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TOPOLOGICAL PROPERTIES OF OPERATIONS ON SPACES
OF DIFFERENTIABLE FUNCTIONS
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Abstract. In this paper, we consider different notions of openness for the
scalar multiplication on sequence spaces and spaces of continuous functions.
We apply existing techniques to derive weak openness of multiplication on
spaces of differentiable functions, endowed with a large collection of quasi-
algebra norms.

1. Introduction

The classical open mapping theorem states that every continuous, linear sur-
jective map between two Banach spaces is open. An example proposed by Rudin
in [19] shows that this property does not extend to bilinear maps. In this paper,
we study openness properties of several bilinear maps, defined on normed spaces.
We start by reviewing some definitions.

Definition 1.1. Let E and F be topological spaces, and let f : E → F be a
surjective map. Let x ∈ E.

(1) f is open at x if and only if f maps every neighborhood of x onto a
neighborhood of f(x), and x is said to be a point of local openness of f .

(2) f is densely open (d-open) at x if and only if f maps every neighborhood
of x onto a dense subset of a neighborhood of f(x), and x is a point of
local d-openness of f .
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(3) f is weakly open (w-open) at x if and only if f maps every neighborhood
of x onto a set with nonempty interior, and x is a point of local w-openness
of f .

Then f is open (d-open or w-open) if f is open (respectively, d-open or w-open)
at x, for every x ∈ E. Equivalently, the set of all points of local openness
(respectively d- or w-openness) of f is the entire space E.

The notion of w-openness has been considered by several researchers (see, for
example, the papers [6], [21], and also [11]). The notion of d-openness was pro-
posed and studied in [18]. This concept was largely inspired by many different
types of openness proposed by Ge, Gu, Lin, and Zhu in [14].

It is clear that “open” implies “d-open” and also “w-open”. However, neither
“d-open” implies “w-open” nor “w-open” implies “d-open”. We give two exam-
ples to support the last claim. Let f : R → R be given by f(x) = x for x ∈ Q,
otherwise f(x) = −x. The function f is d-open but not w-open. Let g : R → R
be given by g(x) = |x| for x ≤ 2 and g(x) = 4 − x for x > 2. The function g is
w-open but not d-open.

We now adapt Definition 1.1 to metric spaces. In a metric space, an open ball
centered at point x and of radius r > 0 is denoted by B(x, r).

Definition 1.2. Let (E, d) and (F,D) be two metric spaces, and let f : E → F
be a surjective map. Then

(1) f is open (d-open or w-open) if and only if, for every x ∈ E and ϵ > 0,
there exists δ > 0 such that

f(B(x, ϵ)) ⊇ B(f(x), δ)
(
f(B(x, ϵ)) ⊇ B(f(x), δ) or int (f(B(x, ϵ))) ̸= ∅, resp.

)
.

(2) f is uniformly open if, for every ϵ > 0, there exists δ > 0 such that

f(B(x, ϵ)) ⊇ B(f(x), δ) for all x ∈ E.

Uniform openness for the multiplication and for other multilinear maps was
studied by Balcerzak, Majchrzycki, and Strobin; see [4] and [3].

In Section 2, we consider openness properties of scalar products on sequence
spaces and spaces of vector-valued continuous functions. We characterize the
points, where the product is (d-)open, and we establish the w-openness of the
scalar product for arbitrary topological vector spaces over a field F (R or C). We
also observe that the scalar product is open if and only if the dimension of the
vector space is 1.

In Section 3, we discuss results on the weak openness of the multiplication on
spaces of functions, defined on the unit interval and with continuous n derivatives.
We apply an approach, developed by A. Wachowicz in [21] to show that the
multiplication on a collection of quasi-normed algebras is weakly open. Each
space consists of all functions, defined on the unit interval with continuous n
derivatives and endowed with a quasi-algebra norm. This norm is defined from a
compact and connected subset of the (n+1)-dimensional hypercube. This extends
an idea, presented by Kawamura, Koshimizu, and Miura in [17] for continuously
differentiable functions on [0, 1].
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In Section 4, we consider a problem, proposed by Behrends in [8] of charac-
terizing those pairs of functions, where the multiplication is open. We derive
necessary and sufficient conditions for a pair of functions to be a point of local
openness for the multiplication on this new class of algebras.

2. Openness of the scalar product

We recall from [19, Problem 11 on p. 54] the following product: · : R×R2 → R2

is given by · (t, (x, y)) = t · (x, y) = (tx, ty). It is easy to check that · is not open
at (0, (1, 0)). Set ϵ = 1/2. For every δ > 0, we have that (0, δ/2) ∈ B((0, 0), δ),
yet (0, δ/2) /∈ B(0, ϵ) · B((1, 0), ϵ). Suppose the otherwise case. Then there exist
t ∈ B(0, ϵ) and (x, y) ∈ B((1, 0), ϵ) such that (tx, ty) = (0, δ

2
). Since x ̸= 0, then

t = 0. Therefore ty = 0 ̸= δ
2
. A similar argument proves that · is not open at

every point of the form (0, (a, b)) ∈ R× (R2 \ (0, 0)).
We revisit the previous example for new settings. We consider a sequence of

normed spaces Ak, over the same field F, with corresponding norms ∥·∥k (k ∈ N).
Let A denote one of the following sequence spaces: c0({Ak}k), ℓp({Ak}k) (p ≥

1), and ℓ∞({Ak}k), endowed with the standard norms. We denote by a the
sequence (a1, a2, . . .) ∈ ΠnA

n. We denote by 0 the sequence of all zeros.

Proposition 2.1. Let A be a sequence space with norm, denoted by ∥ · ∥. Let
T : F × A → A be given by T (t, a) = t · a = (tai)i∈N. Then the following
statements are equivalent:

(a) t ̸= 0 or (t, a) = (0,0).
(b) T is open at (t, a).
(c) T is d-open at (t, a).

Proof. We show that (a) implies(b). We assume that t ̸= 0. For every ϵ > 0, we
set δ = |t|ϵ. We claim that

B(ta, δ) ⊂ {λy : λ ∈ B(t, ϵ) and y ∈ B(a, ϵ)}.

Suppose x ∈ B(ta, δ); then ∥ta−x∥ < δ = |t|ϵ.We set y =
1

t
x and λ = t. Clearly

y = (yi)i∈N ∈ B(a, ϵ).
If t = 0, ai = 0 for all i, and ϵ > 0, then we set δ =

ϵ

k
, with

1

k
< ϵ. We show

that

B(0, δ) ⊂ B(0, ϵ) · B(0, ϵ) = {(λy) : λ ∈ B(0, ϵ) and y ∈ B(0, ϵ)}.
Given x ∈ B(0, δ), we set λ = 1

k
∈ B(0, ϵ), and, hence, y = kx ∈ B(0, ϵ). This

shows that T is open at (0,0).
We show that T is not open at (0, a), provided that some ai is not equal to

zero. We assume that a1 ̸= 0. We set ϵ =
∥a1∥
2

, and, for every δ > 0, we consider

b ∈ B(0, δ), given by b2 = δa1
2∥a1∥ and bi = 0 with i ̸= 2. We claim that b is

not in B(0, ϵ) · B(a, ϵ). Suppose the otherwise case. For some t ∈ B(0, ϵ) and
x ∈ B(a, ϵ), we have txi = 0 with i ̸= 2. Since x1 ̸= 0 and tx1 = 0, we obtain
t = 0. Hence 0 · x = 0 ̸= a. This shows that (b) implies (a).
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It is clear that “open” implies “d-open”. It remains to show that (c) implies
(a). We show that T is not d-open at every point of the form (0, a), with a ̸= 0.
Without loss of generality, we may assume that a = (0, . . . , 0, ai, . . . an, . . .) with

ai ̸= 0 and i ̸= 1. We choose ϵ =
∥ai∥
2

. Then for every δ > 0,

b =

(
δ ai
2∥ai∥

, 0, 0, . . .

)
/∈ B(0, ϵ) · B(a, ϵ).

Suppose that there exist sequences {tk} and {ck}, with tk ∈ B(0, ϵ) and ck ∈
B(a, ϵ), such that tkc

k → b. Since cki ̸= 0, then tk → 0. Therefore, the sequence

{tkck1}k must converge to zero. This is impossible because b1 =
δ ai
2∥ai∥

̸= 0. This

completes the proof. □
Remark 2.2. We observe that (a) implies (b) holds for an arbitrary normed space.
Furthermore, a variation of the proof given for the aforementioned proposition
and the Tietze extension theorem (see [13, 20]) imply the equivalence of the three
statements in the Proposition 2.1 for spaces of vector-valued continuous functions,
C(Ω, E), with Ω a compact metric space and E a normed space.

The next corollary follows easily from Proposition 2.1.

Corollary 2.3. Let A and T be as in Proposition 2.1. Then T is weakly open.

Previous observations can be extended to topological vector spaces.

Lemma 2.4 ( see [18]). Let V be a topological vector space over the field F . Then
T : F \ {0} × V → V , given by T (λ, v) = λ · v, is an open map.

Proof. We show that, for O1, O2 open, where O1 ⊂ F and O2 ⊂ V , O1 · O2 =
{λ · y : λ ∈ O1, y ∈ O2} is open. We notice that for a fixed λ ∈ F \ {0}, the
scalar multiplication, Mλ : V → V , given by Mλ(v) = λ · v, is a homeomorphism
and is, thus, open. Therefore O1 · O2 = ∪λ∈O1 λ · O2 is open. This completes the
proof. □
Remark 2.5. The map T : F×V → V is open at (0,0). GivenW , a neighborhood
of 0, and B(0, ϵ), an open ball in F, we have

ϵ

2
·W ⊂ B(0, ϵ) ·W.

Since Mϵ/2 is a homeomorphism,
ϵ

2
·W is a neighborhood of 0.

Proposition 2.6. Let V be a topological vector space over the field F. Then
T : F× V → V , given by T (λ,x) = λ · x, is weakly open.

Proof. From Lemma 2.4 and Remark 2.5, it remains to show that T is weakly
open at every point of the form (0,x) with x ̸= 0. Given ϵ > 0 and W , a
neighborhood of x, we select t0 ∈ B(0, ϵ) \ {0}. Then there exists δ > 0 such that
B(t0, δ) ⊂ B(0, ϵ). Since T is open at (t0,x), there exists a neighborhood of 0, U ,
such that

t0x+ U ⊂ B(t0, δ) ·W ⊂ B(0, ϵ) · W.
This completes the proof. □
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It is interesting to observe that T : R × R → R and T : C × C → C are open
maps. In fact, they are uniformly open. The proof for the real case is given in [4],
and the complex case follows similarly. These two cases are examples of scalar
multiplications that behave well relative to openness, contrarily to many previous
examples (see Proposition 2.1).

We finish this section with a result on openness of addition.

Proposition 2.7. The addition on a topological vector space is an open map.

Proof. We show that + : V + V → V is open, or, equivalently, that for every
O1, O2 ⊂ V open, O1 +O2 ⊂ V is open. For a fixed y ∈ O2, the map T : V → V ,
defined by T (u) = u+y, is a homeomorphism. Then O1+{y} is open. Therefore,
O1 +O2 is open, since O1 +O2 = ∪y∈O2 O1 + {y}. □
Remark 2.8. LetX be a normed space. Then the addition onX is uniformly open.
This follows from Proposition 1 in [6]: B(x1, r1)+B(x2, r2) = B(x1+x2, r1+ r2),
for x1 and x2 ∈ X, r1 and r2 positive numbers.

3. Weak-openness of multiplication on C
(n)
⟨D⟩[0, 1]

In this section, we consider results that lead to the study of weak openness of
multiplication on a class of quasi-normed algebras of continuously differentiable
functions. We start by defining the spaces. Let C(n)[0, 1] denote the space of all
functions on the unit interval with n-continuous derivatives. Let D be a compact
and connected subset of the (n + 1)-hypercube, [0, 1]n+1. We set πj(D) = Ij,
with j = 0, . . . , n, and πj denotes the projection of D into the jth-coordinate of
[0, 1]n+1. Then, for f ∈ C(n)[0, 1], we set ∥f (j)∥j = max{|f (j)(x)| : x ∈ Ij} and
define

∥f∥⟨D⟩ =
n∑
j=0

∥f (j)∥j.

Proposition 3.1. Let D be a compact, connected subset of [0, 1]n+1. Then
C(n)[0, 1], endowed with ∥ · ∥⟨D⟩, is a normed space if and only if ∪ni=0πi(D) =
[0, 1].

Proof. We prove the sufficiency by contrapositive. Suppose that ∪ni=0πi(D) ̸=
[0, 1]. Since ∪ni=0πi(D) ̸= [0, 1], there exists x ∈ [0, 1] such that x /∈ ∪ni=1πi(D).
Let O be an open set containing ∪ni=0πi(D) such that x ∈ int([0, 1] \ O). We
consider f ∈ C(n)[0, 1] such that ∥f∥∞ ̸= 0 and f |O ≡ 0. Thus, ∥f∥⟨D⟩ = 0, but
f ̸= 0, and ∥f∥⟨D⟩ is not a norm.

Now we prove the reverse implication. Suppose ∪ni=0πi(D) = [0, 1]. First,
we show that ∥f∥⟨D⟩ = 0 implies f ≡ 0. Suppose that ∥f∥⟨D⟩ = 0 (i.e.,

supr∈D{|f(r0)| + Σn
i=1|f (i)(ri)|} = 0). This implies that f (i)|πi(D) = 0, with

i ∈ {0, 1, . . . , n}. Since D is compact and connected, πi(D) is a closed subin-
terval of [0, 1], possibly a singleton.
We set πj(D) = Ij, where Ij is a closed interval. We first show that, given two
nontrivial intervals Ip and Iq with nonempty intersection and p < q ≤ n, then f
restricted to the union Ip ∪ Iq is a polynomial of degree p− 1. This is clear if the
intersection of the two intervals is a non-degenerate interval.
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We assume that x0 ∈ Ip ∩ Iq. This assumption contains both possible cases of
whether the intersection is a non-degenerate interval or a singleton. Without loss
of generality, we may assume that x0 ̸= 0 (since both intervals are non-degenerate
and zero is the leftmost point in [0, 1]). Since ∥f∥⟨D⟩ = 0, f (p)|Ip = 0 implies

f |Ip =
∑p−1

i=0 ai x
i; also, f (q)|Iq = 0 implies f |Iq =

∑q−1
i=0 bix

i. Since f ∈ C(n)[0, 1],
the values of these two polynomials and all their derivatives, up to order n,
computed at x0, must coincide. Therefore, we have

(a0 − b0) + (a1 − b1)x0 + · · ·+ (ap−1 − bp−1)x
p−1
0 − bpx

p
0 − · · · − bq−1x

q−1
0 = 0

(a1 − b1) + · · ·+ (p− 1)(ap−1 − bp−1)x
p−2
0 − bppx

p−1
0 − · · · − (q − 1)bq−1x

q−2
0 = 0

...
(p− 1)!(ap−1 − bp−1)− p!bpx0 − · · · − (q − 1)(q − 2) · · · (q − p+ 1) bq−1x

q−p
0 = 0

−p!bp − (p+ 1)!bp+1x0 − · · · − (q − 1)(q − 2) · · · (q − p) bq−1 x
q−p−1
0 = 0

...
−(q − 1)! bq−1 = 0.

The solution set of this homogeneous system consists of sequences (ai) and (bi)
such that ai = bi, for i ∈ {0, 1, . . . , p− 1}, and bi = 0, for i ∈ {p, . . . , q− 1}. This
proves our original claim that f , restricted to the union of the two intervals with
nonempty intersection, is a polynomial of degree p− 1 with p being smaller than
the two indices.

Therefore, we conclude that f must be a polynomial on [0, 1] of degree less than
n. We choose points xi ∈ [0, 1], such that f (i)(xi) = 0 with i ∈ {0, 1, . . . , n− 1}.
The system that, translates this, is as follows:


1 x0 x20 · · · xn−1

0

0 1 2x1 · · · (n− 1)xn−2
1

0 0 2 · · · (n− 1)(n− 2)xn−3
2

...
...

... · · · ...
0 0 0 · · · (n− 1)!




a0
a1
a2
...

an−1

 =


0
0
0
...
0

 .

This system has the zero solution, implying f = 0. The remaining properties
of a norm are straightforward. □

Remark 3.2. The space C(n)[0, 1] with a norm ∥ · ∥⟨D⟩ is denoted by C
(n)
⟨D⟩[0, 1].

If D has surjective projections along each component (i.e. πj(D) = [0, 1] for
every j = 0, . . . n), then ∥ · ∥⟨D⟩ is denoted by ∥ · ∥1 and the corresponding space

C
(n)
1 [0, 1]. We denote by C

(n)
m [0, 1] the space C(n)[0, 1], equipped with ∥f∥m =

max{∥f (i)∥∞ : i = 0, . . . , n}. We observe that, in general, C
(n)
⟨D⟩[0, 1] is not

complete. We just consider n = 1 and D = [0, 1] × {0}, and let fn(x) =
x

1+nx2
.
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This sequence is Cauchy in this norm. We assume that m > n; then

∥fn − fm∥⟨D⟩ = ∥fn − fm∥∞ + |f ′
n(0)− f ′

m(0)| = ∥fn − fm∥∞

=
x3 (m− n)

(1 + nx2)(1 +mx2)

≤ x

(1 + nx2)
· x2m

(1 +mx2)
≤ x

(1 + nx2)
≤ 1

2
√
n
.

This sequence converges to the constant function being equal to zero and f ′
n(0) =

1 for every n. Therefore {fn} does not converge to the zero function in C
(n)
⟨D⟩[0, 1].

We now give some examples.

Example 3.3. Let n = 1, D1 = [0, 1] × {0}, and D2 = [0, 1] × {1}. The
corresponding norms on C(n)[0, 1] are ∥ · ∥1 and ∥ · ∥2. Then fk(x) = xk and
gk(x) = (x − 1)k (with k an integer greater than 1) show that these norms are
not equivalent. We have ∥fk∥⟨D1⟩ = 1 and ∥fk∥⟨D2⟩ = 1+k. Also ∥gk∥⟨D1⟩ = 1+k
and ∥gk∥⟨D2⟩ = 1.

Let D = {0} × [0, 1] and f(x) = x. Then ∥f∥⟨D⟩ = 1, and ∥f 2∥⟨D⟩ = 2. This
shows that ∥ · ∥⟨D⟩ is not an algebra norm.

Definition 3.4 ( see [1] and [22]). If (X, ∥ · ∥) is a normed space and X is an
algebra, then we say that X is a quasi-normed algebra if there exists a constant
C > 0 such that ∥xy∥ ≤ C∥x∥∥y∥ for all x, y ∈ X.

We identify in the next lemma a collection of quasi-normed algebras.

Lemma 3.5. Let D be a connected and compact subset of [0, 1]n+1 such that
[0, 1] = π0(D) ⊇ π1(D) ⊇ · · · ⊇ πn(D). Then, for every f, g ∈ C(n)[0, 1], we
have ∥f · g∥⟨D⟩ ≤ (n+ 1)2n∥f∥⟨D⟩∥g∥⟨D⟩.

Proof. Let f ∈ C(n)[0, 1] be given. For n = 0, we have ∥f ·g∥∞ ≤ ∥f∥∞∥g∥∞, and
for n = 1, we have ∥f ·g∥⟨D⟩ = ∥f ·g∥∞+∥f ·g′+g ·f ′∥1 ≤ ∥f∥⟨D⟩ ∥g∥⟨D⟩.We justify
this inequality as follows. Since π0(D) ⊇ π1(D), we have ∥f ·g∥∞+∥f ·g′+g·f ′∥1 ≤
∥f∥∞∥g∥∞ + ∥f∥∞∥g′∥1 + ∥g∥∞∥f ′∥1. Hence

∥f∥∞∥g∥∞+∥f∥∞∥g′∥1+∥g∥∞∥f ′∥1 ≤ ∥f∥∞∥g∥⟨D⟩+∥g∥∞∥f ′∥1 ≤ ∥f∥⟨D⟩ ∥g∥⟨D⟩.
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This implies ∥f · g∥⟨D⟩ ≤ ∥f∥⟨D⟩ ∥g∥⟨D⟩. For D ⊂ [0, 1]n+1, we set ∥f (j)∥k =

max{|f (j)(x)|, with x ∈ πk(D)}. Then

∥f · g∥⟨D⟩

= ∥f · g∥0 + ∥(f · g)′∥1 + · · ·+ ∥(f · g)(n)∥n

≤ ∥f∥0∥g∥0 + (∥f ′∥1∥g∥1 + ∥f∥1 ∥g′∥1) + · · ·+
n∑
k=0

(
n

k

)
∥f (n−k)∥n ∥g(k)∥n

=
n∑
j=0

n∑
k=j

(
k

j

)
∥f (k−j)∥k ∥g(j)∥k

≤
n∑
j=0

(
n∑
k=j

(
k

j

)
∥f (k−j)∥k

)
∥g(j)∥j

(since k ≥ j, we have ||g(j)||k ≤ ||g(j)||j).

Therefore, we have

∥f · g∥⟨D⟩ ≤
n∑
j=0

(
n∑
k=j

(
k

j

)
∥f (k−j)∥k

)
∥g(j)∥j

≤
n∑
j=0

∥g(j)∥j
n−j∑
i=0

(
i+ j

j

)
∥f (i)∥i

(by setting i = k − j and using that ||f (i)||i+j ≤ ||f (i)||i)

≤ (n+ 1)
n∑
j=0

∥g(j)∥j
n∑
j=0

(
n

j

) n∑
i=0

∥f (i)∥i = (n+ 1)2n∥f∥⟨D⟩∥g∥⟨D⟩,

since
(
i+j
j

)
≤
(
n
j

)
and

∑n−j
i=0

(
i+j
j

)
≤ (n+ 1)

(
n
j

)
. This completes the proof. □

Remark 3.6. A challenging problem seems to be a characterization of the compact
and connected subsets of [0, 1]n+1 that define a quasi-algebra norm on C(n)[0, 1].

We now review some definitions. We consider V a normed space with a binary
operation P : V × V → V , which is associative, commutative, and satisfies the
distributive properties relatively to the addition on V . We also assume that V
contains a neutral element 1 for P (i.e., P (x,1) = P (1,x) = x for every x ∈ V ).
We call such a map P , a multiplication on V .

If P can only be defined on a dense subset of V , containing 1, then P is called
a densely-defined multiplication. The domain of P is denoted by Dom(P).

We first consider the standard pointwise multiplication of the functions P :

C
(n)
m [0, 1]× C

(n)
m [0, 1] → C

(n)
m [0, 1], where P (f, g) = f · g.

The well-known Fremlin function, f(x) = x − 1

2
, shows that P is not open.

This follows because P (f, f) = f 2 /∈ int (B(f, 1/2) · B(f, 1/2)), and P is not open
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at (f, f) (see [6]). It is interesting to observe that f 2 ∈ B(f, 1/2) · B(f, 1/2), since

f 2 = limn

(
f +

1

n

)2

.

Lemma 3.7. P on C
(n)
m [0, 1] is not densely open.

Proof. Let δ > 0, and let f be the Fremlin function. We show that

B(f 2, δ) ̸⊂ B(f, 1/4) · B(f, 1/4).
We consider the function f 2 + δ/2. We show that, for every sequence {fn} and
{gn} in B(f, 1/4), the sequence {fn ·gn} does not converge to f 2+δ/2. Since δ/2 ≤
minx∈[0, 1] (f

2+δ/2) and, for every n, there exists xn such that fn(xn) ·gn(xn) = 0,

we have ∥f 2 + δ
2
− fn · gn∥m ≥ δ

2
. This proves the statement. □

If D satisfy πk(D) = Ik, an interval in [0, 1] such that ∪i=1,...,n πk(D) = [0, 1],
and f is a function with n-continuous derivatives, then we have

∥f∥⟨D⟩ =
n∑
i=0

∥f (i)∥i ≤ (n+ 1)∥f∥m,

with ∥f (i)∥i = maxx∈Ii |f (i)(x)|.

Lemma 3.8. P∗ : C
(n)
⟨D⟩[0, 1]× C

(n)
⟨D⟩[0, 1] → C

(n)
m [0, 1], given by P∗(f, g) = f · g,

is weakly open.

Proof. Given ϵ > 0, we have

P∗
(
B⟨D⟩(f, ϵ)× B⟨D⟩(g, ϵ)

)
⊃ P∗

(
Bm
(
f,

ϵ

n+ 1

)
× Bm

(
g,

ϵ

n+ 1

))
.

Since the multiplication in (C(n)[0, 1], ∥ · ∥m) is weakly open, there exist h ∈
C(n)[0, 1] and δ > 0 such that

Bm(h, δ) ⊂ P∗

(
Bm
(
f,

ϵ

n+ 1

)
× Bm

(
g,

ϵ

n+ 1

))
⊂ P∗

(
B⟨D⟩(f, ϵ)× B⟨D⟩(g, ϵ)

)
.

This completes the proof. □
Example 3.9. We now give an example of a compact and connected set D
such that the identity map id : (C(n)[0, 1], ∥ · ∥⟨D⟩) → (C(n)[0, 1], ∥ · ∥m) is not
continuous. As expected, these two norms are not equivalent. Let 0 < δ < 1
and D = [0, 1] × {0} × · · · × {0}. Then B⟨D⟩(h, η) is not contained in Bm(h, δ)
for every η > 0 and h ∈ C(n)[0, 1]. Let k be a positive integer, and let f(x) =
1

k + 1
xn+k. Then ∥f∥⟨D⟩ =

1

k + 1
, and f ∈ B⟨D⟩

(
0,

1

k

)
. The m-norm of f is

equal to max

{
1

k + 1
,
n+ k

k + 1
, . . . ,

(n+ k)(n+ k − 1) · · · (k + 1)

k + 1

}
> 1. Therefore,

f /∈ Bm(0, δ).

Fremlin’s example shows that multiplication in C[0, 1] is not open, but Wa-

chowicz, in [21], showed that the multiplication on C
(n)
m [0, 1] is weakly open. In



314 F. BOTELHO, H. RENAUD

this section, we study this property for the multiplication on C
(n)
⟨D⟩[0, 1]. We recall

the statement of Wachowicz’s theorem. We also refer the reader to [2].

Theorem 3.10. (see[21, Theorem 1]). The multiplication on C
(n)
m [0, 1] is weakly

open.

It is an easy observation that openness properties are invariant under homeo-

morphisms. We conclude that the same results hold for C
(n)
1 [0, 1], endowed with

the norm ∥f∥1 =
∑

0≤i≤nmaxx∈[0, 1] |f (i)(x)|, since ∥f∥m ≤ ∥f∥1 ≤ (n + 1)∥f∥m
for every f ∈ C(n)[0, 1].

A minor adjustment of the proof, presented in [21], shows the following corol-
lary.

Corollary 3.11 (see [21]). Let D be a connected and compact subset of [0, 1]n+1

such that [0, 1] = π0(D) ⊇ π1(D) ⊇ · · · ⊇ πn(D), and let C
(n)
⟨D⟩[0, 1] denote the

space of all n-continuously differentiable functions endowed with the ∥·∥⟨D⟩. Then

the multiplication in C
(n)
⟨D⟩[0, 1] is weakly open.

We use the steps of the proof in [21], which we outline next.

Step 1. Let f and g be functions in C(n)[0, 1]. Bernstein polynomials uniformly
approximate the functions and their derivatives, up to order n (see [12] and
references therein). Each polynomial has a decomposition into a product
of irreducible factors, either quadratic polynomials or x − α. Then a
polynomial p(x) can be written as p(x) = Πn

i=1(x
2 + aix + bi)

kiΠm
j=1(x −

αj)
lj . If p is ϵ/2-close to f , and p has multiple roots, say (x − α)l, then

a perturbation of the roots defines an arbitrarily close polynomial with
simple roots: p1(x) = (x− α)(x− (α+ ϵ0)) · · · (x− (α+ (l − 1)ϵ0)), for a
conveniently small ϵ0, so that ∥f − p1∥1 < ϵ, a given positive number. For
simplicity of notation, we also denote by f and g the polynomials with
simple zeros and disjoint zero sets ϵ-close to the original functions. We
denote the zero sets of f and g by Z(f) and Z(g), respectively.

Step 2. Define a partition of [0, 1], 0 = x0 < x1 < x2 < · · · < xm = 1, such that

Z(f) ⊂ ∪k∈{0,2,... } [xk, xk+1] and Z(g) ⊂ ∪k∈{1,3,... } [xk, xk+1].

Step 3. Extension Lemma. Let φ and h be functions in C(n)[0, 1]. Let η > 0 and
x0 ∈ [0, 1] such that |φ(j)(x0)−h(j)(x0)| < η, with j = 0, . . . , n. For every
x ∈ [0, 1], we set

k(x) = h(x) +
n∑
j=0

(
φ(j)(x0)− h(j)(x0)

) (x− x0)
j

j!
.

Then for every j ∈ {0, 1, . . . , n} we have k(j)(x0) = φ(j)(x0) and k ∈
B(h, eη). The function k is an extension of φ to the interval [0, 1].

Step 4. Given φ, δ-close to the product f · g, the construction of f̃ and g̃, ϵ-
close to f and g, respectively, is done as follows: Since f |[0,x1] ̸= 0, we
set f1 = f and g1 = φ

f
over the interval [x0, x1]. Then, applying the

Extension Lemma, there exists g2 that extends g1 to the interval [x1, x2]
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so that Z(g2) ∩ [x1, x2] = ∅ and g2 ∈ B(g, eϵ). Now extend f1 to the
interval [x1, x2] by setting f2 = φ

g2
on [x1, x2]. This procedure repeats

until we reach [xm−1, xm]. At each step of the construction, we decrease
the value of δ in order to get the extended function and the ratio in the
corresponding ϵ-ball (i.e. B(f, ϵ) and B(g, ϵ)).

The distances ∥f − fi∥m and ∥g− gi∥m are bounded by a constant c times δ. The
constant c depends only on f and g. Hence, the value of δ can be adjusted so
that cδ < ϵ. In this proof, it is crucial that ∥ · ∥m is a quasi-algebra norm, more
precisely, ∥f · g∥m ≤ 2n∥f∥m∥g∥m.

Proof of Corollary 3.11. Lemma 3.5 asserts that ∥ · ∥⟨D⟩ is a quasi-algebra norm.

Given ϵ > 0 and f, g ∈ C(n)[0, 1], we apply Step 1 to approximate f and g with
polynomials with simple zeros and disjoint zero sets. We apply Step 2 to define a
partition that also includes all the end points of the interval πi(D) = Ii = [ai, bi].

Given φ ∈ B(f · g, δ), we define f̃n and g̃n so that ∥f̃n − f |In∥⟨D⟩ < ϵ and
∥g̃n − g|In∥⟨D⟩ < ϵ. We then pursue with the construction to extend to [an−1, an]

and [bn, bn+1], by applying Steps 3 and 4. Hence, we extend f̃n and g̃n to these
two intervals. We continue with the procedure until we cover the entire interval
[0, 1]. By finitely many adjustments of δ, we have that φ = f̃ · g̃, with these two
functions within ϵ from f and g, respectively. □

4. Openness of multiplication on C
(n)
⟨D⟩[0, 1]

In [8], Behrends considered pairs of functions (f, g) ∈ C[0, 1] × C[0, 1] with
the property that, for every ϵ > 0, the product f · g is in the interior of the
product of the balls B(f, ϵ) · B(f, ϵ). Pairs of continuous functions satisfying this
condition are said to have the property (∗). Behrends, following an interesting
approach, characterized those pairs of functions (f, g) ∈ C[0, 1] × C[0, 1] with
the property (∗). As pointed out by a referee, this property can be rephrased in
terms of local openness for the multiplication. Indeed, a pair (f, g) satisfying (∗)
is a point of local openness for the multiplication. Characterizations of points
of local openness of various nonopen bilinear and multilinear maps have been
obtained by Behrends in [9] and [8]; see also [7] and [10].

Given f and g in C[0, 1], γ(t) = (f(t), g(t)) with t ∈ [0, 1] describes a path in
R2. The question can now be formulated as under what conditions on f and g,
a continuous perturbation of the product f · g, say f · g + p, with p continuous
such that ∥p∥∞ < δ, does there exist a small perturbation of γ, (γ + τ)(t) =
(f1(t), g1(t)), such that f · g + p = f1 · g1. Equivalently, we ask the following
question: Under what conditions on f and g is (f, g) a point of local openness?
In [8], it was shown that the pairs (f, g) such that the corresponding path does
not cross the origin, have this property. This is a consequence of the implicit
function theorem (see [8, Lemma 2.1 ]). The difficulty relies on those paths
that pass through the origin. In that case, there are two essentially distinct
possibilities. One can be labeled as an acceptable crossing (AC) and the other an
unacceptable crossing (UC). A UC is a crossing where the path crosses the origin,
using the first and third quadrants or using the second and fourth. All the other
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crossings are acceptable (i.e. AC). More precisely, γ(t) = (f(t), g(t)) has a UC if
for some t0 ∈ (0, 1), γ(t0) = (0, 0) and there exists ϵ > 0 such that f(t) · g(t) ≥ 0,
for every t ∈ (t0 − ϵ, t0 + ϵ), or f(t) · g(t) ≤ 0 for every t ∈ (t0 − ϵ, t0 + ϵ). In [8],
Behrends proved the following amazing result.

Theorem 4.1. Consider f and g in C[0, 1]. Then, for every ϵ > 0, the product
f · g is in the interior of B(f · g, ϵ) if and only if γ has only acceptable crossings.

Our goal is to extend some of these ideas to the new class of spaces C
(n)
⟨D⟩([0, 1]).

We start by recalling property (∗), or local openness for the multiplication.

Definition 4.2. Let X be a quasi-normed algebra. Let x and y be two el-
ements in X. We say that (x, y) has the property (∗) if, for every ϵ > 0,
x · y ∈ int (B(x, ϵ) · B(y, ϵ)) , or, equivalently, (x, y) is a point of local openness
for the multiplication.

We consider the space C
(n)
⟨D⟩[0, 1]. Then, we denote by f · g the product of f

and g. We consider the function H : C
(n)
⟨D⟩[0, 1] × C

(n)
⟨D⟩[0, 1] → C

(n)
⟨D⟩[0, 1], given

by H(f, g) = f · g. For simplicity of notation, the symbols E and F denote,

respectively, the spaces C
(n)
⟨D⟩[0, 1]× C

(n)
⟨D⟩[0, 1] and C

(n)
⟨D⟩[0, 1].

Given (f0, g0) ∈ E, we consider the operator dH|(f0,g0) : E → F , given by
dH|(f0,g0)(f, g) = f0 · g + g0 · f .

Proposition 4.3. If D is a compact, connected subset of [0, 1]n+1 such that
[0, 1] = π0(D) ⊇ π1(D) ⊇ · · · ⊇ πn(D), then dH|(f0,g0) is the Fréchet derivative
of H at (f0, g0) for every (f0, g0) ∈ E.

Proof. Given ω0 and ω1 in C
(n)
⟨D⟩[0, 1], we have

lim
∥ω∥→0

∥H(f0 + ω0, g0 + ω1)−H(f0, g0)− dH|(f0,g0)(ω0, ω1)∥⟨D⟩

∥(ω0, ω1)∥

= lim
∥ω∥→0

∥(f0 + ω0) · (g0 + ω1)− f0 · g0 − ω0 · g0 − ω1 · f0∥⟨D⟩

max{∥ω0∥⟨D⟩, ∥ω1∥⟨D⟩}

= lim
∥ω∥→0

∥ω0 · ω1∥⟨D⟩

max{∥ω0∥⟨D⟩, ∥ω1∥⟨D⟩}
.

Since D norm is a quasi-algebra norm with constant 2n(n+ 1), we have

lim
∥ω∥→0

∥H(f0 + ω0, g0 + ω1)−H(f0, g0)− dH|(f0,g0)(ω0, ω1)∥⟨D⟩

∥(ω0, ω1)∥

≤ lim
∥ω∥→0

2n(n+ 1)∥ω0∥⟨D⟩∥ω1∥⟨D⟩

∥ω0∥⟨D⟩
= 0.

This completes the proof. □
The next proposition characterizes those points (f0, g0) that yield a surjective

Fréchet derivative dH|(f0,g0). We denote the zero set of a map f ∈ C(n)[0, 1] by
Z(f) (i.e. Z(f) = {t ∈ [0, 1] : f(t) = 0}).
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Proposition 4.4. The Fréchet derivative of H, dH|(f0,g0) is surjective if and only
if Z(f0) ∩ Z(g0) = ∅.

Proof. We first prove that the condition on the zero sets is necessary. Suppose
there exists t0 such that f0(t0) = g0(t0) = 0. Then the range of dH|(f0,g0) is con-
tained in the space of all functions that vanish at t0. This implies that dH|(f0,g0)
is not surjective.

Conversely, we first assume that f0(0) ̸= 0 and Z(f0) ∪ Z(g0) is finite. Then
there exists a (finite) partition of [0, 1], 0 = a0 < b0 < a1 < b1 < · · · < 1, such
that f0|[ai, bi] ̸= 0 and g0|[bi,ai+1] ̸= 0. Let L > 0 such that

L ≤ min{|f0(t)|, |g0(s)| : t ∈ ∪i[ai, bi], and s ∈ ∪i[bi, ai+1]}.

We choose ϵ0 > 0 such that ϵ0 < min{ |a0−b0|
3

, |a1−b0|
3

, . . . },

min{|f0(t)| : t ∈ ∪i(ai − ϵ0, bi + ϵ0)} ≥ L

2
,

and

min{|g0(s)| : s ∈ ∪i(bi − ϵ0, ai+1 + ϵ0)} ≥ L

2
.

For each i, we define a C∞[0, 1] bump function φi|[ai,bi] ≡ 1 and

φi|[0, 1]\(ai−ϵ0,bi+ϵ0) ≡ 0.

Let φ =
∑

i φi. Similarly we define ψ as the sum of ψi, where ψi|[bi, ai+1] = 1 and
ψi|[0, 1]\(bi−ϵ0,ai+1+ϵ0) ≡ 0. We notice that φ+ ψ is never equal to zero.

In order to prove surjectivity of dH|(f0,g0), we consider Z as a function in F,
and we need to construct (X,Y ) ∈ E × E such that X · f0 + Y · g0 = Z. We set

X(t) = Z(t)·φ(t)
f0(t)(φ(t)+ψ(t))

for t /∈ Z(f0), X(t) = 0 for t ∈ Z(f0), Y (t) = Z(t)·ψ(t)
g0(t)(φ(t)+ψ(t))

for t /∈ Z(g0), and Y (t) = 0 for t ∈ Z(g0). We notice that f0 · X + g0 · Y = Z.

Moreover, if Z(f0) = ∅ (or Z(g0) = ∅ ), then we just set X(t) = Z(t)
f0(t)

and Y (t) = 0

(respectively, X(t) = 0 and Y (t) = Z(t)
g0(t)

).

It remains to show that, for arbitrary zero sets with empty intersection, we can
construct a partition with the property described above. We have assumed that
f0(0) ̸= 0 (a similar argument works if we assume that g0(0) ̸= 0). We set a0 = 0.
Let x0 = sup{t : Z(f0)∩[0, t] = ∅}. It is clear that, if f0(x0) = 0, then g0(x0) ̸= 0.
We choose 0 < ϵ0 <

x0
2
such that Z(g0)∩ [x0−ϵ0, x0+ϵ0] = ∅.We set b0 = x0− ϵ0

2
.

Let y0 = sup{t : Z(g0) ∩ [x0, t] = ∅}. Clearly, g0(y0) = 0, and then f0(y0) ̸= 0.
There exists ϵ1 > 0 such that ϵ1 <

y0−x0
2

and Z(f0)∩ [y0 − ϵ1, y0 + ϵ1] = ∅. We set
a1 = y0− ϵ1

2
. We continue this process to find a sequence a0 = 0 < b0 < a1 < b1 · · ·

with the desirable property. We claim that this sequence is finite, since, otherwise,
ai and bi would converge to some point t in [0, 1]; then either f0(t) ̸= 0 or g0(t) ̸=
0. We assume that f0(t) ̸= 0. Then f0 does not vanish in a small neighborhood of
t. This neighborhood contains all the intervals [ai, bi] and [bi, ai+1], after a certain
order. This is impossible because each interval [bi, ai+1] must contain a zero of
f0. This contradiction shows that a0 = 0 < b0 < a1 < b1 · · · < (an or bn =) 1. We
observe that the argument above handles the case when Z(f0)∪Z(g0) is infinite,
Since the intersection of these two zero sets is empty, it allows us to define the
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partition as explained above, and the argument follows. This completes the
proof. □

We say that a closed subspace M of a normed space X is complemented if
there exists a closed subspace N such that X =M ⊕N.

Lemma 4.5. Let D be a compact, connected subset of [0, 1]n+1 such that [0, 1] =
π0(D) ⊇ π1(D) ⊇ · · · ⊇ πn(D). Then, for every (f0, g0) ∈ E, such that Z(f0) = ∅
or Z(g0) = ∅, the kernel of the Fréchet derivative dH|(f0,g0) is complemented in
E.

Proof. We assume that Z(f0) = ∅. We show that W = ker dH|(f0,g0) is a comple-
mented subspace. To this end, we show that P , given by P (f, g) = (f,− g0

f0
· f),

is a bounded projection: Hence, we will have W ⊕ Ran(P ) = E. It is clear that
P is a projection. We show that P is bounded,∥∥∥∥(f,−g0f0 · f

)∥∥∥∥ = max

{
∥f∥⟨D⟩,

∥∥∥∥g0f0 · f
∥∥∥∥
⟨D⟩

}

≤ max

{
∥f∥⟨D⟩, 2

n(n+ 1)

∥∥∥∥g0f0
∥∥∥∥
⟨D⟩

· ∥f∥⟨D⟩

}

≤ 2n(n+ 1)max

{
1,

∥∥∥∥g0f0
∥∥∥∥
⟨D⟩

}
·max{∥f∥⟨D⟩ · ∥g∥⟨D⟩}.

Since (f, g)−P (f, g) ∈ W and P (f, g) ∈ Ran(P ), it follows thatW⊕Ran(P ) =
E. □
Remark 4.6. We observe that the proof provided for the Lemma 4.5 also implies
that the kernel of the Fréchet derivative dH|(f0,g0) is complemented in E if either

the ratio f0
g0

or g0
f0

has continuous extension to the interval [0, 1].

We now state a version of the submersion theorem for normed spaces.

Theorem 4.7 (see [15] and [16]). Let E,F be normed spaces, let U ⊂ E be open,
and let ϕ ∈ C(k)(U, F ) with k ≥ 1. Assume that there exist a ∈ U and a subspace
E1 of E such that ker dϕ|a is an isomorphism between E1 and F . Moreover,
assume also that E = E1 ⊕ ker dϕ|a (i.e. ker dϕ|a is a complemented subspace in
E). Then there exist U

′ ⊂ U , an open set containing a, W ⊂ F , an open set
containing ϕ(a), and Ũ ⊂ ker dϕ|a, an open set containing 0 such that the map

g :U
′ −→W × Ũ

x 7−→ (ϕ(x), π(x− a))

is a C(k)-diffeomorphism from U
′
onto g(U

′
), where π := E1⊕ker dϕ|a → ker dϕ|a

denotes the projection onto ker dϕ|a.
This allows us to derive the following result.

Proposition 4.8. Let D be a compact, connected subset of [0, 1]n+1 such that
[0, 1] = π0(D) ⊇ π1(D) ⊇ · · · ⊇ πn(D). If (f0, g0) ∈ E × E such that Z(f0) = ∅
or Z(g0) = ∅, then (f0, g0) is a point of local openness for the multiplication.
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Proof. The statement follows from an application of Theorem 4.7. Lemma 4.5
and Proposition 4.4 imply the hypotheses of the proposition. Then H is a sub-
mersion by Theorem 4.7, and there exist open neighborhoods of f0 and g0 in

C
(n)
⟨D⟩[0, 1], U and V , and a neighborhood in C

(n)
⟨D⟩[0, 1] of 0, W , such that W is

C(n)-diffeomorphic to a subset of U × V . This implies the statement. □

We now give a necessary condition to assure that a pair of functions in C
(n)
⟨D⟩[0, 1]

has the property (∗).

Proposition 4.9. Let D be a connected and compact subset of [0, 1]n+1 such that

π0(D) = [0, 1]. Let f0 and g0 be functions in C
(n)
⟨D⟩[0, 1]. If (f0, g0) is a point of

local openness for the multiplication, then γ(t) = (f0(t), g0(t)) has only acceptable
crossings.

Proof. We assume that γ has a positive crossing. This means that there exist
t0 ∈ (0, 1) and a small interval (t0 − ϵ, t0 + ϵ0) around t0 such that f0(t) and
g0(t) are both positive over the interval (t0, t0 + ϵ0) and both negative over the
interval (t0 − ϵ0, t0). Therefore (f · g)|(t0−ϵ0, t0+ϵ0) is nonnegative. Given δ > 0,

the function f ·g+ δ
2
is in B⟨D⟩(f ·g, δ) and strictly positive over the open interval

(t0 − ϵ, t0 + ϵ0). Let ϵ =
1
2
min{|f(t0 − ϵ0)|, |f(t0 + ϵ0)|}. Given h in B⟨D⟩(f0, ϵ),

we have ∥f0 − h∥∞ ≤ ∥f0 − h∥⟨D⟩ < ϵ. Therefore, h must vanish at some point
in the interval (t0 − ϵ, t0 + ϵ0). This implies that every function in the product
B(f0, ϵ)·B(g0, ϵ) must vanish at some point in the interval (t0−ϵ, t0+ϵ0). Therefore
f · g + δ

2
is not in B(f0, ϵ) · B(g0, ϵ). This completes the proof. □

In conclusion, we mention that a problem of potential interest is the study of the
openness of maps with dense domain. More precisely we consider a product of p-
integrable functions on the interval [0, 1]. It is clear that the product P , P (f, g) =
f ·g, of two p-integrable functions is not necessarily p-integrable. However such a
product is densely defined (i.e. P : Dom(P ) → Lp([0, 1]), with Dom(P ) a dense
subset of Lp([0, 1])). The domain of P contains Lp([0, 1])×B([0, 1])∪B([0, 1])×
Lp([0, 1]), where B([0, 1]) denotes the set of all bounded functions. We formulate
the following result.

Theorem 4.10. Let 1 ≤ p < ∞, and let P be the multiplication on Lp([0, 1])
with domain Dom(P ). Then P is uniformly open.

The proof follows the same approach provided by Balcerzak, Majchrzycki, and
Wachowicz in [5] for the openness of maps of two variables on spaces of integrable
functions, where T : Lp([0, 1]) × Lq([0, 1]) → L1[0, 1] with p, q > 1 such that
1
p
+ 1

q
= 1.
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