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Abstract. The classical Lebesgue’s theorem is generalized, and it is proved
that under some conditions on the summability function θ, the ℓ1-θ-means of a
function f from the Wiener amalgam space W (L1, ℓ∞)(Rd) ⊃ L1(Rd) converge
to f at each modified strong Lebesgue point and thus almost everywhere. The
θ-summability contains the Weierstrass, Abel, Picard, Bessel, Fejér, de La
Vallée-Poussin, Rogosinski, and Riesz summations.

1. Introduction

For the Fejér means of an integrable function f ∈ L1(R), the classical theorem
of Lebesgue [18] says that

lim
T→∞

1

T

∫ T

0

stf(x) dt = f(x)

at each Lebesgue point of f , thus almost everywhere, where

stf(x) :=
1√
2π

∫ t

−t

f̂(v)eıxv dv (t > 0)

and f̂ denotes the Fourier transform of the one-dimensional function f . In the
present paper this result will be generalized to the ℓ1-summability of higher di-
mensional functions.
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A general method of summation, the so called θ-summation method, which is
generated by a single function θ and which includes the well known Fejér, Riesz,
Weierstrass, Abel, and so on summability methods, is studied intensively in the
literature (see, e.g., Butzer and Nessel [3], Christ [4], Stein and Weiss [24, 25],
Lu and Yan [19], Trigub and Belinsky [27], Gát [9, 10, 11], Goginava [12, 13, 14],
Simon [22, 23], Nagy, Persson, Tephnadze and Wall [20, 21], and Weisz [28, 30]).

The ℓ1- or triangular means of d-dimensional Fourier transforms generated by
the θ-summation are defined by

σθ
Tf(x) =

1

(2π)d/2

∫
Rd

θ

(
|v|
T

)
f̂(v)eıx·v dv, (1.1)

where |v| = |v1| + · · · + |vd|. For θ(t) = max((1 − |t|), 0) we get back the usual
Fejér means (see later). Berens, Li, and Xu [1, 2] have proved that σθ

Tf → f
almost everywhere for the Riesz summability (i.e., if θ(v) := max((1 − |v|)β, 0),
0 < β < ∞), where f ∈ L1(Rd). Szili and Vértesi [26] considered the ℓ1-Fejér
summability. Recently, using Hardy spaces and the boundedness of the maximal
θ-operator from the Hardy space to the Lp(R) space, in [29], we generalized this
convergence result and gave a common proof for several different θ’s, such as for
the Weierstrass, Abel, Picard, Bessel, Fejér, de La Vallée-Poussin, Rogosinski,
and Riesz summations. However, in contrary to the one-dimensional case, the set
of convergence is not yet known.

In this paper, we generalize the classical Lebesgue’s theorem about the Lebesgue
points of one-dimensional integrable functions to multi-dimensional functions and
also to the Wiener amalgam space W (L1, ℓ∞)(Rd), which is much larger than
L1(Rd). More exactly, we introduce the concept of modified strong Lebesgue
points. It is verified in [31, Theorem 2] that almost every point is a modified
strong Lebesgue point of f ∈ W (L1, ℓ∞)(Rd). Under some weak conditions on θ,
we show that the ℓ1-θ-means of a multidimensional function f ∈ W (L1, ℓ∞)(Rd)
(d ≥ 2) converge to f at each modified strong Lebesgue point. The same results
for d = 2 were shown in [32]. The proof for d = 2 in [32] is much simpler, and
it differs from the present proof significantly. The difference between the proofs
is that in [32], we could find a useful closed form for the kernel function in the
two-dimensional case, but there is no closed form for higher dimensions. So the
present proof needs essentially new ideas.

2. Wiener amalgam spaces

Let us fix d ≥ 2, d ∈ N. For a set Y ̸= ∅, let Yd be its Cartesian product
Y × · · · × Y taken with itself d times. For x = (x1, . . . , xd) ∈ Rd and u =
(u1, . . . , ud) ∈ Rd, set

u · x :=
d∑

k=1

ukxk, ∥x∥p :=

(
d∑

k=1

|xk|p
)1/p

, |x| := ∥x∥1 .
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We briefly write Lp(Rd) instead of the Lp(Rd, λ) space equipped with the norm

∥f∥p :=
(∫

Rd

|f(x)|p dλ(x)
)1/p

(1 ≤ p < ∞),

with the usual modification for p = ∞, where λ is the Lebesgue measure. In-
tegrating over [0, 1)d, we obtain the definition of Lp[0, 1)

d. These spaces are
generalized as follows. A measurable function f belongs to the Wiener amalgam
space W (Lp, ℓq)(Rd) (1 ≤ p, q ≤ ∞) if

∥f∥W (Lp,ℓq) :=

(∑
k∈Zd

∥f(·+ k)∥q
Lp[0,1)d

)1/q

< ∞,

with the obvious modification for q = ∞.
It is easy to see that W (Lp, ℓp)(Rd) = Lp(Rd) and the following continuous

embeddings hold true:

W (Lp1 , ℓq)(Rd) ⊃ W (Lp2 , ℓq)(Rd) (p1 ≤ p2)

and

W (Lp, ℓq1)(Rd) ⊂ W (Lp, ℓq2)(Rd) (q1 ≤ q2),

(1 ≤ p1, p2, q1, q2 ≤ ∞). Thus

W (L∞, ℓ1)(Rd) ⊂ Lp(Rd) ⊂ W (L1, ℓ∞)(Rd) (1 ≤ p ≤ ∞).

For more about Wiener amalgam spaces, see Fournier and Stewart [8] and Heil
[16]. Note that all homogeneous Banach space over Rd can be continuously em-
bedded into W (L1, ℓ∞)(Rd) (see Katznelson [17]).

In this paper the constant C may vary from line to line.

3. The summability function

In this article, we will consider a general summability method, the so called
ℓ1-θ-summation defined by a function θ : [0,∞) → R. This summation contains
all well known summability methods, such as the Fejér, Riesz, Weierstrass, Abel,
Picard, and Bessel summations. Here we simplify the conditions on θ given in
Weisz [31].

We suppose that θ is absolutely continuous. Suppose further that

θ(0) = 1,

∫ ∞

0

(t ∨ 1)d|θ′(t)| dt < ∞, (3.1)

where ∨ denotes the maximum, that is, t ∨ 1 = max(t, 1).

Lemma 3.1. If θ is absolutely continuous and satisfies the second condition of
(3.1), then θ(t) converges to some real number A as t → ∞ and

lim
t→∞

td(θ(t)− A) = 0. (3.2)
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Proof. Indeed,

|θ(t)− θ(T )| ≤
∫ T

t

|θ′(s)| ds < ϵ

if T > t > t0(ϵ) > 0. Thus θ is Cauchy and so convergent to some real number
A, as t → ∞. On the other hand,

td |θ(t)− θ(T )| ≤ td
∫ T

t

|θ′(s)| ds ≤
∫ T

t

sd |θ′(s)| ds < ϵ

if T > t > t1(ϵ) > 0. Letting T → ∞, we have td |θ(t)− A| < ϵ, which yields
(3.2). □

If A ̸= 0, then, writing θ = A+(θ−A), we decompose the θ-means defined later
in (4.2) into two parts. The first part is the inversion formula (4.1) multiplied by
the constant A, which is divergent in general. As we will see later, under some
conditions, the second part converges almost everywhere. So we may suppose
that

lim
t→∞

θ(t) = 0, (3.3)

which implies also that

lim
t→∞

tdθ(t) = 0.

Since by integration by parts,∫ ∞

0

td−1θ(t) dt = −1

d

∫ ∞

0

tdθ′(t) dt,

the function td−1θ(t) is also integrable.
In addition, we will suppose also that∣∣∣∣∫ ∞

0

tkθ′(t)(soc )(k)(tu) dt

∣∣∣∣ ≤ Cu−α (k = 0, . . . , d− 1) (3.4)

for some 0 < α < ∞ and all u > 0, where the function soc is defined by

soc t :=

{
cos t if d is even;
sin t if d is odd,

and (soc )(k) denotes its kth derivative. Since, by (3.1), the left hand side is always
finite, (3.4) holds for small u, say for 0 < u ≤ 1. So (3.4) is important for large
u, say for u > 1. If (3.4) holds for some α > 1, then it holds also for α = 1. So
we may suppose that (3.4) holds for some 0 < α ≤ 1 and all u > 0.

Lemma 3.2. Suppose that θ is absolutely continuous and satisfies the second
condition of (3.1). If ∣∣∣∣∫ ∞

0

θ′(t) eıtu dt

∣∣∣∣ ≤ Cu−α (3.5)

for some 0 < α ≤ 1 and all u > 0, then (3.4) holds.
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Proof. Let us denote the integral on the left hand side by F (u), that is,

F (u) =

∫ ∞

0

θ′(t) eıtu dt.

Then by (3.1) and the Lagrange mean value theorem, for any x ≥ 1 and 0 < ϵ ≤ 1,
there exists v ∈ (x, x+ ϵ) such that∣∣∣∣∫ ∞

0

tθ′(t) eıtv dt

∣∣∣∣ = |F ′(v)| ≤ |F (x+ ϵ)− F (x)|

≤ C(x+ ϵ)−α + Cx−α ≤ C(1 + 2α)(x+ ϵ)−α.

Since the second derivative of F is bounded, for any u ∈ [x, x+ ϵ], we have

|F ′(u)− F ′(v)| = |F ′′(ξ)| |u− v| ≤ C ′ϵ.

If ϵ ≤ (x+ ϵ)−α, in other words, x+ ϵ ≤ (1/ϵ)1/α, then

|F ′(u)| ≤ |F ′(v)|+ |F ′(u)− F ′(v)| ≤ (C(1 + 2α) + C ′) (x+ ϵ)−α

≤ (C(1 + 2α) + C ′)u−α.

This leads us to the inequality

|F ′(u)| ≤ (C(1 + 2α) + C ′)u−α on the interval [1, (1/ϵ)1/α].

Since ϵ is arbitrary, the inequality holds on the interval [1,∞). F ′ is also bounded;
hence ∣∣∣∣∫ ∞

0

tθ′(t) eıtu dt

∣∣∣∣ ≤ C1u
−α (u > 0).

In the same way, we can show that∣∣∣∣∫ ∞

0

tkθ′(t) eıtu dt

∣∣∣∣ ≤ Cku
−α (u > 0, k = 0, . . . , d− 1),

which implies (3.4). □

4. The kernel functions

The Fourier transform of f ∈ L1(Rd) is defined by

f̂(x) :=
1

(2π)d/2

∫
Rd

f(t)e−ıx·t dt (x ∈ Rd),

where ı =
√
−1. Suppose that f ∈ Lp(Rd) for some 1 ≤ p ≤ 2. The Fourier

inversion formula

f(x) =
1

(2π)d/2

∫
Rd

f̂(v)eıx·v dv (x ∈ Rd, f̂ ∈ L1(Rd)) (4.1)

motivates the definition of the ℓ1-Dirichlet integral stf :

stf(x) :=
1

(2π)d/2

∫
Rd

1{|v|≤t}f̂(v)e
ıx·v dv =

1

(2π)d

∫
Rd

f(x−u)Dd
t (u) du (t > 0),

where |v| = |v1|+ · · ·+ |vd| and the Dirichlet kernel is defined by

Dd
t (u) :=

∫
Rd

1{|v|≤t}e
ıu·v dv.
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The dimension d is omitted in the notation of Dd
t if it does not cause ambiguity.

Obviously,

|Dd
t (u)| ≤ Ctd (u ∈ Rd).

It is known (see, e.g., Grafakos [15]) that for f ∈ Lp(Rd), 1 < p < ∞,

lim
T→∞

sTf = f in the Lp(Rd)-norm and a.e.

This convergence does not hold for p = 1. However, using a summability method,
we can prove some almost everywhere results for p = 1.

For T > 0, the ℓ1-θ-means of a function f ∈ Lp(Rd) (1 ≤ p ≤ 2) are defined by

σθ
Tf(x) :=

1

(2π)d/2

∫
Rd

θ

(
|v|
T

)
f̂(v)eıx·v dv. (4.2)

It is easy to see that

σθ
Tf(x) =

1

(2π)d/2

∫
Rd

f(x− u)Kθ
T (u) du, (4.3)

where the ℓ1-θ-kernel is given by

Kθ
T (x) :=

1

(2π)d/2

∫
Rd

θ

(
|u|
T

)
eıx·u du

=
−1

(2π)d/2T

∫
Rd

∫ ∞

|u|
θ′
(

t

T

)
dt eıx·u du

=
−1

(2π)d/2T

∫ ∞

0

θ′
(

t

T

)
Dt(x) dt

=
−1

(2π)d/2

∫ ∞

0

θ′(t)DtT (x) dt. (4.4)

Observe that the integrability of the kernel function Kθ
T (see Lemma 4.6) implies

that the convolution in (4.3) can be extended to all f ∈ W (L1, ℓ∞)(Rd). Hence

σθ
Tf(x) =

−1

T

∫ ∞

0

θ′
(

t

T

)
stf(x) dt.

Note that for the Fejér means (i.e., for θ(t) = (1−t)∨0) we get the usual definition

σθ
Tf(x) =

1

T

∫ T

0

stf(x) dt.

It is clear that

|Kθ
T | ≤ CT d. (4.5)

The Dirichlet kernel Dt can be expressed with the help of divided differ-
ences. The nth divided difference of a function f at the (pairwise distinct) knots
x1, . . . , xn ∈ R is introduced inductively as

[x1]f := f(x1), [x1, . . . , xn]f :=
[x1, . . . , xn−1]f − [x2, . . . , xn]f

x1 − xn

.
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One can see that the divided differences are symmetric functions of the knots.
It is known (see, e.g., DeVore and Lorentz [5, p. 120]) that if f is (n − 1)-
times continuously differentiable on [a, b] and x1, . . . , xn ∈ [a, b], then there exists
ξ ∈ [a, b] such that

[x1, . . . , xn]f =
f (n−1)(ξ)

(n− 1)!
. (4.6)

Let

Gt(u) := (−1)[d/2]2du(d−2)/2soc (t
√
u).

The following lemma is proved in Berens and Xu [2].

Lemma 4.1. We have

Dt(x) = [x2
1, . . . , x

2
d]Gt.

Definition 4.2. We say that a sequence of index pairs (il, jl)l = (il, jl)
d−1
l=1 is

proper, if it satisfies the following properties:

• i1 = 1, j1 = d,
• for any l = 1, . . . , d− 2, we have that either il+1 = il and jl+1 = jl − 1 or
il+1 = il + 1 and jl+1 = jl.

The set of all proper index sequences will be denoted by I(1, . . . , d).

Obviously, (il)l is nondecreasing and (jl)l is nonincreasing. Note that il < jl
for all l = 1, . . . , d− 1. More exactly, jl − il = d− l (l = 1, . . . , d− 1). We define
the set I(k)(1, . . . , d) of index sequences as follows. For a proper index sequence
(il, jl)

d−1
l=1 ∈ I(1, . . . , d), we say that the first k term of the sequence, that is,

(il, jl)
k
l=1 is in I(k)(1, . . . , d). Of course I(d−1)(1, . . . , d)=I(1, . . . , d). We will use

the following representation of the kernel function Dt.

Lemma 4.3. For k = 0, 1, . . . , d− 2, we have

Dt(x) =
∑

(il,jl)
k+1
l=1 ∈I(k+1)(1,...,d)

(−1)ik+1−1

(
k∏

l=1

(x2
il
− x2

jl
)−1

)
[x2

ik+1
, . . . , x2

jk+1
]Gt.

Proof. Using Lemma 4.1, we can easily prove the lemma by induction. For k = 0
the equation is the same as Lemma 4.1. The details are left to the reader. □

Next we estimate the kernel function Kθ
T in two different ways.

Lemma 4.4. Suppose that the absolutely continuous function θ satisfies (3.1) and
(3.3). If x1 > x2 > · · · > xd > 0, 1 < n1 < · · · < nm < d and m = 0, . . . , d − 2,
then

|Kθ
T (x)| ≤ CTm

∑
(il,jl)l∈I({1,...,d}\{n1,...,nm})

x−1
i1

d−1−m∏
l=1

(xil − xjl)
−1. (4.7)



ℓ1-SUMMABILITY AND LEBESGUE POINTS 291

Proof. It follows from Lemma 4.3 with k = d− 2 that

|Dt(x)| =
∣∣Dd

t (x)
∣∣ ≤ ∑

(il,jl)l∈I(1,...,d)

(
d−1∏
l=1

(x2
il
− x2

jl
)−1

)∣∣∣Gt(x
2
id−1

)−Gt(x
2
jd−1

)
∣∣∣

≤ C
∑

(il,jl)l∈I(1,...,d)

(
d−1∏
l=1

(x2
il
− x2

jl
)−1

)(
xd−2
id−1

+ xd−2
jd−1

)

≤ C
∑

(il,jl)l∈I(1,...,d)

x−1
i1

(
d−1∏
l=1

(xil − xjl)
−1

)(
d−1∏
l=2

(xil + xjl)
−1

)
xd−2
id−1

≤ C
∑

(il,jl)l∈I(1,...,d)

x−1
i1

(
d−1∏
l=1

(xil − xjl)
−1

)
, (4.8)

because xi1 + xj1 ≥ xi1 and xil + xjl ≥ xid−1
for l = 2, . . . , d− 1. Then we obtain

by (4.4) that

∣∣Kθ
T (x)

∣∣ ≤ C

∫ ∞

0

|θ′(t)|
∣∣Dd

tT (x)
∣∣ dt ≤ C

∑
(il,jl)l∈I(1,...,d)

x−1
i1

d−1∏
l=1

(xil − xjl)
−1,

which is exactly (4.7) for m = 0. Next we prove the result for m = 1. We may
suppose that n1 = 2. Observe that

Dd
t (x)

= 2d
∫
(0,∞)d

1{|v|≤t} cos(x1v1) . . . cos(xdvd) dv

= 2d
∫ t

0

∫ t−v2

0

∫ t−v1−v2

0

. . .

∫ t−v1−...−vd−1

0

cos(x1v1) . . . cos(xdvd) dv2dv1dv3 . . . dvd

= 2

∫ t

0

cos(x2v2)D
d−1
t−v2

(x1, x3, . . . , xd) dv2.

Using (4.8) for the (d− 1)-dimensional Dirichlet kernel Dd−1
t−v2(x1, x3, . . . , xd), we

have ∣∣Dd
t (x)

∣∣ ≤ Ct
∑

(il,jl)l∈I(1,3,...,d)

x−1
i1

d−2∏
l=1

(xil − xjl)
−1

and so∣∣Kθ
T (x)

∣∣ ≤ C

∫ ∞

0

|θ′(t)|
∣∣Dd

tT (x)
∣∣ dt ≤ CT

∑
(il,jl)l∈I(1,3,...,d)

x−1
i1

d−2∏
l=1

(xil − xjl)
−1,

which yields (4.7) for m = 1. The proof can be finished in the same way. □

Note that xi1 = x1 and xj1 = xd.
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Lemma 4.5. Suppose that the absolutely continuous function θ satisfies (3.1),
(3.3), and (3.5) for some 0 < α ≤ 1 and all u > 0. If x1 > x2 > · · · > xd > 1/T ,
then

|Kθ
T (x)| ≤ CTm−α

∑
(il,jl)l∈I(1,...,d)

x−1
i1
x−α
j1

d−1−m∏
l=1

(xil − xjl)
−1 (m = 0, . . . , d− 2)

(4.9)
and

|Kθ
T (x)| ≤ CT d−1−αx−1−α

j1
. (4.10)

Proof. By Lemma 4.3 with k = d− 2 and (4.4), we have

|Kθ
T (x)|

≤ C
∑

(il,jl)∈I

(
d−1∏
l=1

(x2
il
− x2

jl
)−1

)∣∣∣∣∫ ∞

0

θ′(t)
(
GtT (x

2
id−1

)−GtT (x
2
jd−1

)
)
dt

∣∣∣∣
≤ C

∑
(il,jl)∈I

(
d−1∏
l=1

(x2
il
− x2

jl
)−1

)∣∣∣∣∫ ∞

0

θ′(t)
(
xd−2
id−1

soc (tTxid−1
)− xd−2

jd−1
soc (tTxjd−1

)
)
dt

∣∣∣∣
≤ CT−α

∑
(il,jl)∈I

(
d−1∏
l=1

(x2
il
− x2

jl
)−1

)(
xd−2−α
id−1

+ xd−2−α
jd−1

)

≤ CT−α
∑

(il,jl)∈I

x−1
i1

(
d−1∏
l=1

(xil − xjl)
−1

)(
d−1∏
l=2

(xil + xjl)
−1

)(
xd−2−α
id−1

+ xd−2−α
jd−1

)

≤ CT−α
∑

(il,jl)∈I

x−1
i1

(
d−1∏
l=1

(xil − xjl)
−1

)(
x−α
id−1

+ x−α
jd−1

)

≤ CT−α
∑

(il,jl)∈I

x−1
i1
x−α
j1

d−1∏
l=1

(xil − xjl)
−1,

because xi1 + xj1 > xi1 and xil + xjl > xid−1
> xjd−1

> xj1 for l = 2, . . . , d − 1.
This shows (4.9) for m = 0. We can easily prove by induction that

G
(n)
t (u) =

n∑
j=0

cjt
ju

d−2n−2+j
2 soc (j)(tu1/2),

where cj ∈ R (j = 0, . . . , n) and c0 = 0 if d is even and 2n + 2 > d. Using this
formula with n = m as well as (4.6), (4.4), (3.4), and Lemma 4.3 for k = d−1−m
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(m = 1, . . . , d− 1), we infer

|Kθ
T (x)| (4.11)

≤ C
∑

(il,jl)
d−m
l=1 ∈I(d−m)(1,...,d)

(
d−1−m∏
l=1

(x2
il
− x2

jl
)−1

)∣∣∣∣∫ ∞

0

θ′(t)[x2
id−m

, . . . , x2
jd−m

]GtT dt

∣∣∣∣
≤ C

∑
(il,jl)

d−m
l=1 ∈I(d−m)(1,...,d)

(
d−1−m∏
l=1

(x2
il
− x2

jl
)−1

)∣∣∣∣∣
∫ ∞

0

θ′(t)
G

(m)
tT (ξ(il,jl)l)

m!
dt

∣∣∣∣∣
≤ C

∑
(il,jl)

d−m
l=1 ∈I(d−m)(1,...,d)

(
d−1−m∏
l=1

(x2
il
− x2

jl
)−1

)
m∑
j=0∣∣∣∣∫ ∞

0

θ′(t)(Tt)jξ
d−2m−2+j

2

(il,jl)l
soc (j)(tT ξ

1/2
(il,jl)l

) dt

∣∣∣∣
≤ C

∑
(il,jl)

d−m
l=1 ∈I(d−m)(1,...,d)

(
d−1−m∏
l=1

(x2
il
− x2

jl
)−1

)
m∑
j=0

T j−αξ
d−2m−2+j−α

2

(il,jl)l
, (4.12)

where x2
jd−m

≤ ξ(il,jl)l ≤ x2
id−m

. If m = 1, . . . , d− 2, then

|Kθ
T (x)| ≤ C

∑
(il,jl)

d−m
l=1 ∈I(d−m)(1,...,d)

x−1
i1

(
d−1−m∏
l=1

(xil − xjl)
−1

)
m∑
j=0

T j−αξ
−m+j−α

2

(il,jl)l

≤ C
∑

(il,jl)
d−m
l=1 ∈I(d−m)(1,...,d)

x−1
i1

(
d−1−m∏
l=1

(xil − xjl)
−1

)
m∑
j=0

T j−αx−m+j−α
j1

≤ CTm−α
∑

(il,jl)
d−m
l=1 ∈I(d−m)(1,...,d)

x−1
i1

(
d−1−m∏
l=1

(xil − xjl)
−1

)
x−α
j1

,

which is exactly (4.9). If m = d− 1, then (4.11) yields that

|Kθ
T (x)| ≤ C

d−1∑
j=0

T j−αξ
−d+j−α

2

(i1,j1)
≤ C

d−1∑
j=0

T d−1−αx−1−α
j1

≤ CT d−1−αx−1−α
j1

,

which proves (4.10). □

We have proved the next lemma in Weisz [29, Theorem 1].

Lemma 4.6. Suppose that the absolutely continuous function θ satisfies (3.1),
(3.3), and (3.5) for some 0 < α ≤ 1 and all u > 0. Then∫

Rd

∣∣Kθ
T

∣∣ dλ ≤ C (T > 0).

Now we can extend the definition of the ℓ1-θ-means σθ
Tf by formula (4.3) to

all f ∈ W (L1, ℓ∞)(Rd).
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5. Modified Lebesgue points

Lloc
p (Rd) (1 ≤ p < ∞) denotes the space of measurable functions f for which

|f |p is locally integrable. For f ∈ Lloc
1 (Rd) the Hardy–Littlewood maximal function

is defined by

Mf(x) := sup
h>0

1

(2h)d

∫ h

−h

· · ·
∫ h

−h

|f(x− s)| ds,

while the strong Hardy–Littlewood maximal function by

Msf(x) := sup
h1,...,hd>0

1

2d
∏d

j=1 hj

∫ h1

−h1

· · ·
∫ hd

−hd

|f(x− s)| ds.

It is known that M is of weak type (1, 1) while Ms is not. We introduce a new
maximal function which is also of weak type (1, 1). In this article, by a diagonal,
we understand any diagonal of the two-dimensional faces of the unit cube [0, 1]d.
Let us denote by P2i1h,...,2idh a parallelepiped, whose center is the origin and whose
sides are parallel to the axes and/or to the diagonals and whose kth side length is
2ik+1h if the kth side is parallel to an axis and

√
22ik+1h if the kth side is parallel

to a diagonal (i ∈ Nd, h > 0, k = 1, . . . , d). For some τ > 0 and f ∈ Lloc
1 (Rd), we

define the modified Hardy–Littlewood maximal function by

Mτf(x) := sup
P
2i1h,...,2idh

,i∈Nd,h>0

2−τ |i| 1∣∣P2i1h,...,2idh

∣∣ ∫
P
2i1h,...,2idh

|f(x− s)| ds,

where the supremum is taken over all parallelepipeds P2i1h,...,2idh (i ∈ Nd, h > 0)
just defined. Obviously, Mτ1f ≤ Mτ2f for τ1 > τ2 > 0. If the supremum is
taken over all parallelepipeds whose sides are parallel to the axes and τ = 0, we
get back the definition of the strong Hardy–Littlewood maximal function Msf ,
and, moreover, if in addition i1 = · · · = id, we get back the Hardy–Littlewood
maximal function Mf .

A point x ∈ Rd is called a Lebesgue point of f ∈ Lloc
1 (Rd) if

lim
h→0

1

(2h)d

∫ h

−h

· · ·
∫ h

−h

|f(x− s)− f(x)| ds = 0,

while it is called a strong Lebesgue point if

lim
h1...,hd→0

1

2d
∏d

j=1 hj

∫ h1

−h1

· · ·
∫ hd

−hd

|f(x− s)− f(x)| ds = 0.

It was proved in Feichtinger and Weisz [6, 7] that almost every point x ∈ Rd is a
Lebesgue point of f ∈ W (L1, ℓ∞)(Rd). This does not extend to strong Lebesgue
points, even if f ∈ L1(Rd). However, it holds true for f ∈ L1(logL)

d−1(Rd).
Starting from the modified Hardy–Littlewood maximal function Mτf , we in-

troduce

U τ
r f(x) := sup

P
2i1h,...,2idh

,i∈Nd,h>0

2ikh<r,k=1,...d

2−τ |i| 1∣∣P2i1h,...,2idh

∣∣ ∫
P
2i1h,...,2idh

|f(x− s)− f(x)| ds,
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where the supremum is taken over all parallelepipeds whose sides are parallel to
the axes and/or to the diagonals. We say that a point x ∈ Rd is a modified strong
Lebesgue point of f ∈ Lloc

1 (Rd) if for all τ > 0,

lim
r→0

U τ
r f(x) = 0. (5.1)

It is equivalent if we suppose that (5.1) holds for arbitrarily small numbers τ > 0,
because limr→0 U

τ2
r f(x) = 0 implies limr→0 U

τ1
r f(x) = 0 for all τ1 > τ2 > 0. More

exactly, we need that (5.1) holds for some τ < α/d, where 0 < α ≤ 1 is given in
(3.4).

If f is continuous at x, then x is a modified strong Lebesgue point of f . We
have proved in [31, Theorems 1,2] that almost every point x ∈ R2 is a modified
strong Lebesgue point of f ∈ W (L1, ℓ∞)(R2) and, moreover, Mτf with τ > 0 is
almost everywhere finite for such functions. We can generalize this result to the
d-dimensional case with the same proof. The details are left to the reader.

Theorem 5.1. If f ∈ W (L1, ℓ∞)(Rd) and τ > 0, then almost every point is a
modified strong p-Lebesgue point of f and Mτf is almost everywhere finite.

6. Pointwise convergence of the summability means

Now we prove that the ℓ1-summability means σθ
Tf converge to f at each modi-

fied strong Lebesgue points, where the modified Hardy–Littlewood maximal func-
tion Mτf is finite for small numbers τ > 0.

Theorem 6.1. Suppose that the absolutely continuous function θ satisfies (3.1),
(3.3), and (3.5) for some 0 < α ≤ 1 and all u > 0. If f ∈ W (L1, ℓ∞)(Rd), x is
a modified strong Lebesgue point of f , and Mτf(x) is finite for some τ < α/d,
then

lim
T→∞

σθ
Tf(x) = f(x).

Proof. If θ0(s) := θ(|s|), then

Kθ
T (s) := T dθ̂0(Ts)

by (4.4). The function θ0 is integrable. Indeed, in the next integral, we substitute
s1 + · · · + sd = x1, s2 = x2, . . . , sd = xd, where (s1, . . . , sd) ∈ (0,∞)d. Then we
have to integrate over the set

{
(x1, . . . , xd) ∈ (0,∞)d : x1 > x2 + · · ·+ xd

}
and

the Jacobian is 1. Hence

2−d

∫
Rd

|θ(|s|)| ds =
∫
(0,∞)d

|θ(s1 + · · ·+ sd)| ds

=

∫ ∞

0

∫ x1

0

. . .

∫ x1−x2−···−xd−1

0

|θ(x1)| dxd . . . dx1

≤
∫ ∞

0

∫ x1

0

. . .

∫ x1

0

|θ(x1)| dxd . . . dx1

=

∫ ∞

0

td−1 |θ(t)| dt < ∞.
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Since θ̂0 ∈ L1(R2) by Lemma 4.6, the Fourier inversion formula yields that

1

(2π)d/2

∫
Rd

Kθ
T (s) ds =

1

(2π)d/2

∫
Rd

θ̂0(s) ds = θ(0) = 1.

Thus ∣∣σθ
Tf(x)− f(x)

∣∣ ≤ 1

(2π)d/2

∫
Rd

|f(x− s)− f(x)|
∣∣Kθ

T (s)
∣∣ ds. (6.1)

Instead of Rd, it is enough to integrate on (0,∞)d. The set (0,∞)d can be
decomposed into d! simplices according to the ordering of the variables. Apart
from a set of measure zero of possible equalities, we may even assume strict
inequalities. So it is enough to integrate over one of these simplices, say on{

s ∈ (0,∞)d : s1 > · · · > sd > 0
}
.

The integrals on the other simplexes can be estimated similarly.
Let us introduce the following sets:

A0 := {s : 8/T > s1 > · · · > sd > 0} ,

A1 := {s : s1 > · · · > sd > 0, s1 > 8/T, sk − sk+1 > 2/T, k = 1, . . . , d− 1} ,

Ai := {s : s1 > · · · > sd > 0, s1 > 8/T, sk − sk+i > 2/T, k = 1, . . . , d− i

and there exists 1 ≤ j ≤ d− i+ 1 such that sj − sj+i−1 ≤ 2/T}

for i = 2, . . . , d− 1,

Ad := {s : s1 > · · · > sd > 0, s1 > 8/T, s1 − sd ≤ 2/T}

and

B := {s : 0 < sd ≤ 1/T} .
Observe that if a point s is in Ai, then s1 > 8/T and sil − sjl > 2/T for all
l = 1, . . . , d − i (i = 1, . . . , d). Since x is a modified strong Lebesgue point of f ,
we can fix a number r < 1 such that U τ

r f(x) < ϵ. Let us denote the cube [0, r/2]d

by Sr/2, and let 8/T < r/2. We will integrate the right hand side of (6.1) on the
sets A0, Ad ∩B and

d−1∪
j=1

(Aj∩B∩Sr/2),
d−1∪
j=1

(Aj∩B∩Sc
r/2),

d∪
j=1

(Aj∩Bc∩Sr/2),
d∪

j=1

(Aj∩Bc∩Sc
r/2),

where Sc denotes the complement of the set S.
Since A0 ⊂ Sr/2, we have by (4.5),∫

A0

|f(x− s)− f(x)|
∣∣Kθ

T (s)
∣∣ ds

≤ CT d

∫ 8/T

0

· · ·
∫ 8/T

0

|f(x− s)− f(x)| ds ≤ CU τ
r f(x) < Cϵ.

Observe that Ad ∩B = ∅.
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Let us denote by r0 = r0(T ) the unique natural number i, for which r/2 ≤
2i+1/T < r. On the set A1 ∩B we use (4.7) with m = 0 to obtain

∫
A1∩B∩Sr/2

|f(x− s)− f(x)|
∣∣Kθ

T (s)
∣∣ ds

≤ C
∑

(il,jl)l∈I(1,...,d)

∫
A1∩B∩Sr/2

|f(x− s)− f(x)| s−1
i1

d−1∏
l=1

(sil − sjl)
−1 ds

≤ C
∑

(il,jl)l∈I(1,...,d)

∫
A1∩B∩Sr/2

|f(x− s)− f(x)| s−2
i1

d−1∏
l=2

(sil − sjl)
−1 ds.

(6.2)

For a given proper index sequence (il, jl)l ∈ I(1, . . . , d), we introduce a permuta-
tion i′1, . . . , i

′
d of 1, . . . , d and then we integrate with respect to si′d , si′d−1

, . . . , si′1 ,

in this order. Let i′1 = i1 = 1 and we will consider the integral

r0∑
k1=3

∫ 2k1+1/T

2k1/T

· · · s−2
i1

dsi′1 .

Next let i′2 = j1 = d and the integral
∫ 1/T

0
· · · dsi′2 will be computed. In the next

step we consider two cases.

• If i2 = i1 and j2 = j1 − 1, then let i′3 = j2 and we consider the integral∑k1
k2=0

∫ si2−2k2/T

si2−2k2+1/T
· · · (si2 − sj2)

−1 dsi′3 .

• If i2 = i1 + 1 and j2 = j1, then let i′3 = i2 and we consider the integral∑k1
k2=0

∫ sj2+2k2+1/T

sj2+2k2/T
· · · (si2 − sj2)

−1 dsi′3 .

We define i′4 as follows.

• If i3 = i2 and j3 = j2 − 1, then let i′4 = j3 and we consider the integral∑k1
k3=0

∫ si3−2k3/T

si3−2k3+1/T
· · · (si3 − sj3)

−1 dsi′4 .

• If i3 = i2 + 1 and j3 = j2, then let i′4 = i3 and we consider the integral∑k1
k3=0

∫ sj3+2k3+1/T

sj3+2k3/T
· · · (si3 − sj3)

−1 dsi′4 .
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Continuing this process, we estimate (6.2) by an expression, where we integrate
over a parallelepiped P2k1/T,...,2kd/T , with kd = 0. We conclude

∫
A1∩B∩Sr/2

|f(x− s)− f(x)|
∣∣Kθ

T (s)
∣∣ ds

≤ C
∑

(il,jl)l∈I(1,...,d)

r0∑
k1=3

k1∑
k2=0

· · ·
k1∑

kd−1=0

(
2k1

T

)−2 d−1∏
l=2

(
2kl

T

)−1

∫
P
2k1/T,...,2kd/T

|f(x− s)− f(x)| ds

≤ C
∑

(il,jl)l∈I(1,...,d)

r0∑
k1=3

k1∑
k2=0

· · ·
k1∑

kd−1=0

2(τ−1/(d−1))|k|

2−τ |k| 1∣∣P2k1/T,...,2kd/T

∣∣ ∫
P
2k1/T,...,2kd/T

|f(x− s)− f(x)| ds

≤ C
∑

(il,jl)l∈I(1,...,d)

r0∑
k1=3

k1∑
k2=0

· · ·
k1∑

kd−1=0

2(τ−1/(d−1))|k|U τ
r f(x) < Cϵ.

Similarly,

∫
A1∩B∩Sc

r/2

|f(x− s)− f(x)|
∣∣Kθ

T (s)
∣∣ ds

≤ C
∑

(il,jl)l∈I(1,...,d)

∞∑
k1=r0

k1∑
k2=0

· · ·
k1∑

kd−1=0

(
2k1

T

)−2 d−1∏
l=2

(
2kl

T

)−1

∫
P
2k1/T,...,2kd/T

|f(x− s)− f(x)| ds

≤ C
∑

(il,jl)l∈I(1,...,d)

∞∑
k1=r0

k1∑
k2=0

· · ·
k1∑

kd−1=0

2(τ−1/(d−1))|k|

2−τ |k| 1∣∣P2k1/T,...,2kd/T

∣∣ ∫
P
2k1/T,...,2kd/T

|f(x− s)− f(x)| ds,

which can be further estimated by

∫
A1∩B∩Sc

r/2

|f(x− s)− f(x)|
∣∣Kθ

T (s)
∣∣ ds
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≤ C
∑

(il,jl)l∈I(1,...,d)

∞∑
k1=r0

k1∑
k2=0

· · ·
k1∑

kd−1=0

2(τ−1/(d−1))|k|Mτf(x)

+ C
∑

(il,jl)l∈I(1,...,d)

∞∑
k1=r0

k1∑
k2=0

· · ·
k1∑

kd−1=0

2−|k|/(d−1)|f(x)|

≤ C

∞∑
k1=r0

2(τ−1/(d−1))k1Mτf(x) + C

∞∑
k1=r0

2−k1/(d−1)|f(x)|

≤ C2(τ−1/(d−1))r0Mτf(x) + C2−r0/(d−1)|f(x)|
≤ C(Tr)τ−1/(d−1)Mτf(x) + C(Tr)−1/(d−1)|f(x)| → 0

as T → ∞. Recall that kd = 0 here.
A point s ∈ A2 is in Aα1,...,αm

2 for some 1 ≤ α1 < · · · < αm ≤ d − 1 and
1 ≤ m ≤ d − 1 if sαj

− sαj+1 ≤ 2/T (j = 1, . . . ,m) and sk − sk+2 > 2/T for all
k = 1, . . . , d−2. Obviously, instead of A2, it is enough to integrate over Aα1,...,αm

2 .
If m = d − 1, then the integral over Aα1,...,αm

2 ∩ B is similar to that over A0.
Suppose that 1 ≤ m ≤ d − 2 and αm + 1 < d. Then we choose nj = αj + 1,
j = 1, . . . ,m. It is easy to see that if αm + 1 = d, then we can also choose
1 < n1 < · · · < nm < d such that nj = αj or nj = αj + 1, j = 1, . . . ,m and we
can estimate the next integral in the same way. On the set Aα1,...,αm

2 ∩B, we use
(4.7) to obtain

∫
A

α1,...,αm
2 ∩B∩Sr/2

|f(x− s)− f(x)|
∣∣Kθ

T (s)
∣∣ ds

≤ CTm
∑

(il,jl)l∈I({1,...,d}\{n1,...,nm})∫
A

α1,...,αm
2 ∩B∩Sr/2

|f(x− s)− f(x)| s−1
i1

d−1−m∏
l=1

(sil − sjl)
−1 ds

≤ CTm
∑

(il,jl)l∈I({1,...,d}\{n1,...,nm})∫
A

α1,...,αm
2 ∩B∩Sr/2

|f(x− s)− f(x)| s−2
i1

d−1−m∏
l=2

(sil − sjl)
−1 ds. (6.3)

Here, we consider first the integral
∫ snm−1

snm−1−2/T
· · · dsnm , and then the integrals∫ snm−1−1

snm−1−1−2/T · · · dsnm−1 , . . . ,
∫ sn1−1

sn1−1−2/T · · · dsn1 . Then we integrate as before in

(6.2) with I({1, . . . , d} \ {n1, . . . , nm}) instead of I({1, . . . , d}). Inequality (6.3)
implies that we integrate over a parallelepiped P2k1/T,...,2kd/T with kn1 = · · · =
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knm = 1, kd = 0:

∫
A

α1,...,αm
2 ∩B∩Sr/2

|f(x− s)− f(x)|
∣∣Kθ

T (s)
∣∣ ds

≤ CTm
∑

(il,jl)l∈I({1,...,d}\{n1,...,nm})

r0∑
k1=3

k1∑
kβ2=0

· · ·
k1∑

kβd−1−m
=0

(
2k1

T

)−2 d−1−m∏
l=2

(
2kβl

T

)−1

∫
P
2k1/T,...,2kd/T

|f(x− s)− f(x)| ds

≤ C
∑

(il,jl)l∈I({1,...,d}\{n1,...,nm})

r0∑
k1=3

k1∑
kβ2=0

· · ·
k1∑

kβd−1−m
=0

2(τ−1/(d−1−m))|k|

2−τ |k| 1∣∣P2k1/T,...,2kd/T

∣∣ ∫
P
2k1/T,...,2kd/T

|f(x− s)− f(x)| ds

≤ C
∑

(il,jl)l∈I({1,...,d}\{n1,...,nm})

r0∑
k1=3

k1∑
kβ2=0

· · ·
k1∑

kβd−1−m
=0

2(τ−1/(d−1−m))|k|U τ
r f(x) < Cϵ,

where the indices 1 < β2 < · · · < βd−1−m < d are all different from n1, . . . , nm.
The integrals on the sets Aα1,...,αm

2 ∩B ∩ Sc
r/2 and on Aj ∩B (j = 3, . . . , d− 1)

can be estimated in the same way.
Now let us consider the set Bc, that is, when sd > 1/T . Obviously, sk > 1/T

(k = 1, . . . , d−1). On the set A1∩Bc we will use the inequality (4.9) with m = 0.
We introduce the set

E := {s : sd > s1/2}.

Obviously, sj1 > si1/2 on the set E. Then

∫
A1∩Bc∩E∩Sr/2

|f(x− s)− f(x)|
∣∣Kθ

T (s)
∣∣ ds

≤ CT−α
∑

(il,jl)l∈I(1,...,d)

∫
A1∩Bc∩E∩Sr/2

|f(x− s)− f(x)| s−1
i1
s−α
j1

d−1∏
l=1

(sil − sjl)
−1 ds

≤ CT−α
∑

(il,jl)l∈I(1,...,d)

∫
A1∩Bc∩E∩Sr/2

|f(x− s)− f(x)| s−1−α
i1

d−1∏
l=1

(sil − sjl)
−1 ds.

(6.4)
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We integrate as in (6.2). The only difference is that, with respect to si′2 , we

consider the integral
∑k1

kd=0

∫ si1−2kd/T

si1−2kd+1/T
· · · (si1 − sj1)

−1 dsi′2 . We obtain∫
A1∩Bc∩E∩Sr/2

|f(x− s)− f(x)|
∣∣Kθ

T (s)
∣∣ ds

≤ CT−α
∑

(il,jl)l∈I(1,...,d)

r0∑
k1=3

k1∑
k2=0

· · ·
k1∑

kd=0

(
2k1

T

)−1−α d∏
l=2

(
2kl

T

)−1

∫
P
2k1/T,...,2kd/T

|f(x− s)− f(x)| ds

≤ C
∑

(il,jl)l∈I(1,...,d)

r0∑
k1=3

k1∑
k2=0

· · ·
k1∑

kd=0

2(τ−α/d)|k|

2−τ |k| 1∣∣P2k1/T,...,2kd/T

∣∣ ∫
P
2k1/T,...,2kd/T

|f(x− s)− f(x)| ds

≤ C
∑

(il,jl)l∈I(1,...,d)

r0∑
k1=3

k1∑
k2=0

· · ·
k1∑

kd=0

2(τ−α/d)|k|U τ
r f(x) < Cϵ. (6.5)

On the set Ec, we have si1 − sj1 ≥ si1/2 and so∫
A1∩Bc∩Ec∩Sr/2

|f(x− s)− f(x)|
∣∣Kθ

T (s)
∣∣ ds

≤ CT−α
∑

(il,jl)l∈I(1,...,d)

∫
A1∩Bc∩Ec∩Sr/2

|f(x− s)− f(x)| s−2
i1
s−α
j1

d−1∏
l=2

(sil − sjl)
−1 ds

≤ CT−α
∑

(il,jl)l∈I(1,...,d)

∫
A1∩Bc∩∩EcSr/2

|f(x− s)− f(x)| s−1−α
i1

s−1
j1

d−1∏
l=2

(sil − sjl)
−1 ds.

Note that 0 < α ≤ 1. We integrate again in the same order than in (6.2). With

respect to i′2, here we consider the integral
∑k1

kd=0

∫ 2kd+1/T

2kd/T
· · · s−1

j1
dsi′2 . Similarly

to (6.5), ∫
A1∩Bc∩Ec∩Sr/2

|f(x− s)− f(x)|
∣∣Kθ

T (s)
∣∣ ds

≤ CT−α
∑

(il,jl)l∈I(1,...,d)

r0∑
k1=3

k1∑
k2=0

· · ·
k1∑

kd=0

(
2k1

T

)−1−α d∏
l=2

(
2kl

T

)−1

∫
P
2k1/T,...,2kd/T

|f(x− s)− f(x)| ds

≤ C
∑

(il,jl)l∈I(1,...,d)

r0∑
k1=3

k1∑
k2=0

· · ·
k1∑

kd=0

2(τ−α/d)|k|U τ
r f(x) < Cϵ.
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The integral on the set A1 ∩Bc ∩ Sc
r/2 can be handled similarly.

On the set A2 ∩ Bc, we will use the inequality (4.9) with m = 1. If s ∈ A2,
then there exists 1 ≤ n ≤ d− 1 such that sn − sn+1 ≤ 2/T and sk − sk+2 > 2/T
for all k = 1, . . . , d− 2. Then∫

A2∩Bc∩E∩Sr/2

|f(x− s)− f(x)|
∣∣Kθ

T (s)
∣∣ ds

≤ CT 1−α
∑

(il,jl)l∈I(1,...,d)

∫
A1∩Bc∩Sr/2

|f(x− s)− f(x)| s−1−α
i1

d−2∏
l=1

(sil − sjl)
−1 ds.

We integrate in the same order and in the way as in (6.4). The difference is that,
if in the given order we integrate first with respect to sn+1 and then later with
respect to sn, then we consider the integral

∫ sn
sn−2/T

. . . dsn+1. (In the other case,

if we integrate first with respect to sn and then with respect to sn+1, then we

compute the integral
∫ sn+1+2/T

sn+1
. . . dsn.) Then let kn+1 = 1 and so we have∫

A2∩Bc∩E∩Sr/2

|f(x− s)− f(x)|
∣∣Kθ

T (s)
∣∣ ds

≤ CT 1−α
∑

(il,jl)l∈I(1,...,d)

r0∑
k1=3

k1∑
k2=0

· · ·
k1∑

kn=0

k1∑
kn+2=0

· · ·
k1∑

kd=0

(
2k1

T

)−1−α d∏
l=2

l ̸=m+1

(
2kl

T

)−1

∫
P
2k1/T,...,2kd/T

|f(x− s)− f(x)| ds

≤ C
∑

(il,jl)l∈I(1,...,d)

r0∑
k1=3

k1∑
k2=0

· · ·
k1∑

kn=0

k1∑
kn+2=0

· · ·
k1∑

kd=0

2(τ−α/(d−1))|k|U τ
r f(x) < Cϵ.

The integral on A2 ∩ Bc ∩ Ec ∩ Sr/2 as well as the integral on A2 ∩ Bc ∩ Sc
r/2

can be handled similarly.
Similarly, on the set Ai ∩ Bc (i = 3, . . . , d− 1), we apply inequality (4.9) with

m = i− 1. If s ∈ Ai, then there exists 1 ≤ n ≤ d− 1 such that sn− sn+i−1 ≤ 2/T
and sk − sk+i > 2/T for all k = 1, . . . , d − i. We integrate in the same order as
in (6.4). We may suppose that in this order we integrate first with respect to
sn+i−1 and then with respect to sn+i−2, . . . , sn. Then we consider the integrals∫ sn+i−2

sn+i−2−2/T
. . . dsn+i−1,

∫ sn+i−3

sn+i−3−2/T
. . . dsn+i−2, . . . ,

∫ sn
sn−2/T

. . . dsn+1. In this case

kn+i−1 = · · · = kn+1 = 1.
For the last case,that is, for the set Ad∩Bc we use inequality (4.10). If s ∈ Ad,

then s1−sd ≤ 2/T . We integrate in the following order: s1, s2, . . . , sd and we con-

sider the integrals
∫ sd+2/T

sd
· · · dsi, i = 1, . . . , d−1 and

∑r0
kd=1

∫ 2kd+1/T

2kd/T
. . . s−1−α

d dsd.

Here k1 = · · · = kd−1 = 1. The proof can be finished as above. □

Since by Theorem 5.1 almost every point is a modified strong Lebesgue point
and the maximal operatorMτf is almost everywhere finite for f ∈ W (L1, ℓ∞)(Rd),
Theorem 6.1 implies the following.
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Corollary 6.2. Suppose that the absolutely continuous function θ satisfies (3.1),
(3.3), and (3.5) for some 0 < α ≤ 1 and all u > 0. If f ∈ W (L1, ℓ∞)(Rd), then

lim
T→∞

σθ
Tf(x) = f(x) a.e.

We have seen in [32] that as special cases, we can consider the Fejér, de La
Vallée-Poussin, Jackson-de La Vallée-Poussin, Rogosinski, Weierstrass, Abel, Pi-
card, Bessel, and Riesz summability methods.
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Basel, 1971.

4. M. Christ, On almost everywhere convergence of Bochner-Riesz means in higher dimensions,
Proc. Amer. Math. Soc. 95 (1985), 16–20.

5. R. A. DeVore and G. G. Lorentz, Constructive approximation, Springer, Berlin, 1993.
6. H. G. Feichtinger and F. Weisz, The Segal algebra S0(Rd) and norm summability of Fourier

series and Fourier transforms, Monatsh. Math. 148 (2006), 333–349.
7. H. G. Feichtinger and F. Weisz, Wiener amalgams and pointwise summability of Fourier

transforms and Fourier series, Math. Proc. Cambridge Philos. Soc. 140 (2006), 509–536.
8. J. J. F. Fournier and J. Stewart, Amalgams of Lp and lq, Bull. Am. Math. Soc., New Ser.

13 (1985), 1–21.
9. G. Gát, Pointwise convergence of cone-like restricted two-dimensional (C, 1) means of

trigonometric Fourier series, J. Approx. Theory. 149 (2007), 74–102.
10. G. Gát, Almost everywhere convergence of sequences of Cesàro and Riesz means of integrable
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