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Abstract. For any n × n nonnegative matrix A, and any norm ‖.‖ on Rn,
η‖.‖(A) is defined as sup {‖A⊗x‖

‖x‖ : x ∈ Rn
+ , x 6= 0}. Let P (λ) be a matrix

polynomial in the max algebra. In this paper, we introduce η‖.‖[P (λ)], as a
generalization of the matrix norm η‖.‖(.), and we investigate some algebraic
properties of this notion. We also study some properties of the maximum
circuit geometric mean of the companion matrix of P (λ) and the relationship
between this concept and the matrices P (1) and coefficients of P (λ). Some
properties of η‖.‖(Ψ), for a bounded set of max matrix polynomials Ψ, are also
investigated.

1. Introduction and preliminaries

The max algebra consists of the set (semiring) of nonnegative real numbers
equipped with the basic operations of multiplication a⊗b = ab, and maximization
a⊕ b = max{a, b}. In fact, the algebraic system max algebra and its isomorphic
versions provide an attractive way of describing a class of nonlinear problems ap-
pearing for instance in manufacturing and transportation scheduling, information
technology, discrete event-dynamic systems, combinatorial optimization, mathe-
matical physics and etc., see, e.g., [3], [6], [7], [8], [11] and [13] and references
cited there, for a description of such systems and their applications. During the
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last years, the max version of the classical concepts about matrices has attention,
and several results have been obtained; see e.g., [4], [5], [9], [10], [15], [17] and
[19].
Let R+ be the set of all nonnegative real numbers and Mm×n(R+) be the set of all
m×n nonnegative real matrices. The notions Mn(R+) and Rn

+ are considered for
Mn×n(R+) and Mn×1(R+), respectively. Mm×n(R), by analogy with Mn×n(R+), is
considered. For A = (aij) ∈ Mn(R), we say A is positive (nonnegative) and write
A > 0 (A ≥ 0) if aij > 0 (aij ≥ 0) for 1 ≤ i, j ≤ n. Let A = (aij) ∈ Mm×n(R+)
and B = (bij) ∈ Mn×k(R+). The product of A and B in the max algebra is denoted
by A ⊗ B, and (A ⊗ B)ij = maxk=1,...,n(aikbkj). The notation A2

⊗ means A ⊗ A,
and Ak

⊗ denotes the kth power of A. If B = (bij) ∈ Mm×n(R+), then the sum of
A and B in the max algebra is denoted by A⊕B and (A⊕B)ij = max{aij, bij}.
For A ∈ Mn(R+), the weighted directed graph D(A) associated with A has ver-
tices 1, . . . , n, and there is an edge from i to j with weight aij if and only if
aij > 0. A path of length k is a sequence of k edges (i1, i2), (i2, i3), . . . , (ik, ik+1).
A circuit of length k is a sequence of k edges (i1, i2), (i2, i3), . . . , (ik−1, ik), (ik, i1),
where i1, . . . , ik are distinct. This is a path with ik+1 = i1 and i1, . . . , ik are
distinct. Associated with this circuit is the circuit geometric mean known as
(ai1i2ai2i3 . . . aiki1)

1
k . Note that circuits (i1, i1) of length 1 (loops) are included

here and that we also consider empty circuits, i.e., circuits that consist of only
one vertex and have length zero. For empty circuits, the associated circuit geo-
metric mean is zero. The maximum circuit geometric mean in D(A) is denoted
by µ(A). A circuit with circuit geometric mean equal to µ(A) is called a critical
circuit. For more details see [14, Chapter 8].
Let A ∈ Mn(R+). A scalar λ is called a right max eigenvalue of A if A⊗x = λx for
some nonnegative vector x 6= 0, namely, max1≤j≤n(aijxj) = λxi ; i = 1, 2, . . . , n.
The vector x is called a right max eigenvector of A corresponding to λ. In this
sense, (λ, x) is called a right max eigenpair of A. The set of all right max eigen-
values of A is called the max spectrum of A, and denoted by σm(A). Also a scalar
λ is called a left max eigenvalue of A if xT ⊗A = λxT for some nonnegative vector
x 6= 0. The vector x is called a left max eigenvector of A corresponding to λ. In
this sense, (λ, x) is called a left max eigenpair of A. The following theorem, which
is known as the max version of the Perron-Ferbenius theorem(see [14, Theorem
8.4.4]), is important in the context of matrices over the max algebra.

Theorem 1.1. [4]; Let A ∈ Mn(R+) be an irreducible matrix. Then µ(A) is the
unique max eigenvalue of A and every corresponding max eigenvector is positive.

At the end of this section, we study matrix polynomials in the max algebra;
for more information see [12]. Suppose that

P (λ) = A0 ⊕ λA1 ⊕ · · · ⊕ λm−1Am−1 (1.1)

is a max matrix polynomial, where A0, A1, . . . , Am−1 are in Mn(R+), λ ∈ R+, and
m is a positive integer. The numbers (m− 1) and n are considered as the degree
and the order of P (λ), respectively. Let k, τ ∈ R+. We say, see e.g., [12], that
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(1) The real number k ≥ 0 is a right max eigenvalue of P (λ) with correspond-
ing right max eigenvector v ≥ 0 if P (k)⊗ v = kmv. In this sense, (k, v) is
called a right max eigenpair of P (λ).

(2) The real number τ ≥ 0 is a left max eigenvalue of P (λ) with corresponding
left max eigenvector w ≥ 0 if wT ⊗ P (τ) = τmwT . In this sense, (τ, w) is
called a left max eigenpair of P (λ).

The set of all right max eigenvalues of the max matrix polynomial P (λ) as in
(1.1), is called the max spectrum of P (λ), and is denoted by σm[P (λ)].
The companion matrix of P (λ) is defined as

CP =


0 I · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 I
A0 A1 · · · Am−2 Am−1

 ∈ Mnm(R+). (1.2)

Proposition 1.2. [12]; Let P (λ) be a max matrix polynomial as in (1.1), and
CP as in (1.2), be the companion matrix of P (λ). Then (k, v) ∈ R+ × Rn

+ is
a right max eigenpair of P (λ) if and only if (k, v̂) ∈ R+ × Rmn

+ is a right max
eigenpair of CP , where

v̂ =


v
kv
...

km−1v

 .

Also, (τ, w) ∈ R+ × Rn
+ is a left max eigenpair of P (λ) if and only if (τ, ŵ) ∈

R+ × Rmn
+ is a left max eigenpair of CP , where

ŵ =


1
τ
AT

0 ⊗ w
( 1

τ2 A
T
0 ⊕ 1

τ
AT

1 )⊗ w
...

( 1
τm−1 A

T
0 ⊕ 1

τm−2 A
T
1 ⊕ · · · ⊕ 1

τ
AT

m−2)⊗ w
w

 .

Consequently, σm[P (λ)] = σm(CP ).

The study of matrix polynomials in the conventional algebra has along history,
and they arise in many applications and their spectral analysis is very important
when studying linear systems of ordinary differential equations with constant
coefficients, and also stability theory; see e.g., [1, 2] and [18] and references cited
there. In this paper, we study some results about matrix polynomials in the
max algebra. The emphasis is on the relationship between the maximum circuit
geometric mean of the max matrix polynomial P (λ) as in (1.1), namely µ(CP ),
where CP is as in (1.2), and the matrices P (1), and A0, A1, . . . , Am−1. Some
properties of η‖.‖(Ψ), for a bounded set of max matrix polynomials Ψ, are also
investigated.
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2. Main results

Associated with any norm ‖.‖ on Rn and A ∈ Mn(R+), the notion of η‖.‖(A) was
first introduced by Y.Y. Lur in [15] (see also [16]) as

η‖.‖(A) = sup {‖A⊗ x‖
‖x‖

: x ∈ Rn
+ , x 6= 0}. (2.1)

It is the max version of the definition of operator norm in functional analysis. He
used this notation to study the max algebra version of the joint spectral radius,
and some other concepts. Now, we introduce this notion for matrix polynomials
in the max algebra.

Definition 2.1. Let P (λ) = A0 ⊕ λA1 ⊕ · · · ⊕ λm−1Am−1 be a max matrix
polynomial as in (1.1), and ‖.‖ be a vector norm on Rn. The symbol η‖.‖[P (λ)]
is defined as

η‖.‖[P (λ)] := max{ η‖.‖(A0), . . . , η‖.‖(Am−1)},
where η‖.‖(.) is as in (2.1).

Next we want to state some properties of η‖.‖(.) for max matrix polynomials.
We recall that a norm ‖.‖ on Rn is called monotone if the inequality |x| ≤ |y|
implies that ‖x‖ ≤ ‖y‖ for all x, y ∈ Rn. Also, the induced matrix norm by ‖.‖
on Mn(R) is defined by ‖A‖ = max‖x‖=1 ‖Ax‖, where A ∈ Mn(R), see e.g., [14,
p. 292]. If A0, . . . , Am−1 are matrices in Mn(R+), the multigraph associated with
A0, . . . , Am−1 is denoted by M . Thus, M consists of the vertices {1, . . . , n} with

an edge of weight a
(p)
ij from i to j for every p, where a

(p)
ij > 0 is (i, j)-entry of

Ap for p = 0, . . . ,m − 1. A cycle in the multigraph M is a sequence of vertices
i1, i2, . . . , ik, ik+1 = i1, where i1, i2, . . . , ik are distinct and edges with weights

a
(pj)
ijij+1

> 0, where j = 1, 2, . . . , k, and p1, p2, . . . , pk are in {0, . . . ,m − 1}. The

geometric mean of a cycle in M and the maximal cycle geometric mean µ(M) of
M are defined as similar to a simple graph; see section 1, and for more information
see [12].
In the following propositions, we study the relationship between µ(CP ) and µ(Aj),
where P (λ) = A0⊕λA1⊕· · ·⊕λm−1Am−1 is a max matrix polynomial as in (1.1)
with the companion matrix CP as in (1.2).

Proposition 2.2. Let P (λ) = A0 ⊕ λA1 ⊕ · · · ⊕ λm−1Am−1 be a max matrix
polynomial as in (1.1). Then max{ µ(A0), . . . , µ(Am−1)} ≤ µ(P (1)).

Proof. Let M be the multigraph associated with nonnegative matrices

A0, . . . , Am−1,

and µ(M) denote the maximal cycle geometric mean of M . It is clear that
max{ µ(A0), . . . , µ(Am−1)} ≤ µ(M). So the result follows from [12, Lemma 5.1].

�

Proposition 2.3. Let P (λ) = A0 ⊕ λA1 ⊕ · · · ⊕ λm−1Am−1 be a max matrix
polynomial as in (1.1) with the companion matrix CP as in (1.2). If µ(P (1)) ≤ 1,
then max{ µ(A0), . . . , µ(Am−1)} ≤ µ(CP ).
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Proof. By [12, Corollary 5.2], µ(P (1)) ≤ µ(CP ). So, the result follows from
Proposition 2.2. �

Proposition 2.4. Let P (λ) = A0 ⊕ λA1 ⊕ · · · ⊕ λm−1Am−1 be a max matrix
polynomial as in (1.1) with the companion matrix CP as in (1.2). If µ(CP ) =
µ(P (1)) < 1, then

µ(CP ) = max{ µ(A0), . . . , µ(Am−1)} = µ(Am−1).

Proof. Proposition 2.3 implies that max{ µ(A0), . . . , µ(Am−1)} ≤ µ(CP ). Since
µ(CP ) = µ(P (1)) and µ(P (1)) 6= 1, by [12, Corollary 5.3], µ(CP ) = µ(Am−1).
Therefore,

max{ µ(A0), . . . , µ(Am−1)} ≤ µ(CP ) = µ(Am−1) ≤ max{ µ(A0), . . . , µ(Am−1)}.
Hence, the result holds. �

Next to study η‖.‖[.] for max matrix polynomials, we need the following Lemma.

Lemma 2.5. Let A, B ∈ Mn(R+), and ‖.‖ be a monotone norm on Rn. Then

η‖.‖(A⊕B) ≤ η‖.‖(A) + η‖.‖(B).

Proof. We know that a ⊕ b = a + b
2

+ |a − b|
2

for any a, b ∈ R. Let x, y ∈ Rn
+

be arbitrary. Since ‖.‖ is monotone and |x− y| ≤ x + y, ‖ |x− y| ‖ ≤ ‖x + y‖,
and hence,

‖x⊕ y‖ ≤ ‖x + y

2
‖+ ‖|x− y|

2
‖ ≤ ‖x‖+ ‖y‖

2
+
‖x‖+ ‖y‖

2
= ‖x‖+ ‖y‖.

So, by (2.1) and the fact:

(A⊕B)⊗ x = (A⊗ x)⊕ (B ⊗ x),

the result holds. �

The sum and product of two max matrix polynomials:

P (λ) = A0 ⊕ λA1 ⊕ · · · ⊕ λm−1Am−1 and Q(λ) = B0 ⊕ λB1 ⊕ · · · ⊕ λm−1Bm−1,

are defined and denoted, respectively, by

P (λ)⊕Q(λ) = C0 ⊕ λC1 ⊕ · · · ⊕ λm−1Cm−1, where Cj = Aj ⊕Bj (2.2)

P (λ)⊗Q(λ) = C0⊕λC1⊕· · ·⊕λ2m−2C2m−2, where Cj = ⊕j
i=0 (Ai⊗Bj−i). (2.3)

The notation (P (λ))k
⊗ means P (λ)⊗ · · · ⊗ P (λ)︸ ︷︷ ︸

k−times

.

Theorem 2.6. Let P (λ) = A0⊕λA1⊕· · ·⊕λm−lAm−1, and Q(λ) = B0⊕λB1⊕
· · ·⊕λm−1Bm−1 be two max matrix polynomials, and ‖.‖ be a monotone norm on
Rn. Then the following assertions are true:

(1) η‖.‖[P (λ)] = 0 ⇔ P (λ) = 0;
(2) η‖.‖[αP (λ)] = |α|η‖.‖[P (λ)], where α ∈ R;
(3) If µ(CP ) = µ(P (1)) < 1, then µ(CP ) ≤ η‖.‖[P (λ)];
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(4) η‖.‖[P (λ) ⊕ Q(λ)] ≤ η‖.‖[P (λ)] + η‖.‖[Q(λ)], where P (λ) ⊕ Q(λ) is as in
(2.2);

(5) η‖.‖[P (λ) ⊗ Q(λ)] ≤ (2m − 1)η‖.‖[P (λ)] η‖.‖[Q(λ)], where P (λ) ⊗ Q(λ) is
as in (2.3).

Proof. Definition 2.1 is used to prove all parts.
By [15, Lemma 1(ii) and (iii)], the results in (1) and (2) are trivial.
To prove (3), by Proposition 2.4 and [15, Lemma 1(vi)], we have µ(CP ) =
µ(Am−1) ≤ η‖.‖(Am−1). So the result holds.
By Lemma 2.5, the proof of (4) is clear.
To prove (5), let P (λ) ⊗ Q(λ) = C0 ⊕ λC1 ⊕ · · · ⊕ λ2m−2C2m−2, where Cj =

⊕j
i=0(Ai ⊗Bj−i). Using Lemma 2.5 and [15, Lemma 1(v)], we have

η‖.‖(Cj) ≤
j∑

i=0

η‖.‖(Ai ⊗Bj−i)

≤
j∑

i=0

η‖.‖(Ai) η‖.‖(Bj−i)

≤ (j + 1) η‖.‖[P (λ)] η‖.‖[Q(λ)].

Hence, the result holds. �

Suppose V = { P (λ) : P (λ) = A0 ⊕ λA1 ⊕ · · · ⊕ λmAm, where m ∈ N ∪ {0},
λ ∈ R, Aj ∈ Mn(R)}. We define the operation ⊕ on V as in (2.2). It is clear
that V is a real vector space. Let ‖.‖ be a norm on Rn and P (λ) ∈ V . We define

‖P (λ)‖ = max{ ‖A0‖, . . . , ‖Am−1‖}, (2.4)

where ‖Aj‖ is the induced matrix norm by the vector norm ‖.‖. Clearly, ‖.‖ is a
vector norm on the vector space V . So, V is a real normed vector space. Next,
the following inequality, that is established for max matrix polynomial, is similar
to [15, Lemma 2].

Proposition 2.7. Let ‖.‖ be a norm on Rn. Then there exist positive constants
K1 and K2 such that for every P (λ) ∈ V ,

K1 η‖.‖[P (λ)] ≤ ‖P (λ)‖ ≤ K2 η‖.‖[P (λ)].

Proof. By [15, Lemma 2], there exist K1 > 0 and K2 > 0 such that

K1 η‖.‖(A) ≤ ‖A‖ ≤ K2 η‖.‖(A),

for any n×n nonnegative matrix A. Let P (λ) = A0⊕λA1⊕· · ·⊕λm−1Am−1 ∈ V
be given. So,

K1 η‖.‖(Ai) ≤ ‖Ai‖ ≤ K2 η‖.‖(Ai),

for all i = 1, . . . ,m − 1. Now the result follows from Definition 2.1 and relation
(2.4). �
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Associated with any norm ‖.‖ on Rn and A ∈ Mn(R+), the following notion
was first introduced by Y.-Y. Lur in 2005, see e.g, [16], as

η̂‖.‖(A) = lim sup
k→∞

[ η‖.‖(A
k
⊗) ]

1
k . (2.5)

Now, we introduce this notion for max matrix polynomials.

Definition 2.8. Let P (λ) = A0 ⊕ λA1 ⊕ · · · ⊕ λm−1Am−1 be a max matrix
polynomial as in (1.1), and ‖.‖ be a vector norm on Rn. We define

η̂‖.‖[P (λ)] = max{ η̂‖.‖(A0), . . . , η̂‖.‖(Am−1)},

where η̂‖.‖(.) is as in (2.5).

In the following theorem, we study the relationship between µ(CP ) with
η‖.‖[P (λ)] and η̂‖.‖[P (λ)].

Theorem 2.9. Let P (λ) = A0⊕λA1⊕· · ·⊕λm−1Am−1 be a max matrix polynomial
as in (1.1) with the companion matrix CP as in (1.2). If µ(CP ) = µ(P (1)) < 1,
then the following assertions are true:

(1) η‖.‖[P (λ)] < 1 for some norm ‖.‖ on Rn;
(2) η̂‖.‖[P (λ)] < 1 for some norm ‖.‖ on Rn.

Proof. Using Proposition 2.4, we have µ(Ai) < 1 for all i = 0, 1, . . . ,m− 1. Then
by [16, Theorem 2], there exists a norm ‖.‖ on Rn such that η‖.‖(Ai) < 1 and
η̂‖.‖(Ai) < 1. Hence, by Definitions 2.1 and 2.8, the results hold. �

Proposition 2.10. Let P (λ) = A0⊕λA1⊕· · ·⊕λm−1Am−1 be a max matrix poly-
nomial as in (1.1) with the companion matrix CP as in (1.2). Then η‖.‖[P (λ)] < 1
for some norm ‖.‖ on Rn if and only if η̂‖.‖[P (λ)] < 1 for some norm ‖.‖ on Rn.

Proof. By [16, Theorem 2] and Definitions 2.1 and 2.8, the result is trivial. �

At the end of this section, we want to introduce and study η‖.‖(Ψ) for a set
Ψ of matrix polynomials in the max algebra. For this mind, let k be a positive
integer. The notion Ψk

⊗ denotes the following set:

Ψk
⊗ = {P1(λ)⊗ · · · ⊗ Pk(λ) : Pi(λ) ∈ Ψ , i = 1, . . . , k}.

Let ‖.‖ be a norm on Rn. We know that Ψ is bounded if there exists a M > 0
such that ‖P (λ)‖ ≤ M for all P (λ) ∈ Ψ. Hence, in view of Proposition 2.7, Ψ
is bounded if and only if there exists a M > 0 such that η‖.‖[P (λ)] ≤ M for all
P (λ) ∈ Ψ.

Definition 2.11. Let ‖.‖ be a norm on Rn, and Ψ be a bounded set of max
matrix polynomials. The notion of η‖.‖(Ψ) is defined as :

η‖.‖(Ψ) := lim sup
k→∞

( sup
P (λ)∈Ψk

⊗

η‖.‖[P (λ)] )
1
k ,

where η‖.‖[P (λ)] is as in Definition 2.1.
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Lemma 2.12. Let ‖.‖ be a norm on Rn, and Ψ be a bounded set of max matrix
polynomials. Then for every k ∈ N,

(η‖.‖(Ψ))k ≤ sup
P (λ)∈Ψk

⊗

η‖.‖[P (λ)].

Proof. Let k ∈ N be given. Since Ψ is bounded, there exists a M > 0 such that
η‖.‖[P (λ)] ≤ M for all P (λ) ∈ Ψ. Let l ≥ k be given. Write l = km + j for
some j = 0, 1, . . . , k − 1. If P1(λ), . . . , Pl(λ) ∈ Ψ, then by Theorem 2.6(5), there
exists a M0 > 0 such that

η‖.‖[P1(λ)⊗ · · · ⊗ Pl(λ)] ≤ M0

m−1∏
i=0

η‖.‖[ Pik+1(λ)⊗ · · · ⊗ Pik+k(λ) ]

×
j∏

i=1

η‖.‖[ Pmk+i(λ) ]

≤ M0( sup
P (λ)∈Ψk

⊗

η‖.‖[P (λ)] )m M j.

By setting M ′ = MM0

1
j , we have

η‖.‖[P1(λ)⊗ · · · ⊗ Pl(λ)] ≤ ( sup
P (λ)∈Ψk

⊗

η‖.‖[P (λ)] )m M ′j.

Hence

( sup
P (λ)∈Ψl

⊗

η‖.‖[P (λ)] )
1
l ≤ ( sup

P (λ)∈Ψk
⊗

η‖.‖[P (λ)] )
m
l M ′ j

l

= ( sup
P (λ)∈Ψk

⊗

η‖.‖[P (λ)] )
1
k ( sup

P (λ)∈Ψk
⊗

η‖.‖[P (λ)] )
−j
kl M ′ j

l .

Therefore, by taking limit superior, the result holds. �

Theorem 2.13. Let ‖.‖ be a norm on Rn, and Ψ be a bounded set of max matrix
polynomials. Then

η‖.‖(Ψ) = limk→∞( sup
P (λ)∈Ψk

⊗

η‖.‖[P (λ)] )
1
k .

Proof. Using Lemma 2.12, for all k ≥ 1, we have

η‖.‖(Ψ) ≤ ( sup
P (λ)∈Ψk

⊗

η‖.‖[P (λ)] )
1
k ≤ sup

l≥k
( sup
P (λ)∈Ψl

⊗

η‖.‖[P (λ)] )
1
l .

So, by taking limit (as k −→∞) and using Definition 2.11, the result holds. �

Theorem 2.14. Let ‖.‖ be a norm on Rn, and Ψ be a bounded set of max matrix
polynomials. Then

η‖.‖(Ψ) = lim
k→∞

( sup
P (λ)∈Ψk

⊗

‖P (λ)‖ )
1
k .
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Proof. By Proposition 2.7, there exist K1 > 0 and K2 > 0 such that, for any
k ≥ 1,

( K1 sup
P (λ)∈Ψk

⊗

η‖.‖[P (λ)] )
1
k ≤ ( sup

P (λ)∈Ψk
⊗

‖P (λ)‖ )
1
k ≤ ( K2 sup

P (λ)∈Ψk
⊗

η‖.‖[P (λ)] )
1
k .

So, by taking limit (as k −→∞) and using Theorem 2.13, the result holds. �

Let P (λ) = A0 ⊕ λA1 ⊕ · · · ⊕ λm−1Am−1 be a max matrix polynomial as in
(1.1). We denote the set of all coefficients of P (λ) by ΣP = { A0, A1, . . . , Am−1}.
For a set Ψ of max matrix polynomials, consider

Ψ′ =
⋃

P∈Ψ

ΣP . (2.6)

Also, we introduce the notations S(Ψ) =
⋃∞

k=1 Ψk
⊗ and S(Ψ′) =

⋃∞
k=1 Ψ′k

⊗.
Finally, we state the following two theorems.

Theorem 2.15. Let Ψ be a bounded set of max matrix polynomials. Suppose that
µ(A) ≤ 1 for all A ∈ S(Ψ′). Then there exists a monotone norm ‖.‖ on Rn such
that η‖.‖[P (λ)] ≤ 1 for all P (λ) ∈ Ψ.

Proof. Since Ψ is a bounded set of max matrix polynomials, by (2.6), Ψ′ is also
a bounded set. The inequality µ(A) ≤ 1 for all A ∈ S(Ψ′), and [15, Lemma 5],
imply that S(Ψ′) is bounded. Thus by [15, Lemma 3], there exists a monotone
norm ‖.‖ on Rn such that η‖.‖(A) ≤ 1 for all A ∈ Ψ′. Now let P (λ) = A0⊕λA1⊕
· · · ⊕ λm−1Am−1 be an arbitrary max matrix polynomial in Ψ. Then Ai ∈ Ψ′,
and so η‖.‖(Ai) ≤ 1 for all i = 0, . . . ,m− 1. Hence, by Definition 2.1, the result
holds. �

Theorem 2.16. Let Ψ be a set of max matrix polynomials. Suppose that µ(CP ) ≤
1 for all P (λ) ∈ S(Ψ), where CP is as in (2.2). Then there exists a norm ‖.‖
on Rn such that η‖.‖(A) < 1 for all A ∈ S(Ψ′).

Proof. Let P (λ) ∈ S(Ψ) be arbitrary. So there exists a k > 0 such that

P (λ) = P1(λ)⊗ · · · ⊗ Pk(λ) = C
(P )
0 ⊕ λC

(P )
1 ⊕ · · · ⊕ λtC

(P )
t ,

where t ∈ N ∪ {0} , C
(P )
i = A

(P )
i1
⊕ · · · ⊕ A

(P )
im

for some m ∈ N and A
(P )
ij

∈ Ψ′k
⊗.

It is clear that for every i, j,

µ(A
(P )
ij

) ≤ µ(C
(P )
i ) < 1.

Since P (λ) ∈ S(Ψ) is arbitrary, µ(A) < 1 for every A ∈ S(Ψ′). Hence, by [16,
Theorem 2], for all A ∈ S(Ψ′), η‖.‖(A) < 1 for some norm ‖.‖ on Rn. �
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