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Abstract. In this paper, we introduce complex isosymmetric and (m,n,C)-
isosymmetric operators on a Hilbert space H and study properties of such op-
erators. In particular, we prove that if T ∈ B(H) is an (m,n,C)-isosymmetric
operator and N is a k-nilpotent operator such that T and N are C-doubly
commuting, then T + N is an (m + 2k − 2, n + 2k − 1, C)-isosymmetric op-
erator. Moreover, we show that if T is (m,n,C)-isosymmetric and if S is
(m′, D)-isometric and n′-complex symmetric with a conjugation D, then T ⊗S
is (m+m′ − 1, n+ n′ − 1, C ⊗D)-isosymmetric.

1. Introduction

Let B(H) denote the algebra of all bounded linear operators on a separable
infinite-dimensional complex Hilbert space H with the inner product ⟨·, ·⟩. A
conjugate linear operator C : H → H is said to be a conjugation if it satisfies
⟨Cx,Cy⟩ = ⟨y, x⟩, for all x, y ∈ H, and C2 = I. For a conjugation C, there
exists an orthonormal basis {en}∞n=0 for H such that Cen = en for all n (see [5]
for more information). An operator T ∈ B(H) is said to be a complex symmetric
operator if there exists a conjugation C on H such that T = CT ∗C (see [5,
6, 7]). Operators defined by Hankel matrices, binormal operators, all normal
operators, compressed Toeplitz operators, algebraic operators of order two, and
some Volterra integration operators are complex symmetric. We refer the reader
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to [5, 6, 7] for more details. An operator T ∈ B(H) is said to be skew complex
symmetric if there exists a conjugation C on H such that CTC = −T ∗.

M. Stankus [8] introduced and studied isosymmetric operators. According to
M. Stankus [8] or [9], an operator T ∈ B(H) is said to be an isosymmetry if

T ∗2T − T ∗T 2 − T ∗ + T = 0.

Self-adjoint operators, isometric operators, and some classes of non-normal op-
erators are isosymmetries (see [8] for more details). Recently the authors in [3]
studied several properties of isosymmetric operators.

The aim of this paper is to initiate the study of complex isosymmetric and
(m,n,C)-isosymmetric operators which are classes of operators that contains
complex symmetric operators. We give some properties of these classes of op-
erators.

2. Complex isosymmetric operators

We define complex isosymmetric operators as follows:

Definition 2.1. Let C be a conjugation on H, and let T ∈ B(H). We define

∆(T ;C) := T ∗2CTC − T ∗CT 2C − T ∗ + CTC,

and T is said to be complex isosymmetric with a conjugation C if

∆(T ;C) = T ∗2CTC − T ∗CT 2C − T ∗ + CTC = 0.

From the definition of complex isosymmetric operators, it is easy to see that if
T is complex symmetric with a conjugation C, then T is complex isosymmetric
with a conjugation C.

The authors in [1] studied (m,C)-isometric operators. Let m ∈ N, and let C
is a conjugation on H. An operator T ∈ B(H) is said to be an (m,C)-isometric
operator if

m∑
k=0

(−1)k
(
m
k

)
T ∗m−kCTm−kC = 0.

It is easy to see that if T ∗CTC = I (i.e., T is (1, C)-isometry), then T is complex
isosymmetric with a conjugation C.

Example 2.2. Let H = ℓ2(N), and let C : H → H be the canonical conjugation
given by

C(
∞∑
n=1

xnen) =
∞∑
n=1

xnen,

where {en} is the orthonormal basis of H with Cen = en and {xn} is a sequence
in C with

∑∞
n=1 |xn|2 < ∞. Let S be the unilateral shift on ℓ2. Since CSC = S,

we have S∗CSC = I. Hence it is easy to see that S is complex isosymmetric with
a conjugation C.
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Example 2.3. Let C be a conjugation on C2 given by C(x, y) = (y, x) for

x, y ∈ C, and let T =

(
a b
0 c

)
for some nonzeros a, b, c ∈ C. Then T is complex

isosymmetric with a conjugation C if and only if ac = 1 or a = c. Indeed, since

T ∗ − CTC =

(
a− c 0
0 c− a

)
,

it follows that

T ∗(T ∗ − CTC)CTC − (T ∗ − CTC) = 0 ⇔ (ac− 1)(a− c) = 0.

Hence T is complex isosymmetric with a conjugation C if and only if ac = 1 or
a = c. In particular, if a = c, then T is complex symmetric with a conjugation C.

If ac = 1 and a ̸= c, then T is not (1, C)-isometry. For instance, if R =

(
2 b
0 1

2

)
,

for some nonzero b ∈ C, then R is complex isosymmetric with a conjugation C
which is not (1, C)-isometry.

Theorem 2.4. Let T ∈ B(H), and let C be a conjugation on H. Then the
following statements hold:

(i) T is complex isosymmetric with a conjugation C if and only if (T ∗CTC−
I)CTC is complex symmetric with a conjugation C;

(ii) If T is invertible, then T is complex isosymmetric with a conjugation C if
and only if T−1 is complex isosymmetric with a conjugation C.

Proof. (i) Suppose that T is complex isosymmetric with a conjugation C. Then

T ∗2CTC − T ∗CT 2C − T ∗ + CTC = 0

⇐⇒ T ∗2CTC − T ∗ = T ∗CT 2C − CTC

⇐⇒ T ∗(T ∗CTC − I) = (T ∗CTC − I)CTC.

By the final equation, it holds

(T ∗CTC − I)CTC = C(CT ∗CT 2 − T )C

= C(T ∗2CTC − T ∗)∗C

= C(T ∗(T ∗CTC − I))∗C

= C((T ∗CTC − I)CTC)∗C.

Therefore, (T ∗CTC− I)CTC is complex symmetric. The converse implication is
clear.

(ii) Suppose that T is complex isosymmetric with a conjugation C. Since

T ∗2CTC − T ∗CT 2C − T ∗ + CTC

= C(CT ∗2CT − CT ∗CT 2 − CT ∗C + T )C,

it follows that T is complex isosymmetric with a conjugation C if and only if
CTC is complex isosymmetric with a conjugation C. Assume that T−1 is complex
isosymmetric with a conjugation C. Since CT−1C is complex isosymmetric and

(T−1)∗2CT−1C − (T−1)∗C(T−1)2C − (T−1)∗ + CT−1C = 0,
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it follows that

0 = T ∗2
(
(T−1)∗2CT−1C − (T−1)∗C(T−1)2C − (T−1)∗ + CT−1C

)
CT 2C

= CTC − T ∗ − T ∗CT 2C + T ∗2CTC.

Hence T is complex isosymmetric with a conjugation C. The converse implication
is similar. □

Let us recall that the Hardy–Hilbert space, denoted by H2, consists of all
analytic functions f(z) =

∑∞
n=0 anz

n on the unit disc D such that ∥f∥2 :=

(
∑∞

n=0 |an|2)
1
2 < ∞.

Example 2.5. Let C be a conjugation defined by Cf(z) = f(z), and let {en}∞n=0

be an orthonormal basis ofH2. If we put C = C⊕C, then C is clearly a conjugation
on H2 ⊕H2. Assume that

T =

(
S e0 ⊗ e0
0 I

)
∈ L(H2 ⊕H2),

where S is the unilateral shift on H2. Then

CTC =

(
CSC C(e0 ⊗ e0)C
0 I

)
= T

and

T ∗CTC − I =

(
0 0
0 e0 ⊗ e0

)
.

Therefore, we have

T ∗(T ∗CTC − I) = (T ∗CTC − I)CTC =

(
0 0
0 e0 ⊗ e0

)
and it is complex symmetric with a conjugation C. Hence T is complex isosym-
metric with a conjugation C from Theorem 2.4 (i). However, T is neither (1, C)-
isometry nor complex symmetric with a conjugation C.

Now we study some properties of ∆(T ;C).

Theorem 2.6. Let T ∈ B(H), and let C be a conjugation on H. Then ∆(T ;C)
is skew complex symmetric with a conjugation C.

Proof. If
∆(T ;C) = T ∗2CTC − T ∗CT 2C − T ∗ + CTC,

then

C(∆(T ;C))∗C = C(CT ∗CT 2 − CT ∗2CT − T + CT ∗C)C

= T ∗CT 2C − T ∗2CTC − CTC + T ∗

= −∆(T ;C).

Hence ∆(T ;C) is skew complex symmetric with a conjugation C. □
For an operator T ∈ B(H), the spectrum and the approximate point spectrum

are denoted by σ(T ) and σap(T ), respectively.
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Corollary 2.7. Let T ∈ B(H), and let C be a conjugation on H. Then

σ(∆(T ;C)) = σap(∆(T ;C)) ∪
(
− σap(∆(T ;C))

)
.

Proof. It is known from [4, Page 222] that for an arbitrary T ∈ B(H), σ(T ) =
σap(T ) ∪ σap(T

∗)∗. Since ∆(T ;C) is skew complex symmetric, it follows from [2,
Lemma 2.5] that σap(∆(T ;C)) = −σap(∆(T ;C)∗)∗. Hence

σ(∆(T ;C)) = σap(∆(T ;C)) ∪
(
− σap(∆(T ;C))

)
.

□
Definition 2.8. For T ∈ B(H) and a conjugation C on H, let

α(T ;C) := T ∗ − CTC

and

β(T ;C) := T ∗CTC − I.

Then the following lemma is clear. So the proof is omitted.

Lemma 2.9. Let T ∈ B(H), and let C be a conjugation on H. Then the following
statements are equivalent:
(i) T is complex isosymmetric with a conjugation C;
(ii) T ∗α(T ;C)CTC = α(T ;C);
(iii) T ∗β(T ;C) = β(T ;C)CTC.

Theorem 2.10. Let C be a conjugation on H, and let T =

(
N E
0 X

)
on H⊕H,

and let C = C ⊕ C. Then the following statements hold:
(i) Suppose that N is a (1, C)-isometric operator and that N∗CE = CEX and
that E = NEX hold. Then T is complex isosymmetric with a conjugation C if
and only if X is complex isosymmetric with a conjugation C;
(ii) Suppose that N is complex symmetric with a conjugation C and that EX =
NE holds. Then T is complex isosymmetric with a conjugation C if and only if
X is complex isosymmetric with a conjugation C and E = NEX holds.

Proof. It is clear that C = C⊕C is a conjugation on H⊕H. Since T =

(
N E
0 X

)
,

it holds CTC =

(
CNC CEC
0 CXC

)
, and so

β(T ; C) =
(
β(N ;C) N∗CEC
E∗CNC E∗CEC + β(X;C)

)
.

Therefore we obtain

β(T ; C)CTC

=

(
β(N ;C)CNC β(N ;C)CEC +N∗CEXC
E∗CN2C E∗CNEC + E∗CEXC + β(X;C)CXC

)
(2.1)

and
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T ∗β(T ; C)

=

(
N∗β(N ;C) N∗2CEC

E∗β(N ;C) +X∗E∗CNC E∗N∗CEC +X∗E∗CEC +X∗β(X;C)

)
. (2.2)

By Lemma 2.9 and equations (2.1) and (2.2), T is complex isosymmetric with a
conjugation C if and only if

β(N ;C)CNC = N∗β(N ;C),

β(N ;C)CEC +N∗CEXC = N∗2CEC,

E∗CN2C = E∗β(N ;C) +X∗E∗CNC,

E∗CNEC + E∗CEXC + β(X;C)CXC = E∗N∗CEC +X∗E∗CEC +X∗β(X;C).

(2.3)
(i) Assume that N is (1, C)-isometry. Then β(N ;C) = 0, and so (2.3) becomes
N∗CEXC = N∗2CEC,

E∗CN2C = X∗E∗CNC,

E∗CNEC + E∗CEXC + β(X;C)CXC = E∗N∗CEC +X∗E∗CEC +X∗β(X;C).

(2.4)

Since N∗CE = CEX and E = NEX hold, it follow from (2.4) that

β(X;C)CXC = X∗β(X;C).

For the last equation, if N∗CE = CEX and E = NEX, then

E∗CNEC + E∗CEXC = X∗E∗N∗CNCCEC + E∗(N∗CE)C
= X∗E∗CEC + E∗N∗CEC.

The first and second equations clearly hold. Hence X is complex isosymmetric
with a conjugation C. The converse implication holds by similar arguments.

(ii) Assume that T is complex symmetric with a conjugation C and that X is
complex isosymmetric with a conjugation C. Since EX = NE and N∗ = CNC,
it follows that X∗E∗ = E∗N∗ = E∗CNC, and so X∗E∗C = E∗CN and N∗CE =
CEX hold. Hence E∗CNEC + E∗CEXC = X∗E∗CEC + E∗N∗CEC holds.
Therefore (2.3) becomes{

(CN2C − I)CEC + CNEXC = CN2EC,

E∗N∗2 = E∗(N∗2 − I) +X∗E∗N∗.

This gives that {
CEC = CNEXC,

E∗ = X∗E∗N∗,

which is equivalent to E = NEX. The converse implications hold by similar
arguments. □

Corollary 2.11. Let T =

(
V E
0 X

)
on H⊕H such that V is (1, C)-isometry. If

V ∗CEC = 0 and X∗(E∗CEC +X∗CXC − I) = (E∗CEC +X∗CXC − I)CXC,
then T is complex isosymmetric with a conjugation C = C ⊕ C.



626 M. CHŌ, J.E. LEE, T. PRASAD, K. TANAHASHI

Proof. Let A = (E∗CEC +X∗CXC − I). Then

T ∗(T ∗CTC − I) = (T ∗CTC − I)CTC ⇔ X∗A = ACXC.

Since X∗A = ACXC, it follows that T is complex isosymmetric with a conjuga-
tion C. □

Theorem 2.12. Let C be a conjugation on H, and let T ∈ B(H). Suppose that
M = ker(T ∗CTC − I) is invariant for T and C. Then T has the following block
operator:

T =

(
V E
0 X

)
on M⊕M⊥

such that V is a (1, C1)-isometric with a conjugation C1 on M and E∗C1V C1 = 0
on M, where C1 = C|M and C2 = C|M⊥ .

Proof. Since M is invariant for C, it follows from [5, Proposition 7 (1)] that
M⊥ is invariant for C. Set C1 = C|M and C2 = C|M⊥ . Then C1 and C2 are

conjugations on M and M⊥, respectively, and C = C1 ⊕ C2 holds. Since M is
invariant for T , we have

T =

(
V E
0 X

)
on M⊕M⊥.

Hence it holds

T ∗CTC − I =

(
V ∗C1V C1 − I V ∗C1EC2

E∗C1V C1 E∗C1EC2 +X∗C2XC2 − I

)
on M⊕M⊥.

If x ∈ M, then (T ∗CTC − I)(x⊕ 0) = 0. Hence, we have V ∗C1V C1 − I = 0 and
E∗C1V C1 = 0 on M. Hence V is a (1, C1)-isometric with a conjugation C1 on
M. □

3. (m,n,C)-isosymmetric operators

In this section, we study some properties of (m,n,C)-isosymmetric operators.

Definition 3.1. Let T ∈ B(H), and let C be a conjugation on H. Put
αm(T ;C) :=

∑m
j=0(−1)j

(
m

j

)
T ∗m−jCT jC,

βm(T ;C) :=
∑m

j=0(−1)j

(
m

j

)
T ∗m−jCTm−jC.

Then T is said to be an (m,n,C)-isosymmetric operator if γm,n(T ;C) = 0 and

γm,n(T ;C) :=


∑m

j=0(−1)j

(
m

j

)
T ∗m−jαn(T ;C)CTm−jC,

∑n
k=0(−1)k

(
n

k

)
T ∗n−kβm(T ;C)CT kC.

.
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It is easy to see that

γm+1,n(T ;C) = T ∗γm,n(T ;C)CTC − γm,n(T ;C)

and

γm,n+1(T ;C) = T ∗γm,n(T,C)− γm,n(T ;C)CTC.

Hence if T is (m,n,C)-isosymmetric, then T is (m′, n′, C)-isosymmetric for all
n′ ≥ n and m′ ≥ m. Recall that an operator T ∈ B(H) is said to be an (m,C)-
isometric operator if

m∑
k=0

(−1)k
(
m
k

)
T ∗m−kCTm−kC = 0.

From Definition 3.1, it is evident that an (m,C)-isometric operator is (m,n,C)-
isosymmetric for any n ∈ N.

Example 3.2. Let H = ℓ2(N), and let C : H → H be the canonical conjugation
given by

C(
∞∑
k=1

xkek) =
∞∑
k=1

xkek,

where {ek} is the orthonormal basis of H with Cek = ek and {xk} is a sequence
in C with

∑∞
k=1 |xk|2 < ∞. Let W be the weighted shift on ℓ2(N) defined by

Wek = αkek, where αk =
√

k+m
k+1

for m > 0. Then W is (m,n,C)-isosymmetric

for any n ∈ N (see [1, Example 1.1]).

Theorem 3.3. Let T ∈ B(H) and let C be a conjugation on H. Then the follow-
ing properties hold:
(i) If T is invertible, then T is (m,n,C)-isosymmetric if and only if T−1 is
(m,n,C)-isosymmetric;
(ii) If T is (m,n,C)-isosymmetric, then T k is (m,n,C)-isosymmetric for any
k ∈ N.

Proof. (i) Let T−1 is (m,n,C)-isosymmetric. Then

0 =
n∑

k=0

(−1)k
(
n
k

)
(T−1)∗n−kβm(T

−1;C)C(T−1)kC

= T ∗m+n

( n∑
k=0

(−1)k
(
n
k

)
(T−1)∗n−kβm(T

−1;C)C(T−1)kC

)
CTm+nC

=

{
γm,n(T ;C) if m+ n is even,

−γm,n(T ;C) if m+ n is odd.

Hence T is (m,n,C)-complex isosymmetric. The reverse implication is similar.
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(ii) Note that, for any k ∈ N, the following equation holds:

(ykxk − 1)m(yk − xk)n

=
(
(yx− 1)(yk−1xk−1 + yk−2xk−2 + · · ·+ 1)

)m (
(y − x)(yk−1 + yk−2x+ · · ·+ xk−1)

)n
=

m(k−1)∑
ℓ=0

n(k−1)∑
j=0

λℓµjy
m(k−1)−ℓyn(k−1)−j

(
yx− 1

)m(
y − x

)n
xjxm(k−1)−ℓ,

where λℓ and µj are some constants. From this, we obtain that

γm,n(T
k;C) =

m(k−1)∑
ℓ=0

n(k−1)∑
j=0

λℓµjT
∗m(k−1)−ℓ+n(k−1)−j γm,n(T ;C)CT j+m(k−1)−ℓC.

Since T is (m,n,C)-isosymmetric; that is, γm,n(T ;C) = 0, we conclude that T k

is (m,n,C)-isosymmetric for any k ∈ N. □
Operators T and S are said to be C-doubly commuting if TS = ST and

S∗CTC = CTCS∗. From the equation

((y1 + y2)(x1 + x2)− 1)m((y1 + y2)− (x1 + x2))
n

=
n∑

j=0

∑
i+l+h=m

(
n
j

)(
m

i, l, h

)
(y1 + y2)

iyl2(y1x1 − 1)h(y1 − x1)
n−j(y2 − x2)

jxl
1x

i
2,

if T and S are C-doubly commuting, then it holds

γm,n(T + S;C)

=
n∑

j=0

∑
i+l+h=m

(
n
j

)(
m

i, l, h

)
(T ∗ + S∗)iS∗l γh,n−j(T ;C)αj(S;C)T lSi.

(3.1)

Theorem 3.4. Let T ∈ B(H) be (m,n,C)-isosymmetric, and let N be k-nilpotent.
If T and N are C-doubly commuting, then T +N is (m+ 2k− 2, n+ 2k− 1, C)-
isosymmetric.

Proof. Since N is k-nilpotent and

αj(N ;C) =

j∑
µ=0

(−1)j
(
j
µ

)
N∗j−µCNµC,

we have αj(N ;C) = 0 if j ≥ 2k. From equation (3.1), it holds

γm+2k−2,n+2k−1(T +N ;C)

=
n+2k−1∑

j=0

∑
i+l+h=m+2k−2

(
n+ 2k − 1

j

)(
m+ 2k − 2

i, l, h

)
(T ∗ +N∗)iN∗l γh,n+2k−1−j(T ;C)αj(N ;C)T lN i.

(1) If j ≥ 2k or i ≥ k or l ≥ k, then αj(N ;C) = 0 or N i = 0 or N∗l = 0,
respectively.
(2) If j ≤ 2k − 1, i ≤ k − 1, and l ≤ k − 1, then h = m+ 2k − 2− i− l ≥ m and
n+ 2k − 1− j ≥ n+ 2k − 1− (2k − 1) = n; that is, γh,n+2k−1−j(T ;C) = 0.
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By (1) and (2), we have γm+2k−2,n+2k−1(T + N ;C) = 0. Therefore T + N is
(m+ 2k − 2, n+ 2k − 1, C)-isosymmetric. □
Corollary 3.5. Let S,R ∈ B(H), and let C be a conjugation on H. Assume
that S and R are C-doubly commuting. If S is (m,n,C)-isosymmetric, then the

operator

(
S R
0 S

)
on H⊕H is (m+2, n+3, C)-isosymmetric, where C = C ⊕C.

Proof. Put T =

(
S 0
0 S

)
and N =

(
0 R
0 0

)
. Then it is clear that C is a conjuga-

tion on H⊕H, T is (m,n, C)-isosymmetric, and N is 2-nilpotent. Since S and R
are C-doubly commuting, it follows that TN = NT and N∗CTC = CTCN∗. Thus

T and N are C-doubly commuting. Hence T +N =

(
S R
0 S

)
is (m+2, n+3, C)-

isosymmetric from Theorem 3.4. □
Note that the equation

(y1y2x1x2 − 1)m(y1y2 − x1x2)
n

=
m∑
k=0

n∑
j=0

(
m
k

)(
n
j

)
yj+k
1 (y1x1 − 1)m−k(y1 − x1)

n−j(y2x2 − 1)k(y2 − x2)
jxk

1x
n−j
2 .

From this, if T and S are C-doubly commuting, then it holds

γm,n(TS;C) =
m∑
k=0

n∑
j=0

(
m
k

)(
n
j

)
T ∗j+kγm−k,n−j(T ;C)γk,j(S;C)T kSn−j.

(3.2)

Theorem 3.6. Let T ∈ B(H) be (m,n,C)-isosymmetric, and let S ∈ B(H) be
an (m′, C)-isometric operator and n′-complex symmetric with a conjugation C.
If T and S are C-doubly commuting, then TS is (m + m′ − 1, n + n′ − 1, C)-
isosymmetric.

Proof. From equation (3.2), it holds

γm+m′−1,n+n′−1(TS;C)

=
m+m′−1∑

k=0

n+n′−1∑
j=0

(
n+ n′ − 1

j

)(
m+m′ − 1

k

)
T ∗j+kγm+m′−1−k,n+n′−1−j(T ;C)γk,j(S;C)T kSn+n′−1−j.

(1) If k ≥ m′ or j ≥ n′, then γk,j(S;C) = 0.
(2) If k ≤ m′− 1 and j ≤ n′− 1, then m+m′− 1−k ≥ m and n+n′− 1− j ≥ n;
that is, γm+m′−1−k,n+n′−1−j(T ;C) = 0.
By (1) and (2), we have γm+m′−1,n+n′−1(TS;C) = 0. Hence it completes the
proof. □
Corollary 3.7. Let T ∈ B(H), and let C be a conjugation on H such that
T ∗CTC = CTCT ∗. Then the following properties hold:
(i) If T is (m,C)-isometric, then T 2 is (2m− 1, 1, C)-isosymmetric.
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(ii) If T is n-complex symmetric with a conjugation C, then T 2 is (1, 2n− 1, C)-
isosymmetric.

Proof. Since T ∗CTC = CTCT ∗, the proofs of (i) and (ii) follow from Theorem
3.6. □

For a complex Hilbert space H, let H⊗H denote the completion of the alge-
braic tensor product of H and H endowed a reasonable uniform cross-norm. For
operators T ∈ B(H) and S ∈ B(H), T ⊗S ∈ B(H⊗H) denote the tensor product
operator defined by T and S. Note that T ⊗S = (T ⊗I)(I⊗S) = (I⊗S)(T ⊗I).
It is clear that if C and D are conjugations on H, then C ⊗D is a conjugation
on H⊗H.

Theorem 3.8. Let T ∈ B(H) be (m,n,C)-isosymmetric, and let S ∈ B(H) be
an (m′, D)-isometric operator and n′-complex symmetric with a conjugation D.
Then T ⊗ S is (m+m′ − 1, n+ n′ − 1, C ⊗D)-isosymmetric.

Proof. C ⊗ D is a conjugation on H ⊗ H, and it is clear that if T is (m,n,C)-
isosymmetric, then T ⊗ I is (m,n,C ⊗ D)-isosymmetric and if S is (m′, D)-
isometric and n′-complex symmetric with a conjugation D, then I⊗S is (m′, C⊗
D)-isometric and n′-complex symmetric with a conjugation C ⊗D. Since T ⊗ I
and I ⊗S are C ⊗D-doubly commuting, it follows from Theorem 3.6 that T ⊗S
is (m+m′ − 1, n+ n′ − 1, C ⊗D)-isosymmetric. □
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