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ABSTRACT. In this paper, we study disjoint, strongly disjoint and weakly dis-
joint g-frames in Hilbert spaces and we provide necessary and sufficient condi-
tions for disjointness, strongly disjointness and weakly disjointness of g-frames.
Also, by using the orthogonal projections in Hilbert spaces, we prove that dual
g-frames for a Hilbert space can be dilated to a g-Riesz basis for some larger
Hilbert space and its dual g-Riesz basis.

1. INTRODUCTION AND PRELIMINARIES

Let H be a separable Hilbert space. We call a sequence F' = {f;};c; C H a
frame for H if there exist two positive constants A, B such that

AIFIP <D KL PP < BIFIP, fenr. (1.1)

il
If in (1.1), A= B =1 we say that I’ = {f;},cs is a Parseval frame for H. Let
F = {fi}icr be a frame for H, then the operator

TF : lQ(I) — H, TF({Ci}iEI) - Zczfz
iel
is well define and onto, also its adjoint is
Tp:H = bL(I), Tp(f)=A{(f fi)tier

The operators Ty and T} are called the synthesis and analysis operators of frame
F = {fi}ier. The operator Sp = TpT} is called the frame operator of frame
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F = {f:}ie; which is bounded, invertible and positive. Also, for each f € H, we

have
F= U Se fi=DY (.S i) i (1.2)
i€l el
We recall that if I = {f;}icr and G = {g;}icr are frame for a Hilbert space H,
then G is called a dual frame of F if

F=Y (o)l feH
icl
In this case, we say that F, G are dual frames for H. Let F' = {f;}ic; be a frame
for a Hilbert space H and f; = Siztf;, for all i € I, then F= {fi}ie] is a frame
for H and by (1.2), F is a dual frame of F. We call F' the canonical dual of F.
A sequence F' = {f;};e; C 'H is called a Riesz basis for H, if span{ f; };c; = H and
there exist constants 0 < A < B < oo such that for every finite scalar sequence

{c;} one has
AY el < H > afi i <BY ol

The concepts of disjoint frames and strongly disjoint frames introduced by Han
and Larson [5]. These notions generalized to frames in Banach spaces by Casazza,
Han and Larson [4].

Definition 1.1. [5] Let F' = {f;}ic;r and G = {g;}ies be frames for Hilbert spaces
‘H and K, respectively. We say that
(1) F and G are disjoint, if {f; @ g;}ier is a frame for H & K.
(2) F and G are strongly disjoint, if there are invertible operators 77 € B(H)
and Ty € B(K) such that {T\fi}icr, {T2gi}tier and {T1f; ® Togi}icr ave
respective Parseval frames for H, K and ' H ® K.

Theorem 2.9 of [5] implies the following result.

Proposition 1.2. Let F' = {f;}ic; and G = {g;}icr be frames for Hilbert spaces
H and KC, respectively. Then
(1) F and G are disjoint if and only if RangeTy N RangeTy, = {0} and
RangeTy, + RangeT(. is a closed subspace of lo(I).
(2) F and G are strongly disjoint if and only if RangeTy. and RangeTy, are
orthogonal.

In 2006, Sun [10] introduced g-frames as a generalization of ordinary frames.
Throughout this paper, H and K are separable Hilbert spaces and (.,.) and
(., )k denote the inner product of H and K, respectively. Also, {H;}ics is a
sequence of separable Hilbert spaces and ||.||; and (.,.); denote the norm and
inner product of H;, for all + € I.

Definition 1.3. A sequence of bounded operators A = {A; € B(H,H;) :i € [ }is
called a g-frame for H with respect to {H; };cs if there exist two positive constants
Ap and By such that

AP < D INAIE < BallFIP, fen. (1.3)

el
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We call A = {A; € B(H,H;) : i € I} a tight g-frame for H with respect to
{H;}icr if Ax = By and Parseval g-frame, if Ay = By, = 1. A and B, are called
the lower and upper g-frame bounds, respectively. If the right hand inequality in
(1.3) holds for all f € H, then A = {A; € B(H,H;) : i € I} is called a g-Bessel
sequence for H with respect to {H;}ics. If there is no confusion, we will use the
phrase "g-frame for H” instead of “g-frame for H with respect to {H;}icr”.

Let A; € B(H,H;) be given for all i € I. Let us define the space

H = {{fi}iel tfi€ Hiaz Lfill? < OO}
el
with the inner product given by ({ fi}icr, {gi}ier)s = D_icr(fi> gi)s- 1t is clear that

H is a Hilbert space with respect to the point wise operations. It is proved in
9], A = {A; € B(H,H;) : i € I} is a g-Bessel sequence for H if and only if the
operator
Ta:H—H, Tal{fitier) =D _Aif; (1.4)
el
is well defined and bounded. In this case, the adjoint of T} is

Ty H—H, Tif={Af}icr

Also, a sequence A = {A; € B(H,H;) : i € I} is a g-frame for H if and only
if the operator T defined by (1.4) is bounded and onto. We call the operators
Ty and T}, the synthesis and analysis operators of A, respectively. If A = {A; €
B(H,H;) :i € I} is a g-frame for H, then

Sy H—H, Saf= ZAIAz’f
iel
is a bounded invertible positive operator [10] and every f € H has the following
representation

F=> Sy'AMAf =) NS (1.5)
iel iel
The operator Sy is called the g-frame operator of A. N
Let A = {A; € B(K,H;) : i € I} be a g-frame for H and let A; = A; Syt for all
i€l Then A ={A; € B(H,H;): i€ I}isa g-frame for H [10]. We can refer to
[1, 2, 8, 11], for some properties of g-frames in Hilbert spaces.
Definition 1.4. Let A={A; € B(H,H;):i€ I} and © ={0, € B(H,H;) : i €
I} be two g-frames for H such that
f=Y OiAf, feH,
iel

then we say that © is a dual g-frame for A or A and © are dual g-frames for H.

By (1.5), A is a dual g-frame for A, which is called the canonical dual of A.
Definition 1.5. We say a sequence A = {\; € B(H,H;) :i € [} is
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(1) a g-Riesz basis for H with respect to {H;}ic; if there exist two positive
constants A and B such that for any finite subset F' C I one has

2
AN Naill? < | > aia| < BY oz, g€ M,
el 1€l el

and A is g-complete, i.e.,

{fIAf =0,i €I} ={0}.
(2) a g-orthonormal basis for H with respect to {H,;}ies if for all f € H,
Yier 1M SIF = IIf11?, and

(A7gi, Nigj)n = 6i{9i, 95),  9i € Hi, g5 € Hy, i,j €1

2. DISJOINTNESS OF G-FRAMES

In this section we study disjointness, weakly disjointness and strongly disjoint-
ness of g-frames. First of all, we define these notions and related topics.

Definition 2.1. Let A = {A; € B(H,H;) : i € I} and © = {©; € B(K,H,) :
i € I} be g-frames for Hilbert spaces H and K, respectively. Then A and © are
called
(1) disjoint, if RangeTxNRangeTg = {0} and RangeT + RangeT¢ is a closed
subspace of H.
(2) strongly disjoint, if RangeTy 1 RangeTy.
(3) complementary pair, if RangeT N RangeTg = {0} and
RangeTy + Rangelq = H.
(4) strong complementary pair, if
RangeT; & RangeTy, = H.
(5) weakly disjoint if RangeTy N Rangeld = {0}.

Proposition 2.2. Let A = {A, € B(H,H;) : it € I} and © = {0, € B(K,H,) :
i € I} be g-frames for Hilbert spaces H and K, respectively. Then A and © are
strongly disjoint if and only if there exist invertible operators Ty € B(H) and
T, € B(’C) such that {AZTl S B(H,HZ) NS ]}, {@ZTQ S B(’C,Hl) NS ]}
and {A; € B(H® K, H,;) : i € I} are respective Parseval g-frames for H, K and
H & K, where

A HeK —H;,, A(feg) =MNf+ 01y,
foralli e I.
Proof. Let us consider T} = S, 2 and Ty = Sg?. Then Ay = {A\;T} € B(H,H,) :

i€ l} and ©; = {©,T, € B(K,H;) : i € I} are Parseval g-frames for H and K,
respectively. Also,

RangeTy = RangeTy , Rangelg = RangeTy, .
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For f € H and g € K we have
DlAf @9l =D AT+ 6:T2glf}

el el
=D INTFIE+ D 10T
el el
+ 2Re Z<Az’T1f> 0,1>9); (2.1)
el
=D INTFIE+ D 10T
el el

=117+ gl = [If @ gl
For the converse implication, we assume that the operators 77 € B(H) and
Ty € B(K) are invertible and Ay = {A; Ty € B(H,H;) : i € I} and ©; = {©,T €
B(KC,H;):ie€ I} and {A; € B(H® K, H;) : ¢ € I} are Parseval g-frames. From
(2.1), we have

Re Z<A1T1f7 @ZTQ‘Q% = O, f S H, g e IC. (22)
iel

If we replace g by ig in (2.2), then Re ), (A;T1f,i0;T5g); = 0 and therefore
[mZ<AiTlf7 0;159); =0, feH, gek.

iel
Hence RangeTy, L RangeTq, , consequently RangeTy 1 RangeTy. ]
Proposition 2.3. Let A = {A, € B(H,H;) : i1 € I} and © = {0, € B(K,H,) :
i € I} be g-frames for Hilbert spaces H and IC, respectively. Consider the opera-
tors
i HeK—H;, Li(feg) =ANf+06,g,
foralli € I. Then A and © are
(1) disjoint if and only if {T;}ier is a g-frame for H @& K with respect to
{Hi}ier,
(2) complementary pair if and only if {T';}ier is a g-Riesz basis for H & K
with respect to {H;}ier,
(3) strong complementary pair if and only if A and © are strongly disjoint
and {T';}ier is a g-Riesz basis for H & K,
(4) weakly disjoint if and only if

{feg:Ti(feg)=0Viel}={0}
Proof. 1t is easy and we omit the proof. O

Here we intend to state some examples about several kind of disjointness of
g-frames and related topics.

Example 2.4. Let {¢;};en and {h;};en be orthonormal bases for Hilbert spaces
H and K, respectively. Let H; = C?, for all i € N. We define the operators

Ai ‘T H— (C27 Alf = ((fv €i>'H7 <f7 €i+1>H>7
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and
62' K — C2> @Zg = (<g7 hi>/€7 <ga hi+1>/€>>
for all i € N. Then A = {A; € B(H,C?) :i € N} and © = {©; € B(K,C?) :i €
N} are g-frames for H and K, respectively. For fixed j € N we have
{Aiejtien = {Oih; bien = {0i5(1,0) bien,
where ¢;; is the Kronecker delta. Therefore, RangeTy N Rangeld # {0} and A
and © are not weakly disjoint. From the other hand, if

I HOK —C? Ti(feg)= <<f> ei)r + (g, hi)ic, (fs €ir1)m + (9, hi+1>ic>,
for alli € N. Then I' = {I'; € B(H ® K,C?) : i € N} is not a g-frame for H & K.
Since for fixed j € N, I';(—e; @ h;) =0, for all i € N, but —e; @ h; # 0.

Example 2.5. Let {fi}ieny and {g;}ien be frames for Hilbert spaces H and K,
respectively. Let n > 1 and let H; = C", for all : € N. We define the operators

A iH—C", Af= (<f, fz->H,0,...,O>,
and

. n _ <g7gz>lC
0;: K —=C" ©,9= m(0,1,1,...,1),
for all i € N. Then A = {A; € B(H,C") : i € N} and ©® = {©, € B(K,C") :
i € N} are g-frames for H and K, respectively. A and © are strongly disjoint
while A and © are not complementary pair, since {0;2(0,1,2,0,...,0) };en € H but
{6:2(0,1,2,0,...,0) }sen does not belong to RangeTs + RangeTd.

Example 2.6. Let {e;}ieny and {h;}ien be orthonormal bases for Hilbert spaces
H and K, respectively. Let H; = C*, for all i € N. Let us consider the operators

AiH—CY ANf= (<f; e2i), (f, 62@-1>H,0,0>>
and
@i . ’C - (C47 @lf = (07 07 <ga h2i>/€7 <g7 h2i*1>l€)7
for all i € N. Then A = {A; € B(H,C*) :i € N} and © = {©; € B(K,C*) :i €
N} are Parseval g-frames for H and K, respectively. Also, RangeTx L RangeTy.
If {(c1,, a6, €305 Cayi) bien € H and
f= Z C1,€24 + C2i€2-1, G = Z c3ihoi + caihoioq,
ieN ieN
then
{Aif Yien = {(c1,45¢2,4,0,0) Lien,  {©ig}ien = {(0,0, ¢34, €a) bien
So
{A;ftien + {Oigtien = {(c1,i, 2,0, €34, Cai) Fien-

This implies that RangeTy + Rangelg = H. Consequently, A and © are strongly
complementary pair. Also, if we consider

I HOK—C, Ti(feg) = <<f, e2i)r: ([, €2i—1) %, (9, hai) ey (95 h2i—1>l€>>
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for all i € N. Then I' = {T'; € B(H® K,C?) : i € N} is a g-orthonormal basis for
HoK.

3. DILATION OF DUAL G-FRAMES

It is proved in [4], dual frames in a Hilbert space can be dilated to a Riesz
basis for a larger Hilbert space and its dual Riesz basis. Also, the authors of
[6] showed that the mentioned dilation theorem is valid for Hilbert C*-module
dual frame pairs. Following the section 7 of [1], we intend to answer this dilation
question: if A = {A; € B(H,H;) :i € I} and © = {©, € B(H,H;) : i € I}
are dual g-frames for H with respect to {H;}ics, is there a Hilbert space H C M
and a g-Riesz basis I' = {I'; € B(M,H;) : i € I} for M with A; = ['; Py and
©; = I'iPy for all ¢ € I, where Py is the orthogonal projection from M onto H
and I' = {I"; € B(M,H;) : i € I} is the canonical dual g-frame of I'?

We first prove the next proposition, which has important role in the proof of The-
orem 3.4 of this section. By proving Theorem 3.4, we answer pervious question
affirmatively.

Proposition 3.1. Let A = {A; € B(H,H;) :i € 1} and © = {©;, € B(H,H,) :
i € I} be dual g-frames for H. Let ¥ = {V;, € B(K,H;) : i € I} and & =
{®; € BIK,H;) : i € I} be dual g-frames for K. If A and © are are strongly
disjoint with ® and ¥, respectively, then I' = {I'; € B(H® K, H;) : i € I} and
A={A, e BBH®K,H;):i € I} are dual g-frames for H & K, where

Li(f®g)=MNf+Wig, A(fDg)=06if+ g,

foralli € I. Moreover, if I is a g-Riesz basis for H@® I then A is a g-Riesz basis
for H& K.

Proof. 1t is clear that I and A are g-Bessel sequences for HBK. Let fdg € HBIC,
then

STTIA(f @ g) =S THO.f + Dig)

el i€l
=Y A(Oif + Dig) © UF(O:f + Byg)
i€l
:(ZA;@J + ZA;-“@Z-g) ® (Z‘P?@zf + Z‘I’f@if’)
i€l i€l i€l iel
=f®g.

Therefore I' and A are g-frames for H @ KC (see [9]). Now, if I' is a g-Riesz basis
for H@® K then by Proposition 12 of [1], I" has only one dual g-frame and this dual
g-frame is the canonical dual of I". Theorem 5 of [1] implies that the canonical
dual of a g-Riesz basis, also is a g-Riesz basis. Therefore A is a g-Riesz basis for

HoK. O

Example 3.2. Let F' = {f;}icr and G = {g; }ier be frames for Hilbert spaces H
and K, respectively. Let H; = C2, for all i € I. We define the operators

N H—C* ANf= <<f7 fi>H70>,
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and

O H = 0uf = ({871, fibu.0),
foralli € I. Then A = {A; € B(H,C?) :ie€l}and © ={0; € B(H,C?) :ic I}
are g-frames for H. Also

SN0 = SN (IS5 S 0) = SUSE S finefi = £ fEM.

il il i€l

Therefor, A and © are dual g-frames for H. We define
wi K — CQ? wlg = <07 <gagi>’C>7

and

6 K= g = (0,(55'9,90)x).
for all i € I. Then ¢ = {¢); € B(K,C?):i €I} and ¢ = {¢; € B(K,C?) :i eI}
are g-frames for IC. Also

Zl/} ¢ig = Z¢ ( G 9 gz> > = Z<S(_;lgagi>ngi =g, gek.

el el el

Therefor, 1 and ¢ are dual g-frames for K. From the other hand, A and © are
strongly disjoint with ¢ and v, respectively. Let us consider

NiHeK—C T @)= ((f i (9.90x).
and
AHOK - C Oi(f @ g) = ((S5'f fibws (S&'9. 90x )
for all 7 € I. Then
F:(ChCQ) :lei@czgh ZG],

and a simple computation shows that

Y TiN(feg =feg fogeHaKk,

iel
which Proposition 3.1 also confirm this fact.

Let {ei;}jes, be an orthonormal basis for H; for each i € I. It is proved in [9],
{Ei;}Yier, jes; is an orthonormal basis for H, where

y i el-j, Z = k’
En={ 5 L 5.1)
Let M and N be closed subspaces of a Hilbert space H. Let P and () be orthogonal
projections from H onto M and N, respectively. It is proved in [3] that

IP-Q =max{ suw [Q*gl, sup [P-A|}. (3.2)

gEM,||g|=1 heN,||h|=1
We use above facts in the rest of this paper.
We mention that if ' = {f;}ic; and G = {g;}ic; are dual frames for a Hilbert

space H and P, () are the respective orthogonal projections of I5(1) onto RangeT}.
and RangeTf;, then the followings hold [4, Proposition 7.2]:
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(1) for all i € I, T3Sz fi = Pe.

(2) PTy = TpSy'. Therefore, Plou,my @ Q(l2(I)) — P(lo(I)) is an onto
isomorphism. Similarly, P*|g1g,zy) @ @ (l2(I)) — P*(Ix(1)) is an onto
isomorphism .

In the next proposition, we generalize this result to g-frames.

Proposition 3.3. Let A = {\; € B(H,H;) : i € I} and © = {©; € B(H,H,) :
i € I} be dual g-frames for H. Let P and Q be the orthogonal projections from
H onto RangeTly and Rangely, respectively. Then we have

(1) For alli € I and j € J;, T5Sg'Ofei; = QEy;.
(2) QT; = T5S5"
Therefore, Q|P(ﬁ) : P(?—A() — Q(ﬁ) s an onto isomorphism. Similarly, QL\PL(ﬁ) :
PL(H) — Q*(H) is an onto isomorphism.
Proof. For f € H we have
(T.f, T6Se O i)y =(f, TeTéSe O} eij)n = (f, Oei;)n
=(0if,ei5)i = (T6 1, Eij) g = (T6f, QFij) -

Therefore, TgSél@;keij = QL;;, for alli € I and 5 € J;. Also, for each f € H we
have

QTif =Q( 30 (NS Yier, i)y

icl jEJ;

=D D {Aifbier Ei)gQE;

i€l jed;

=3 ) (Nife)iT5Se' O;ey

i€l jeld;

~T556" (30D (Aif ei)®iei ).

el jGJZ'
Sine A and O are dual g-frames, {Afe;;}ier, jes, and {Ofe;; }ier, jes; are dual frames
(see [1, proposition 9]). Hence,

OTif = T35, fen. (33)
Ifge P(?’A{) and Qg = 0, then g = T} f for some f € H and by (3.3)
0=Qg=QTyf =T55' /.

Since T and Sg' are injective, f = 0 and consequently g = 0. This means that
Q’P(ﬁ) is injective. On the other hand, if y € Q(H) then y = T§h, for some
hi € H, and hy = S(glf for some f € H. Hence,

y=Toh1 =T5S6' [ = QT}f.

Therefore Q| p(fy) 18 surjective.
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Now, we show that Q| PL(F) is injective. Let us consider Q+g = 0 for some
g€ PL(ﬁ). Then Qg = g, and we have

0="{g,Txf)s; = Q9. T f)z; = (9. QTx ) s = (9, T6S6" ) 7»

for all f € H. Soge€ (Q(ﬁA))L and g = Qg = 0.
Since Q|p ) 1 P(H) — Q(H) is invertible, there exists > 0 such that

ollgll < lIQgll, g € P(H).
Now, for g € P(H) we have
1Q*glI* = llgl* = QglI* < (1 = 6%)llg]I*.
Therefore sup ¢ psy 4121 Qg < (1 —62)2 < 1. Similarly,

sup  ||Pthl < 1.

heQ(H),||k||=1
Consequently by (3.2), [P—Q]| < 1.Since [P+ —Q*|| = [P=Q[ < 1, Q" |p1 (5 :
PL(H) — Q*(H) is onto (see [7]). O

In Theorem 7.3 of [4], the authors proved this dilation result: if F' = {f;}ics
and G = {¢;}ier are dual frames for H, then there is a Hilbert space H C M and a
Riesz basis H = {h;}ic; for M with Pyh; = f; and Pyh; = g;, where H= {ﬁi}iel
is the canonical dual of H and Py is the orthogonal projection from M onto H.
In the next theorem, we generalize mentioned dilation result to g-frames.

Theorem 3.4. Let A={\, e B(H,H;): i €1} and © ={0; € B(H,H;) : i €
I} be dual g-frames for H with respect to {H;}icr. Then there is a Hilbert space
H C M and a g-Riesz basis I' = {I'; € B(M,H;) :i € I} for M with A; = T'; Py
and ©; = fZPH for all i € I, where Py is the orthogonal projection from M onto
H and T = {I; € B(M,H;) : i € I} is the canonical dual g-frame of T,

Proof. Let P and @) be the orthogonal projections from H onto RangeTy and
RangeTd, respectively. We consider

M=H&Q (H).
Let T = QHPL(?’{)‘ Then by Proposition 3.3, T is an isomorphism of PL(TA[) onto
QL(?A{) If S =T7"!, then Q+S = Iy In fact, if {gi}ier € QL(ﬁ), then there
exists {h;}ic; € PL(H) such that {g;}ic; = T{hi}icr = Q+{hi}ics. Therefore
QLS{gi}iGI = QL{hz‘}z‘el = {gz’}iel-
We define the operators
@i QL(ﬁ) —Hi, wilg) = Z<Q>QLEij>ﬁeija

JE€J;
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for all i € I, where E;; is defined by (3.1). Then ¢ = {p; € B(Q+(H), H;) ;i € I}
is a Parseval g-frame for Q1 (H). In fact, if g € Q*(H) then

> el = ZHZ (9. Q" Ey) Heu

=3 9. Q@ Ei)zl*

i€l el jeJd; i€l jed;
=22 Q9. Eu)al = >_ > _Ilg. Es)al’ = lgll*
i€l jed; el jed;

We claim that © and ¢ are strongly disjoint. Because, for g € QL(TA() we have

<{@if}iel7 {@ig}ief>ﬁ = Z<®if7 ©ig)i

el
=>. < > (Oif,ei)iei Y (g, QLE““MGMZ
icl jed; keJ;
=" SOt eis)ile, @ By
iel jeJ;
(X et Byus),
el jed;

:<QLT(3f7 g>ﬁ =0,

for all f € H. Now, we consider the bounded operators

Vit QH(H) = Hi, dilg) = > (9.5 P Eyj)zeis,

Jj€J;

for all 7 € I. Since,

Z ||w7,g||2 Z H Z 9g; S*PLEU ’Hem

=3 g, S P Ey)gl

el el jeJd; el jed;
=33 Sg. P*Epgl =" (S, Eqy)al* = 1S9l
i€l jed; i€l jed;

for all g € Q+(H), So

el < 3 Il < ISIENl®, 9 € Q.

el
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Consequentially, ¢ = {¢; € B(Q+(H), ;) : i € I} is a g-frame for Q+(H). Also
A and 9 are strongly disjoint. In fact,

<{Az’f}i617 {¢19}iel>ﬁ = Z<Aif, ¢i9>i

iel
_Z < Z (Aif, eijhieis, Z(g, S*PLE““meik%
icl  jeJ; keJ;
=3 ) (Aif,ei)ilg. STPLEy)
iel jeJ;
:<ZZ<AJ, eij>iPLEij759>ﬁ
€l jed;

=(P T3 f,99)5 = (0,59) = 0,
for all f € H and g € Q+(H).
We prove that ¢ and ¢ are dual g-frames for Q*(H). Let g € Q*+(H), then

Z @fq/fz‘g = Z Z < Z<g’ S*PLEik>ﬁeik:a eij>iQJ_Eij

el el jeJ; keJ;

=22 (9.5 PLB)RQ By (3.4)

iel jeJ;

—QL(ZZ (Sg, P*Ey) ) Q" Sg=gy.

el jed;

Let us mention that in the first equality of (3.4), we used the fact,
©i9i = Z(gheij%QLEij? i€1,9; € Hi. (3.5)

Jje€J;
Proposition 3.1 implies that I' = {I'; € B(M,H;) : i € I} and A = {A; €
B(M,H;) : i € I} are dual g-frames for M, where I';; A; : M — H; are defined
by
Li(f @ 9) = Nif + g9, Ai(f D g) =0if + g,
for all + € I. Now, we show that ' is a g-Riesz basis. It is sufficient to show

that Tt the synthesis operator of I" is one to one. Let g = {g;}ics € H and
Tr({g:}) = 0. Then

Tr({g:}) = Y (Ajg: ® ¢}91) (Z A*gz> @ (Z sOZ‘gz) =0.  (3.6)

i€l
Since g = > ¢, Zjeji (9, Eij) Bij = 3 ics Zjeji (9i, €i5) Eij, (3.5) and (3.6) imply
that
= Z Z<gz’, €ij)iQ Eij = 0. (3.7)
el jed;

Also, (3.6) implies that )., Afg; = 0. Therefore,
0= <ZA:9iv f>H - Z<giaAif>i = (9. {Aiftier),  fEH.

el i€l
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These means that g € Pl(ﬁ) or Ptg=g.Soby (3.7), 0 = Qtg = Q+P+g. But
by Proposition 3.3, QHPL(Q) : PL(?{) — Ql(ﬁ) is one to one, hence g = Ptg =
0. Therefore I' = {I'; };¢s is a g-Riesz basis for M and again by Proposition 3.1,
A = {A;}ier is a g-Riesz basis for M and [1, Proposition 12] implies that A; = L.
It is clear that A; = I[Py and ©; = I, Py, for all i € I. O
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