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Abstract. We construct a topology on the standard Hilbert module HA over

a unital C∗-algebra and topology on H#
A (the extension of the module HA by

the algebra A∗∗) such that any “compact” operator (i.e. any operator in the
norm closure of the linear span of the operators of the form z 7→ x ⟨y, z⟩,
x, y ∈ HA (or x, y ∈ H#

A )) maps bounded sets into totally bounded sets.

1. Introduction and preliminaries

In the paper [2] proved that on standard Hilbert module HA, where A a unital
W ∗-algebra, there is locally convex topology such that any “compact” operator
(i.e. any operator in the norm closure of the linear span of the operators of the
form z 7→ x ⟨y, z⟩, x, y ∈ HA) is compact (in the sense that it maps bounded sets
into totally bounded sets).

In this note we find a topology on HA, where A a unital C∗-algebra, and a
topology on H#

A (the extension of the module HA by the algebra A∗∗) such that
for them holds the same property.

Let A be a C∗-algebra, A∗∗ be the enveloping W ∗-algebra of A, and M be a
Hilbert A-module. Consider the algebraic tensor product M⊗A∗∗ (over C). One
can equip this tensor product with the structure of a right A∗∗-module by the
formula (x⊗ a) · b := x⊗ ab, x ∈ M , a, b ∈ A∗∗. Define the inner product

[·, ·] : M ⊗A∗∗ ×M ⊗A∗∗ → A∗∗
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by the formula [
n∑

i=1

x1 ⊗ ai,
m∑
j=1

yj ⊗ bj

]
=
∑
i,j

a∗i ⟨xi, yj⟩ bj,

where xi, yj ∈ M, ai, bj ∈ A∗∗. The sesquilinearity and the properties [z, w]∗ =
[w, z] and [z, w ·a] = [z, w]a clearly hold. This inner product is positive [6, Lemma
5.1.2].

Denote by M# the Hilbert A∗∗-module obtained by completion of M ⊗A∗∗/N
with respect to the norm given by the inner product [·, ·], where N = {z ∈
M ⊗ A∗∗ : [z, z] = 0}. We call this module the extension of the module M by
the algebra A∗∗. The W ∗-algebra A∗∗ always contains the unit element, and, for
any x ∈ M and a ∈ A, we have (x·a)⊗1−x⊗a ∈ N . Therefore theA-module map
i : M 7→ M#, i(x) = x×1+N is well defined. Since [x×1+N, y×1+N ] = ⟨x, y⟩,
this map is an isometric inclusion.

Denote by HomA(M,A∗∗) the set of all bounded A-linear maps from M to
A∗∗. Introduce on this set the structure of a vector space over C by the formula
(λϕ)(x) = λϕ(x), where λ ∈ C, x ∈ M, ϕ ∈ HomA(M,A∗∗), and also with the
structure of a right A∗∗-module by the formula, (ϕ · b)(x) = b∗ϕ(x), b ∈ A∗∗.
For a bounded A-linear functional f ∈ (M#)′, we can define the map fR ∈
HomA(M,A∗∗) as the restriction of f onto M ; that is, fR(x) = f(x ⊗ 1 + N).
Obviously, ||fR|| ⩽ ||f ||. For any C∗-algebra A and for any Hilbert A-module M ,
the map f 7→ fR is an isometry of (M#)′ onto HomA(M,A∗∗).

Let A be a C∗-algebra, and let M be a Hilbert A-module. Then an A-valued
inner product on M can be extended up to an A∗∗-valued inner product on the
set HomA(M,A∗∗) making this set a self-dual Hilbert A∗∗-module. Let A be a
C∗-algebra, and let M be a self-dual Hilbert A-module. Then the Hilbert A∗∗-
module M# is self-dual too.

Given a unital W ∗-algebra A, we consider the standard Hilbert module, de-
noted by HA, as (the notation l2(A) is also widespread)

HA =
{
x = (ξ1, ξ2, . . . ) | ξj ∈ A,

∑+∞

j=1
ξ∗j ξj converges in the norm topology

}
,

equipped with the A-valued inner product

HA ×HA ∋ (x, y) 7→
+∞∑
j=1

ξ∗j ηj ∈ A, x = (ξ1, ξ2, . . . ), y = (η1, η2, . . . ).

Since an arbitrary A-linear bounded operator on HA does not need to have an
adjoint, the natural algebra of operators is Ba(HA), which is the algebra of all
A-linear bounded operators on HA having an adjoint. It is known that Ba(HA)
is a C∗-algebra.

Among all operators in Ba(HA), those that belong to the linear span of the
operators of the form x 7→ Θy,z(x) = y ⟨z, x⟩ (y, z ∈ HA) are called finite rank
operators. The norm closure of finite rank operators is known as the algebra
of all “compact” operators. The quotation marks are usually written in order
to emphasize the fact that “compact” operators do not map bounded sets into
relatively compact sets, as it is the case in the framework of Hilbert (and also
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Banach) spaces, though they share many properties of proper compact operators
on a Hilbert space (see [4, 5, 3]).

A subset S of a topological vector space {X, τ} is totally bounded if and only
if, given any neighborhood E of the zero element of X, there exists a finite cover
of that set S by subsets of X each of which is a translate of a subset of E. In case
of topological vector space {X, τ}, where τ is a locally convex topology generated
by a family of seminorms pα, α ∈ I; a subset S is called totally bounded if, for
all ε > 0 and for all α ∈ I, there is a finite set c1, c2, . . . , cm ∈ X such that sets
Bα(cj; ε) = {y ∈ X | pα(cj − y) < ε} cover S.

On a standard Hilbert module HA, where A is a unital W ∗-algebra, we define
a locally convex topology τ by the family of seminorms

pφ,y(x) =

√√√√+∞∑
j=1

|φ(η∗j ξj)|2, (1.1)

where φ is a normal state, and y = (η1, η2, . . . ) is a sequence of elements in A
such that

sup
j⩾1

φ(η∗j ηj) = 1.

This topology is between the weak Paschke–Frank topology (generated by
functionals x 7→ φ(⟨y, x⟩), y ∈ HA, φ normal state) and the strong Paschke–

Frank topology (generated by seminorms p(x) = φ(⟨x, x⟩) 1
2 , φ normal state) (see

[1, 7, 8]).
We say that the operator T ∈ Ba(HA) is compact if its image of any (norm)

bounded set is a totally bounded set in topology τ . For the operator T ∈ Ba(HA),
it is enough to map the unit ball into a totally bounded set to be a compact
operator.

Remark 1.1. Totally bounded and relatively compact sets differ in general case
(whenever the unit ball is not complete). Also, throughout the literature, there
is a certain ambiguity between terms completely continuous, compact, and pre-
compact operators. Although it seems that terms completely continuous and
precompact are more accurate; we found that compact is more convenient for our
purpose.

Let A be a unital W ∗-algebra, and let T : HA → HA be a “compact” operator.
Then T is compact [2, Theorem 4.5].

2. Main results

In what follows, we assume that the C∗-algebra is unital.

Definition 2.1. Let M be a Hilbert C∗-module. A topological space (M, τ) is
called “continuous” if every “compact” operator is compact; that is, it maps the
norm unit ball from M to a totally bounded set in (M, τ). A Hilbert C∗-module
M is “continuous” if there is a topology τ on M such that (M, τ) is “continuous”.

An infinite C∗-algebra A, as Hilbert C∗-module over itself with norm topology,
is not “continuous”, because the identity operator Θe,e(Θe,e(x) = e ⟨e, x⟩ = x) is
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“compact”, but the image of the unit ball is not totally bounded in Banach space
sense.

The standard Hilbert W ∗-module HA is “continuous” (see [2, Theorem 4.5]).

Lemma 2.2. Let T ∈ Ba(HA) be a “compact” operator. Then there is a “com-

pact” operator T# ∈ Ba(H#
A ) such that the diagram

H#
A

T#

−−−→ H#
A

i

x xi

HA −−−→
T

HA

is commutative.

Proof. Let T = Θx,y be a “compact” operator for any x, y ∈ HA. We define the
operator Θx⊗1+N,y⊗1+N on HA ⊗A∗∗/N by

Θx⊗1+N,y⊗1+N(z ⊗ b+N) = (x⊗ 1 +N)[y ⊗ 1 +N, z ⊗ b+N ], (2.1)

and its continuous extension to H#
A by

Θx⊗1+N,y⊗1+N(z) = lim
n

Θx⊗1+N,y⊗1+N(zn),

for z ∈ H#
A , where HA ⊗A∗∗/N ∋ zn → z ∈ H#

A . This operator is “compact” on

H#
A , and it holds

Θx⊗1+N,y⊗1+N (i(z)) = Θx⊗1+N,y⊗1+N(z ⊗ 1 +N)

= (x⊗ 1 +N)[y ⊗ 1 +N, z ⊗ 1 +N ] = (x⊗ 1 +N) ⟨y, z⟩
= x ⟨y, z⟩ ⊗ 1 +N = i(x ⟨y, z⟩) = i(Θx,y(z))

for every z ∈ HA. Thus, for z ∈ HA, we have Θx⊗1+N,y⊗1+N(i(z)) = i(Θx,y(z)).
Next, we get

||Θx⊗1+N,y⊗1+N || = sup
z∈H#

A
||z||⩽1

||Θx⊗1+N,y⊗1+N(z)||

= lim
n→∞

sup
zn∈HA,bn∈A∗∗

||zn⊗bn+N ||⩽1

||(x⊗ 1 +N)[y ⊗ 1 +N, zn ⊗ bn +N ]||

= lim
n→∞

sup
zn∈HA,bn∈A∗∗

||zn⊗bn+N ||⩽1

||(x⊗ 1 +N) ⟨y, zn⟩ bn||

= lim
n→∞

sup
zn∈HA,bn∈A∗∗

||zn⊗bn+N ||⩽1

||x ⟨y, zn⟩ ⊗ bn +N ||.

Since

lim
n→∞

sup
zn∈HA,bn∈A∗∗

||zn⊗bn+N ||⩽1

||x ⟨y, zn⟩ ⊗ bn +N || = lim
n→∞

sup
zn∈HA,||zn||⩽1
bn∈A∗∗,||bn||⩽1

||x ⟨y, zn⟩ || · ||bn||,
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we have

||Θx⊗1+N,y⊗1+N || = lim
n→∞

sup
zn∈HA,||zn||⩽1
bn∈A∗∗,||bn||⩽1

||x ⟨y, zn⟩ || · ||bn||

= lim
n→∞

sup
zn∈HA,||zn||⩽1

||x ⟨y, zn⟩ ||

= lim
n→∞

sup
zn∈HA,||zn||⩽1

||Θx,y(zn)|| = ||Θx,y||.

For the sum of two operators of the form (2.1), it holds

||(Θx⊗1+N,y⊗1+N +Θx1⊗1+N,y1⊗1+N) (z ⊗ b+N)||
= ||Θx⊗1+N,y⊗1+N(z ⊗ b+N) + Θx1⊗1+N,y1⊗1+N(z ⊗ b+N)||
= ||(x⊗ 1 +N)[y ⊗ 1 +N, z ⊗ b+N ] + (x1 ⊗ 1 +N)[y1 ⊗ 1 +N, z ⊗ b+N ]||
= ||(x⊗ 1 +N) ⟨y, z⟩ b+ (x1 ⊗ 1 +N) ⟨y1, z⟩ b||
= ||(x ⟨y, z⟩ ⊗ b+N) + (x1 ⟨y1, z⟩ ⊗ b+N)||
= ||(x ⟨y, z⟩+ x1 ⟨y1, z⟩)⊗ b+N)||
= ||x ⟨y, z⟩+ x1 ⟨y1, z⟩|| · ||b|| = || (Θx,y +Θx1,y1) (z)|| · ||b||.

When we take the supremum over z ⊗ b+N ∈ HA ⊗A∗∗/N , we get

||Θx⊗1+N,y⊗1+N +Θx1⊗1+N,y1⊗1+N || = ||Θx,y +Θx1,y1 ||

on HA ⊗A∗∗/N , and, from its continuity, it follows that

||Θx⊗1+N,y⊗1+N +Θx1⊗1+N,y1⊗1+N || = ||Θx,y +Θx1,y1 || (2.2)

on H#
A .

If Tn =
∑n

i=1Θxi,yi , then T#
n =

∑n
i=1 Θxi⊕1+N,yi⊕1+N , and from (2.2), we have

||T#
n || = ||Tn||,

and

||T#
n − T#

m || = ||Tn − Tm||.

The operator T is “compact”; so there exists a sequence of operators Tn =∑n
i=1Θxi,yi , which converges in norm to the operator T . Hence, the sequence Tn

is a Cauchy sequence; so T#
n is a Cauchy sequence, too. From completeness of

space Ba(H#
A ), we have that T#

n converges to a “compact” operator T#. Since

Θx⊗1+N,y⊗1+N(i(z)) = i (Θx,y(z)) for all z ∈ HA

and T#
n =

n∑
i=1

Θxi⊕1+N,yi⊕+N converges to T#, we have that T#(i(z)) = i(T#(z)),

so the diagram is commutative. □

Lemma 2.3. Let T# ∈ Ba(H#
A ) be a “compact” operator, and let j be the map-

ping j : H#
A → HA∗∗ , j(x⊗a+N) = (x1a, x2a, . . . ) for x = (x1, x2, . . . ) ∈ HA, a ∈
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A∗∗. Then there exists a “compact” operator T∗∗ ∈ Ba(HA∗∗), such that the
diagram

HA∗∗
T∗∗−−−→ HA∗∗

j

x xj

H#
A −−−→

T#
H#

A

is commutative.

Proof. First we prove that the mapping j : H#
A → HA∗∗? ?defined by ???j(x ⊗

a + N) = (x1a, x2a, . . . ), where x = (x1, x2, . . . ) ∈ HA, a ∈ A∗∗, is an isometric
isomorphism. From

[x⊗ a−y ⊗ b, x⊗ a− y ⊗ b] = a∗ ⟨x, x⟩ a− a∗ ⟨x, y⟩ b− b∗ ⟨y, x⟩ a+ b∗ ⟨y, y⟩ b
= a∗ ⟨x, x⟩ a− a∗ ⟨x, y⟩ b− b∗ ⟨y, x⟩ a+ b∗ ⟨y, y⟩ b

=
∞∑
n=1

(xia)
∗xia−

∞∑
n=1

(xia)
∗yib−

∞∑
n=1

(yib)
∗xia+

∞∑
n=1

(yib)
∗yib

=
∞∑
n=1

(xia− yib)
∗(xia− yib),

it follows that j is well defined and injective.
The mapping j maps H#

A onto HA∗∗ , because if x = (x1, x2, . . . ) ∈ HA∗∗ , then
j(
∑+∞

i=1 ei ⊗ xi) = x.
From the equality of the inner products

[x⊗ a+N, y ⊗ b+N ] = a∗ ⟨x, y⟩ b = a∗

(
∞∑
n=1

x∗
i yi

)
b =

∞∑
n=1

(xia)
∗yib

= ⟨j(x⊗ a+N), j(y ⊗ b+N)⟩ ,

we get that j is an isomorphism.
For “compact” operator T# ∈ Ba(H#

A ), there exists a “compact” operator
T∗∗ ∈ Ba(HA∗∗), T∗∗ = j ◦ T# ◦ j−1 (for T# = Θx⊗a,y⊗b we have T∗∗ = Θxa,yb).

□

Theorem 2.4. The standard Hilbert C∗-module HA and the Hilbert W ∗-module
H#

A are “continuous”.
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Proof. Let T be a “compact” on HA. Then there are “compact” operators T# ∈
Ba(H#

A ) and T∗∗ ∈ Ba(HA∗∗), such that diagram

HA∗∗
T∗∗−−−→ HA∗∗

j

x xj

H#
A

T#

−−−→ H#
A

i

x xi

HA
T−−−→ HA

is commutative.
Let HA∗∗ be the respective Hilbert A∗∗-module, where A is a unital C∗-algebra.

We define a locally convex topology τ∗∗ on HA∗∗ (of the form (1.1)) by the family
of seminorms

pφ,y(x) =

√√√√+∞∑
j=1

|φ(η∗j ξj)|2, x = (ξ1, ξ2, . . . ), (2.3)

where φ is a bounded linear functional on A (since any normal state on A∗∗ is a
bounded linear functional on A), and y = (η1, η2, . . . ) is a sequence of elements
in A∗∗, such that

sup
j⩾1

φ(η∗j ηj) = 1. (2.4)

Define a topology τ# as the topology induced on the module H#
A by τ∗∗; that

is, A ∈ τ# if i(A) ∈ τ∗∗, and define a topology τ as the topology induced on the
module HA by τ∗∗ , τ = (i−1 ◦ j−1)(τ∗∗).

Since T∗∗ is “compact”, then it is also compact [2, Theorem 4.5]; so T∗∗(B) is
totally bounded. From j(B1) ⊂ B and (j ◦ i)(B2) ⊂ B, where B1 and B2 are

the unit balls in H#
A and HA, respectively, it follows that the sets T∗∗(j(B1)) =

j(T#(B1)) and T∗∗((j ◦ i)(B2)) = (j ◦ i)(T (B)) are totally bounded in (HA∗∗ , τ ∗∗).

Hence T#(B1) is totally bounded in (H#
A , j−1(τ∗∗)) = (H#

A , τ#), and T (B) is
totally bounded in (HA, i

−1 ◦j−1(τ∗∗)) = (HA, τ). Therefore, the Hilbert modules

HA and H#
A are “continuous”. □

Acknowledgement. The author was supported in part by the Ministry of
education and science, Republic of Serbia, Grant 174034.

References

1. M. Frank, Self-duality and C∗-reflexivity of Hilbert C∗-modules, Z. Anal. Anwend. 9 (1990),
no. 2, 165–176.
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