

for H and by (1.2), F̃ is a dual frame of F. We call F̃ the canonical dual of F.
A sequence F = {fi}i∈I ⊆ H is called a Riesz basis for H, if span{fi}i∈I = H and
there exist constants 0 < A ≤ B < ∞ such that for every finite scalar sequence
{ci} one has

A
∑

i

|ci|2 ≤
∥∥∥∑

i

cifi

∥∥∥2

≤ B
∑

i

|ci|2.

The concepts of disjoint frames and strongly disjoint frames introduced by Han
and Larson [5]. These notions generalized to frames in Banach spaces by Casazza,
Han and Larson [4].

Definition 1.1. [5] Let F = {fi}i∈I and G = {gi}i∈I be frames for Hilbert spaces
H and K, respectively. We say that

(1) F and G are disjoint, if {fi ⊕ gi}i∈I is a frame for H⊕K.
(2) F and G are strongly disjoint, if there are invertible operators T1 ∈ B(H)

and T2 ∈ B(K) such that {T1fi}i∈I , {T2gi}i∈I and {T1fi ⊕ T2gi}i∈I are
respective Parseval frames for H, K and H⊕K.

Theorem 2.9 of [5] implies the following result.

Proposition 1.2. Let F = {fi}i∈I and G = {gi}i∈I be frames for Hilbert spaces
H and K, respectively. Then

(1) F and G are disjoint if and only if RangeT ∗F ∩ RangeT ∗G = {0} and
RangeT ∗F +RangeT ∗G is a closed subspace of l2(I).

(2) F and G are strongly disjoint if and only if RangeT ∗F and RangeT ∗G are
orthogonal.

In 2006, Sun [10] introduced g-frames as a generalization of ordinary frames.
Throughout this paper, H and K are separable Hilbert spaces and 〈., .〉H and
〈., .〉K denote the inner product of H and K, respectively. Also, {Hi}i∈I is a
sequence of separable Hilbert spaces and ‖.‖i and 〈., .〉i denote the norm and
inner product of Hi, for all i ∈ I.
Definition 1.3. A sequence of bounded operators Λ = {Λi ∈ B(H,Hi) : i ∈ I} is
called a g-frame for H with respect to {Hi}i∈I if there exist two positive constants
AΛ and BΛ such that

AΛ‖f‖2 ≤
∑
i∈I

‖Λif‖2
i ≤ BΛ‖f‖2, f ∈ H. (1.3)
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We call Λ = {Λi ∈ B(H,Hi) : i ∈ I} a tight g-frame for H with respect to
{Hi}i∈I if AΛ = BΛ and Parseval g-frame, if AΛ = BΛ = 1. AΛ and BΛ are called
the lower and upper g-frame bounds, respectively. If the right hand inequality in
(1.3) holds for all f ∈ H, then Λ = {Λi ∈ B(H,Hi) : i ∈ I} is called a g-Bessel
sequence for H with respect to {Hi}i∈I . If there is no confusion, we will use the
phrase ”g-frame for H” instead of ”g-frame for H with respect to {Hi}i∈I”.

Let Λi ∈ B(H,Hi) be given for all i ∈ I. Let us define the space

Ĥ =

{
{fi}i∈I : fi ∈ Hi,

∑
i∈I

‖fi‖2
i <∞

}
with the inner product given by 〈{fi}i∈I , {gi}i∈I〉 bH =

∑
i∈I〈fi, gi〉i. It is clear that

Ĥ is a Hilbert space with respect to the point wise operations. It is proved in
[9], Λ = {Λi ∈ B(H,Hi) : i ∈ I} is a g-Bessel sequence for H if and only if the
operator

TΛ : Ĥ → H, TΛ({fi}i∈I) =
∑
i∈I

Λ∗i fi (1.4)

is well defined and bounded. In this case, the adjoint of TΛ is

T ∗Λ : H → Ĥ, T ∗Λf = {Λif}i∈I .

Also, a sequence Λ = {Λi ∈ B(H,Hi) : i ∈ I} is a g-frame for H if and only
if the operator TΛ defined by (1.4) is bounded and onto. We call the operators
TΛ and T ∗Λ, the synthesis and analysis operators of Λ, respectively. If Λ = {Λi ∈
B(H,Hi) : i ∈ I} is a g-frame for H, then

SΛ : H → H, SΛf =
∑
i∈I

Λ∗i Λif

is a bounded invertible positive operator [10] and every f ∈ H has the following
representation

f =
∑
i∈I

S−1
Λ Λ∗i Λif =

∑
i∈I

Λ∗i ΛiS
−1
Λ f. (1.5)

The operator SΛ is called the g-frame operator of Λ.

Let Λ = {Λi ∈ B(H,Hi) : i ∈ I} be a g-frame for H and let Λ̃i = ΛiS
−1
Λ for all

i ∈ I. Then Λ̃ = {Λ̃i ∈ B(H,Hi) : i ∈ I} is a g-frame for H [10]. We can refer to
[1, 2, 8, 11], for some properties of g-frames in Hilbert spaces.

Definition 1.4. Let Λ = {Λi ∈ B(H,Hi) : i ∈ I} and Θ = {Θi ∈ B(H,Hi) : i ∈
I} be two g-frames for H such that

f =
∑
i∈I

Θ∗
i Λif, f ∈ H,

then we say that Θ is a dual g-frame for Λ or Λ and Θ are dual g-frames for H.

By (1.5), Λ̃ is a dual g-frame for Λ, which is called the canonical dual of Λ.

Definition 1.5. We say a sequence Λ = {Λi ∈ B(H,Hi) : i ∈ I} is
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(1) a g-Riesz basis for H with respect to {Hi}i∈I if there exist two positive
constants A and B such that for any finite subset F ⊆ I one has

A
∑
i∈F

‖gi‖2
i ≤

∥∥∥∑
i∈F

Λ∗i gi

∥∥∥2

H
≤ B

∑
i∈F

‖gi‖2
i , gi ∈ Hi,

and Λ is g-complete, i.e.,

{f |Λif = 0, i ∈ I} = {0}.

(2) a g-orthonormal basis for H with respect to {Hi}i∈I if for all f ∈ H,∑
i∈I ‖Λif‖2

i = ‖f‖2, and

〈Λ∗i gi,Λ
∗
jgj〉H = δij〈gi, gj〉, gi ∈ Hi, gj ∈ Hj, i, j ∈ I.

2. Disjointness of g-frames

In this section we study disjointness, weakly disjointness and strongly disjoint-
ness of g-frames. First of all, we define these notions and related topics.

Definition 2.1. Let Λ = {Λi ∈ B(H,Hi) : i ∈ I} and Θ = {Θi ∈ B(K,Hi) :
i ∈ I} be g-frames for Hilbert spaces H and K, respectively. Then Λ and Θ are
called

(1) disjoint, if RangeT ∗Λ∩RangeT ∗Θ = {0} and RangeT ∗Λ+RangeT ∗Θ is a closed

subspace of Ĥ.
(2) strongly disjoint, if RangeT ∗Λ ⊥ RangeT ∗Θ.
(3) complementary pair, if RangeT ∗Λ ∩RangeT ∗Θ = {0} and

RangeT ∗Λ +RangeT ∗Θ = Ĥ.

(4) strong complementary pair, if

RangeT ∗Λ ⊕RangeT ∗Θ = Ĥ.

(5) weakly disjoint if RangeT ∗Λ ∩RangeT ∗Θ = {0}.

Proposition 2.2. Let Λ = {Λi ∈ B(H,Hi) : i ∈ I} and Θ = {Θi ∈ B(K,Hi) :
i ∈ I} be g-frames for Hilbert spaces H and K, respectively. Then Λ and Θ are
strongly disjoint if and only if there exist invertible operators T1 ∈ B(H) and
T2 ∈ B(K) such that {ΛiT1 ∈ B(H,Hi) : i ∈ I}, {ΘiT2 ∈ B(K,Hi) : i ∈ I}
and {∆i ∈ B(H⊕K,Hi) : i ∈ I} are respective Parseval g-frames for H, K and
H⊕K, where

∆i : H⊕K → Hi, ∆i(f ⊕ g) = ΛiT1f + ΘiT2g,

for all i ∈ I.

Proof. Let us consider T1 = S
− 1

2
Λ and T2 = S

− 1
2

Θ . Then Λ1 = {ΛiT1 ∈ B(H,Hi) :
i ∈ I} and Θ1 = {ΘiT2 ∈ B(K,Hi) : i ∈ I} are Parseval g-frames for H and K,
respectively. Also,

RangeT ∗Λ = RangeT ∗Λ1
, RangeT ∗Θ = RangeT ∗Θ1

.
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For f ∈ H and g ∈ K we have∑
i∈I

‖∆i(f ⊕ g)‖2
i =

∑
i∈I

‖ΛiT1f + ΘiT2g‖2
i

=
∑
i∈I

‖ΛiT1f‖2
i +

∑
i∈I

‖ΘiT2g‖2
i

+ 2Re
∑
i∈I

〈ΛiT1f,ΘiT2g〉i

=
∑
i∈I

‖ΛiT1f‖2
i +

∑
i∈I

‖ΘiT2g‖2
i

=‖f‖2 + ‖g‖2 = ‖f ⊕ g‖2.

(2.1)

For the converse implication, we assume that the operators T1 ∈ B(H) and
T2 ∈ B(K) are invertible and Λ1 = {ΛiT1 ∈ B(H,Hi) : i ∈ I} and Θ1 = {ΘiT2 ∈
B(K,Hi) : i ∈ I} and {∆i ∈ B(H⊕K,Hi) : i ∈ I} are Parseval g-frames. From
(2.1), we have

Re
∑
i∈I

〈ΛiT1f,ΘiT2g〉i = 0, f ∈ H, g ∈ K. (2.2)

If we replace g by ig in (2.2), then Re
∑

i∈I〈ΛiT1f, iΘiT2g〉i = 0 and therefore

Im
∑
i∈I

〈ΛiT1f,ΘiT2g〉i = 0, f ∈ H, g ∈ K.

Hence RangeT ∗Λ1
⊥ RangeT ∗Θ1

, consequently RangeT ∗Λ ⊥ RangeT ∗Θ. �

Proposition 2.3. Let Λ = {Λi ∈ B(H,Hi) : i ∈ I} and Θ = {Θi ∈ B(K,Hi) :
i ∈ I} be g-frames for Hilbert spaces H and K, respectively. Consider the opera-
tors

Γi : H⊕K → Hi, Γi(f ⊕ g) = Λif + Θig,

for all i ∈ I. Then Λ and Θ are

(1) disjoint if and only if {Γi}i∈I is a g-frame for H ⊕ K with respect to
{Hi}i∈I ,

(2) complementary pair if and only if {Γi}i∈I is a g-Riesz basis for H ⊕ K
with respect to {Hi}i∈I ,

(3) strong complementary pair if and only if Λ and Θ are strongly disjoint
and {Γi}i∈I is a g-Riesz basis for H⊕K,

(4) weakly disjoint if and only if

{f ⊕ g : Γi(f ⊕ g) = 0,∀i ∈ I} = {0}.

Proof. It is easy and we omit the proof. �

Here we intend to state some examples about several kind of disjointness of
g-frames and related topics.

Example 2.4. Let {ei}i∈N and {hi}i∈N be orthonormal bases for Hilbert spaces
H and K, respectively. Let Hi = C2, for all i ∈ N. We define the operators

Λi : H → C2, Λif =
(
〈f, ei〉H, 〈f, ei+1〉H

)
,
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and
Θi : K → C2, Θig =

(
〈g, hi〉K, 〈g, hi+1〉K

)
,

for all i ∈ N. Then Λ = {Λi ∈ B(H,C2) : i ∈ N} and Θ = {Θi ∈ B(K,C2) : i ∈
N} are g-frames for H and K, respectively. For fixed j ∈ N we have

{Λiej}i∈N = {Θihj}i∈N = {δij(1, 0)}i∈N,

where δij is the Kronecker delta. Therefore, RangeT ∗Λ ∩ RangeT ∗Θ 6= {0} and Λ
and Θ are not weakly disjoint. From the other hand, if

Γi : H⊕K → C2, Γi(f ⊕ g) =
(
〈f, ei〉H + 〈g, hi〉K, 〈f, ei+1〉H + 〈g, hi+1〉K

)
,

for all i ∈ N. Then Γ = {Γi ∈ B(H⊕K,C2) : i ∈ N} is not a g-frame for H⊕K.
Since for fixed j ∈ N, Γi(−ej ⊕ hj) = 0, for all i ∈ N, but −ej ⊕ hj 6= 0.

Example 2.5. Let {fi}i∈N and {gi}i∈N be frames for Hilbert spaces H and K,
respectively. Let n > 1 and let Hi = Cn, for all i ∈ N. We define the operators

Λi : H → Cn, Λif =
(
〈f, fi〉H, 0, ..., 0

)
,

and

Θi : K → Cn, Θig =
〈g, gi〉K√
n− 1

(0, 1, 1, ..., 1),

for all i ∈ N. Then Λ = {Λi ∈ B(H,Cn) : i ∈ N} and Θ = {Θi ∈ B(K,Cn) :
i ∈ N} are g-frames for H and K, respectively. Λ and Θ are strongly disjoint

while Λ and Θ are not complementary pair, since {δi2(0, 1, 2, 0, ..., 0)}i∈N ∈ Ĥ but
{δi2(0, 1, 2, 0, ..., 0)}i∈N does not belong to RangeT ∗Λ +RangeT ∗Θ.

Example 2.6. Let {ei}i∈N and {hi}i∈N be orthonormal bases for Hilbert spaces
H and K, respectively. Let Hi = C4, for all i ∈ N. Let us consider the operators

Λi : H → C4, Λif =
(
〈f, e2i〉H, 〈f, e2i−1〉H, 0, 0

)
,

and
Θi : K → C4, Θif =

(
0, 0, 〈g, h2i〉K, 〈g, h2i−1〉K

)
,

for all i ∈ N. Then Λ = {Λi ∈ B(H,C4) : i ∈ N} and Θ = {Θi ∈ B(K,C4) : i ∈
N} are Parseval g-frames for H and K, respectively. Also, RangeT ∗Λ⊥RangeT ∗Θ.
If {(c1,i, c2,i, c3,i, c4,i)}i∈N ∈ Ĥ and

f =
∑
i∈N

c1,ie2,i + c2,ie2i−1, g =
∑
i∈N

c3,ih2,i + c4,ih2i−1,

then

{Λif}i∈N = {(c1,i, c2,i, 0, 0)}i∈N, {Θig}i∈N = {(0, 0, c3,i, c4,i)}i∈N.

So
{Λif}i∈N + {Θig}i∈N = {(c1,i, c2,i, c3,i, c4,i)}i∈N.

This implies that RangeT ∗Λ +RangeT ∗Θ = Ĥ. Consequently, Λ and Θ are strongly
complementary pair. Also, if we consider

Γi : H⊕K → C4, Γi(f ⊕ g) =
(
〈f, e2i〉H, 〈f, e2i−1〉H, 〈g, h2i〉K, 〈g, h2i−1〉K

)
,
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for all i ∈ N. Then Γ = {Γi ∈ B(H⊕K,C2) : i ∈ N} is a g-orthonormal basis for
H⊕K.

3. Dilation of dual g-frames

It is proved in [4], dual frames in a Hilbert space can be dilated to a Riesz
basis for a larger Hilbert space and its dual Riesz basis. Also, the authors of
[6] showed that the mentioned dilation theorem is valid for Hilbert C∗-module
dual frame pairs. Following the section 7 of [4], we intend to answer this dilation
question: if Λ = {Λi ∈ B(H,Hi) : i ∈ I} and Θ = {Θi ∈ B(H,Hi) : i ∈ I}
are dual g-frames for H with respect to {Hi}i∈I , is there a Hilbert space H ⊂M
and a g-Riesz basis Γ = {Γi ∈ B(M,Hi) : i ∈ I} for M with Λi = ΓiPH and

Θi = Γ̃iPH for all i ∈ I, where PH is the orthogonal projection from M onto H
and Γ̃ = {Γ̃i ∈ B(M,Hi) : i ∈ I} is the canonical dual g-frame of Γ?
We first prove the next proposition, which has important role in the proof of The-
orem 3.4 of this section. By proving Theorem 3.4, we answer pervious question
affirmatively.

Proposition 3.1. Let Λ = {Λi ∈ B(H,Hi) : i ∈ I} and Θ = {Θi ∈ B(H,Hi) :
i ∈ I} be dual g-frames for H. Let Ψ = {Ψi ∈ B(K,Hi) : i ∈ I} and Φ =
{Φi ∈ B(K,Hi) : i ∈ I} be dual g-frames for K. If Λ and Θ are are strongly
disjoint with Φ and Ψ, respectively, then Γ = {Γi ∈ B(H ⊕ K,Hi) : i ∈ I} and
∆ = {∆i ∈ B(H⊕K,Hi) : i ∈ I} are dual g-frames for H⊕K, where

Γi(f ⊕ g) = Λif + Ψig, ∆i(f ⊕ g) = Θif + Φig,

for all i ∈ I. Moreover, if Γ is a g-Riesz basis for H⊕K then ∆ is a g-Riesz basis
for H⊕K.

Proof. It is clear that Γ and ∆ are g-Bessel sequences forH⊕K. Let f⊕g ∈ H⊕K,
then∑

i∈I

Γ∗i ∆i(f ⊕ g) =
∑
i∈I

Γ∗i (Θif + Φig)

=
∑
i∈I

Λ∗i (Θif + Φig)⊕Ψ∗
i (Θif + Φig)

=
( ∑

i∈I

Λ∗i Θif +
∑
i∈I

Λ∗i Φig
)
⊕

( ∑
i∈I

Ψ∗
i Θif +

∑
i∈I

Ψ∗
i Φig

)
=f ⊕ g.

Therefore Γ and ∆ are g-frames for H⊕K (see [9]). Now, if Γ is a g-Riesz basis
for H⊕K then by Proposition 12 of [1], Γ has only one dual g-frame and this dual
g-frame is the canonical dual of Γ. Theorem 5 of [1] implies that the canonical
dual of a g-Riesz basis, also is a g-Riesz basis. Therefore ∆ is a g-Riesz basis for
H⊕K. �

Example 3.2. Let F = {fi}i∈I and G = {gi}i∈I be frames for Hilbert spaces H
and K, respectively. Let Hi = C2, for all i ∈ I. We define the operators

Λi : H → C2, Λif =
(
〈f, fi〉H, 0

)
,
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and

Θi : H → C2, Θif =
(
〈S−1

F f, fi〉H, 0
)
,

for all i ∈ I. Then Λ = {Λi ∈ B(H,C2) : i ∈ I} and Θ = {Θi ∈ B(H,C2) : i ∈ I}
are g-frames for H. Also∑

i∈I

Λ∗i Θif =
∑
i∈I

Λ∗i

(
〈S−1

F f, fi〉H, 0
)

=
∑
i∈I

〈S−1
F f, fi〉Hfi = f, f ∈ H.

Therefor, Λ and Θ are dual g-frames for H. We define

ψi : K → C2, ψig =
(
0, 〈g, gi〉K

)
,

and

φi : K → C2, φig =
(
0, 〈S−1

G g, gi〉K
)
,

for all i ∈ I. Then ψ = {ψi ∈ B(K,C2) : i ∈ I} and φ = {φi ∈ B(K,C2) : i ∈ I}
are g-frames for K. Also∑

i∈I

ψ∗i φig =
∑
i∈I

ψ∗i

(
0, 〈S−1

G g, gi〉K
)

=
∑
i∈I

〈S−1
G g, gi〉Kgi = g, g ∈ K.

Therefor, ψ and φ are dual g-frames for K. From the other hand, Λ and Θ are
strongly disjoint with φ and ψ, respectively. Let us consider

Γi : H⊕K → C2, Γi(f ⊕ g) =
(
〈f, fi〉H, 〈g, gi〉K

)
,

and

∆i : H⊕K → C2, Θi(f ⊕ g) =
(
〈S−1

F f, fi〉H, 〈S−1
G g, gi〉K

)
,

for all i ∈ I. Then
Γ∗i (c1, c2) = c1fi ⊕ c2gi, i ∈ I,

and a simple computation shows that∑
i∈I

Γ∗i ∆i(f ⊕ g) = f ⊕ g, f ⊕ g ∈ H ⊕K,

which Proposition 3.1 also confirm this fact.

Let {eij}j∈Ji
be an orthonormal basis for Hi for each i ∈ I. It is proved in [9],

{Eij}i∈I, j∈Ji
is an orthonormal basis for Ĥ, where

(Eij)k =

{
eij, i = k
0, i 6= k.

(3.1)

LetM andN be closed subspaces of a Hilbert spaceH. Let P andQ be orthogonal
projections from H onto M and N , respectively. It is proved in [3] that

‖P −Q‖ = max
{

sup
g∈M,‖g‖=1

‖Q⊥g‖, sup
h∈N,‖h‖=1

‖P⊥h‖
}
. (3.2)

We use above facts in the rest of this paper.
We mention that if F = {fi}i∈I and G = {gi}i∈I are dual frames for a Hilbert
space H and P,Q are the respective orthogonal projections of l2(I) onto RangeT ∗F
and RangeT ∗G, then the followings hold [4, Proposition 7.2]:
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(1) for all i ∈ I, T ∗FS−1
F fi = Pei.

(2) PT ∗F = T ∗FS
−1
F . Therefore, P |Q(l2(I)) : Q(l2(I)) → P (l2(I)) is an onto

isomorphism. Similarly, P⊥|Q⊥(l2(I)) : Q⊥(l2(I)) → P⊥(l2(I)) is an onto
isomorphism .

In the next proposition, we generalize this result to g-frames.

Proposition 3.3. Let Λ = {Λi ∈ B(H,Hi) : i ∈ I} and Θ = {Θi ∈ B(H,Hi) :
i ∈ I} be dual g-frames for H. Let P and Q be the orthogonal projections from

Ĥ onto RangeT ∗Λ and RangeT ∗Θ, respectively. Then we have

(1) For all i ∈ I and j ∈ Ji, T
∗
ΘS

−1
Θ Θ∗

i eij = QEij.
(2) QT ∗Λ = T ∗ΘS

−1
Θ .

Therefore, Q|P ( bH) : P (Ĥ) → Q(Ĥ) is an onto isomorphism. Similarly, Q⊥|P⊥( bH) :

P⊥(Ĥ) → Q⊥(Ĥ) is an onto isomorphism.

Proof. For f ∈ H we have

〈T ∗Θf, T ∗ΘS−1
Θ Θ∗

i eij〉 bH =〈f, TΘT
∗
ΘS

−1
Θ Θ∗

i eij〉H = 〈f,Θ∗
i eij〉H

=〈Θif, eij〉i = 〈T ∗Θf, Eij〉 bH = 〈T ∗Θf,QEij〉 bH.

Therefore, T ∗ΘS
−1
Θ Θ∗

i eij = QEij, for all i ∈ I and j ∈ Ji. Also, for each f ∈ H we
have

QT ∗Λf =Q
( ∑

i∈I

∑
j∈Ji

〈{Λif}i∈I , Eij〉 bHEij

)
=

∑
i∈I

∑
j∈Ji

〈{Λif}i∈I , Eij〉 bHQEij

=
∑
i∈I

∑
j∈Ji

〈Λif, eij〉iT ∗ΘS−1
Θ Θ∗

i eij

=T ∗ΘS
−1
Θ

( ∑
i∈I

∑
j∈Ji

〈Λif, eij〉iΘ∗
i eij

)
.

Sine Λ and Θ are dual g-frames, {Λ∗i eij}i∈I, j∈Ji
and {Θ∗

i eij}i∈I, j∈Ji
are dual frames

(see [1, proposition 9]). Hence,

QT ∗Λf = T ∗ΘS
−1
Θ f, f ∈ H. (3.3)

If g ∈ P (Ĥ) and Qg = 0, then g = T ∗Λf for some f ∈ H and by (3.3)

0 = Qg = QT ∗Λf = T ∗ΘS
−1
Θ f.

Since T ∗Θ and S−1
Θ are injective, f = 0 and consequently g = 0. This means that

Q|P ( bH) is injective. On the other hand, if y ∈ Q(Ĥ) then y = T ∗Θh1 for some

h1 ∈ H, and h1 = S−1
Θ f for some f ∈ H. Hence,

y = T ∗Θh1 = T ∗ΘS
−1
Θ f = QT ∗Λf.

Therefore Q|P ( bH) is surjective.
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Now, we show that Q⊥|P⊥( bH) is injective. Let us consider Q⊥g = 0 for some

g ∈ P⊥(Ĥ). Then Qg = g, and we have

0 = 〈g, T ∗Λf〉 bH = 〈Qg, T ∗Λf〉 bH = 〈g,QT ∗Λf〉 bH = 〈g, T ∗ΘS−1
Θ f〉 bH,

for all f ∈ H. So g ∈ (Q(Ĥ))⊥ and g = Qg = 0.

Since Q|P ( bH) : P (Ĥ) → Q(Ĥ) is invertible, there exists δ > 0 such that

δ‖g‖ ≤ ‖Qg‖, g ∈ P (Ĥ).

Now, for g ∈ P (Ĥ) we have

‖Q⊥g‖2 = ‖g‖2 − ‖Qg‖2 ≤ (1− δ2)‖g‖2.

Therefore supg∈P ( bH),‖g‖=1 ‖Q⊥g‖ ≤ (1− δ2)
1
2 < 1. Similarly,

sup
h∈Q( bH),‖h‖=1

‖P⊥h‖ < 1.

Consequently by (3.2), ‖P−Q‖ < 1. Since ‖P⊥−Q⊥‖ = ‖P−Q‖ < 1, Q⊥|P⊥( bH) :

P⊥(Ĥ) → Q⊥(Ĥ) is onto (see [7]). �

In Theorem 7.3 of [4], the authors proved this dilation result: if F = {fi}i∈I

and G = {gi}i∈I are dual frames forH, then there is a Hilbert spaceH ⊂M and a

Riesz basis H = {hi}i∈I for M with PHhi = fi and PHh̃i = gi, where H̃ = {h̃i}i∈I

is the canonical dual of H and PH is the orthogonal projection from M onto H.
In the next theorem, we generalize mentioned dilation result to g-frames.

Theorem 3.4. Let Λ = {Λi ∈ B(H,Hi) : i ∈ I} and Θ = {Θi ∈ B(H,Hi) : i ∈
I} be dual g-frames for H with respect to {Hi}i∈I . Then there is a Hilbert space
H ⊂ M and a g-Riesz basis Γ = {Γi ∈ B(M,Hi) : i ∈ I} for M with Λi = ΓiPH
and Θi = Γ̃iPH for all i ∈ I, where PH is the orthogonal projection from M onto

H and Γ̃ = {Γ̃i ∈ B(M,Hi) : i ∈ I} is the canonical dual g-frame of Γ.

Proof. Let P and Q be the orthogonal projections from Ĥ onto RangeT ∗Λ and
RangeT ∗Θ, respectively. We consider

M = H⊕Q⊥(Ĥ).

Let T = Q⊥|P⊥( bH). Then by Proposition 3.3, T is an isomorphism of P⊥(Ĥ) onto

Q⊥(Ĥ). If S = T−1, then Q⊥S = IQ⊥( bH). In fact, if {gi}i∈I ∈ Q⊥(Ĥ), then there

exists {hi}i∈I ∈ P⊥(Ĥ) such that {gi}i∈I = T{hi}i∈I = Q⊥{hi}i∈I . Therefore

Q⊥S{gi}i∈I = Q⊥{hi}i∈I = {gi}i∈I .

We define the operators

ϕi : Q⊥(Ĥ) → Hi, ϕi(g) =
∑
j∈Ji

〈g,Q⊥Eij〉 bHeij,



64 M.R. ABDOLLAHPOUR

for all i ∈ I, where Eij is defined by (3.1). Then ϕ = {ϕi ∈ B(Q⊥(Ĥ),Hi) : i ∈ I}
is a Parseval g-frame for Q⊥(Ĥ). In fact, if g ∈ Q⊥(Ĥ) then

∑
i∈I

‖ϕig‖2
i =

∑
i∈I

∥∥∥ ∑
j∈Ji

〈g,Q⊥Eij〉 bHeij

∥∥∥2

i
=

∑
i∈I

∑
j∈Ji

|〈g,Q⊥Eij〉 bH|
2

=
∑
i∈I

∑
j∈Ji

|〈Q⊥g, Eij〉 bH|
2 =

∑
i∈I

∑
j∈Ji

|〈g, Eij〉 bH|
2 = ‖g‖2.

We claim that Θ and ϕ are strongly disjoint. Because, for g ∈ Q⊥(Ĥ) we have

〈
{Θif}i∈I , {ϕig}i∈I

〉
bH

=
∑
i∈I

〈Θif, ϕig〉i

=
∑
i∈I

〈 ∑
j∈Ji

〈Θif, eij〉ieij,
∑
k∈Ji

〈g,Q⊥Eik〉 bHeik

〉
i

=
∑
i∈I

∑
j∈Ji

〈Θif, eij〉i〈g,Q⊥Eij〉 bH

=
〈 ∑

i∈I

∑
j∈Ji

〈Θif, eij〉iQ⊥Eij, g
〉

bH

=〈Q⊥T ∗Θf, g〉 bH = 0,

for all f ∈ H. Now, we consider the bounded operators

ψi : Q⊥(Ĥ) → Hi, ψi(g) =
∑
j∈Ji

〈g, S∗P⊥Eij〉 bHeij,

for all i ∈ I. Since,

∑
i∈I

‖ψig‖2
i =

∑
i∈I

∥∥∥ ∑
j∈Ji

〈g, S∗P⊥Eij〉 bHeij

∥∥∥2

i
=

∑
i∈I

∑
j∈Ji

|〈g, S∗P⊥Eij〉 bH|
2

=
∑
i∈I

∑
j∈Ji

|〈Sg, P⊥Eij〉 bH|
2 =

∑
i∈I

∑
j∈Ji

|〈Sg,Eij〉 bH|
2 = ‖Sg‖2,

for all g ∈ Q⊥(Ĥ), So

1

‖S−1‖2
‖g‖2 ≤

∑
i∈I

‖ψig‖2
i ≤ ‖S‖2‖g‖2, g ∈ Q⊥(Ĥ).
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Consequentially, ψ = {ψi ∈ B(Q⊥(Ĥ),Hi) : i ∈ I} is a g-frame for Q⊥(Ĥ). Also
Λ and ψ are strongly disjoint. In fact,〈

{Λif}i∈I , {ψig}i∈I

〉
bH

=
∑
i∈I

〈Λif, ψig〉i

=
∑
i∈I

〈 ∑
j∈Ji

〈Λif, eij〉ieij,
∑
k∈Ji

〈g, S∗P⊥Eik〉 bHeik

〉
i

=
∑
i∈I

∑
j∈Ji

〈Λif, eij〉i〈g, S∗P⊥Eij〉 bH

=
〈 ∑

i∈I

∑
j∈Ji

〈Λif, eij〉iP⊥Eij, Sg
〉

bH

=〈P⊥T ∗Λf, Sg〉 bH = 〈0, Sg〉 = 0,

for all f ∈ H and g ∈ Q⊥(Ĥ).

We prove that ϕ and ψ are dual g-frames for Q⊥(Ĥ). Let g ∈ Q⊥(Ĥ), then∑
i∈I

ϕ∗iψig =
∑
i∈I

∑
j∈Ji

〈 ∑
k∈Ji

〈g, S∗P⊥Eik〉 bHeik, eij

〉
i
Q⊥Eij

=
∑
i∈I

∑
j∈Ji

〈g, S∗P⊥Eij〉 bHQ
⊥Eij

=Q⊥
( ∑

i∈I

∑
j∈Ji

〈Sg, P⊥Eij〉 bHEij

)
= Q⊥Sg = g.

(3.4)

Let us mention that in the first equality of (3.4), we used the fact,

ϕ∗i gi =
∑
j∈Ji

〈gi, eij〉iQ⊥Eij, i ∈ I, gi ∈ Hi. (3.5)

Proposition 3.1 implies that Γ = {Γi ∈ B(M,Hi) : i ∈ I} and ∆ = {∆i ∈
B(M,Hi) : i ∈ I} are dual g-frames for M, where Γi,∆i : M → Hi are defined
by

Γi(f ⊕ g) = Λif + ϕig, ∆i(f ⊕ g) = Θif + ψig,

for all i ∈ I. Now, we show that Γ is a g-Riesz basis. It is sufficient to show

that TΓ the synthesis operator of Γ is one to one. Let g = {gi}i∈I ∈ Ĥ and
TΓ({gi}) = 0. Then

TΓ({gi}) =
∑
i∈I

(Λ∗i gi ⊕ ϕ∗i gi) =
( ∑

i∈I

Λ∗i gi

)
⊕

( ∑
i∈I

ϕ∗i gi

)
= 0. (3.6)

Since g =
∑

i∈I

∑
j∈Ji

〈g, Eij〉Eij =
∑

i∈I

∑
j∈Ji

〈gi, eij〉Eij, (3.5) and (3.6) imply
that

Q⊥(g) =
∑
i∈I

∑
j∈Ji

〈gi, eij〉iQ⊥Eij = 0. (3.7)

Also, (3.6) implies that
∑

i∈I Λ∗i gi = 0. Therefore,

0 =
〈 ∑

i∈I

Λ∗i gi, f
〉
H

=
∑
i∈I

〈gi,Λif〉i = 〈g, {Λif}i∈I〉 bH, f ∈ H.
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These means that g ∈ P⊥(Ĥ) or P⊥g = g. So by (3.7), 0 = Q⊥g = Q⊥P⊥g. But

by Proposition 3.3, Q⊥|P⊥( bH) : P⊥(Ĥ) → Q⊥(Ĥ) is one to one, hence g = P⊥g =

0. Therefore Γ = {Γi}i∈I is a g-Riesz basis for M and again by Proposition 3.1,

∆ = {∆i}i∈I is a g-Riesz basis for M and [1, Proposition 12] implies that ∆i = Γ̃i.

It is clear that Λi = ΓiPH and Θi = Γ̃iPH, for all i ∈ I. �
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