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Abstract. The well-known von Bahr–Esseen bound on the absolute pth mo-
ments of martingales with p ∈ (1, 2] is extended to a large class of moment
functions, and now with a best possible constant factor (which depends on the
moment function). As an application, measure concentration inequalities for
separately Lipschitz functions on product spaces are obtained. Relations with
p-uniformly smooth and q-uniformly convex normed spaces are discussed.

1. Summary and discussion

1.1. Summary. Given any sequence (Sj)
n
j=1 of (real-valued) r.v.’s, let Xj :=

Sj − Sj−1 denote the corresponding differences, for j ∈ 1, n, with the convention
S0 := 0, so that X1 = S1; here and in what follows, for any m and n in the set
{0, 1, . . . ,∞} we let m,n stand for the set of all integers i such that m 6 i 6 n.

If E |Xj| <∞ and E(Xj|Sj−1) = 0 for all j ∈ 2, n, let us say that the sequence
(Sj)

n
j=1 is a v-martingale (where “v” stands for “virtual”); in such a case, let

us also say that (Xj)
n
j=1 is a v-martingale difference sequence, or simply that the

Xj’s are v-martingale differences. Note that, for a general v-martingale difference
sequence (Xj)

n
j=1, X1 may be any r.v. whatsoever; in particular, its mean (if it

exists) may or may not be 0. It is clear that any martingale (Sj)
n
j=1 is a v-

martingale. Quite similarly one can define v-martingales with values in a normed
space.
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Introduce the following class of generalized moment functions:

F1,2 :=
{
f ∈ C1(R) : f(0) = 0, f is even,

f ′ is nondecreasing and concave on [0,∞)
}

=
{
f ∈ C1(R) : f(0) = 0, f is even,

f ′′ is nonnegative and nonincreasing on (0,∞)
}

; (1.1)

here, as usual, C1(R) is the class of all continuously differentiable real-valued
functions on R, and then f ′′ denotes the right derivative on (0,∞) of f ′; on
(−∞, 0), f ′′ will denote the left derivative of f ′. It is clear that each function
f ∈ F1,2 is convex and hence nonnegative. Also, for each function f ∈ F1,2 one
has f ′(0) = 0. It follows that f ′ > 0 on (0,∞) and hence f > 0 on R \ {0} for
any function f ∈ F1,2 \ {0}.

Theorem 1.1.

(I) For any f ∈ F1,2 \ {0}, n ∈ 2,∞, and v-martingale (Sj)
n
j=1,

E f(Sn) 6 E f(X1) + C
n∑
j=2

E f(Xj) (1.2)

with C = Cf , where

Cf := sup
0<x<s<∞

Lf ;s(x)

f(s)
, (1.3)

Lf ;s(x) := f(x− s)− f(x) + sf ′(x). (1.4)

(II) The constant factor Cf is the best possible in the sense that, for each f ∈
F1,2 \ {0} and each n ∈ 2,∞, the number Cf is the smallest value of C
such that inequality (1.2) holds for all v-martingales (Sj)

n
j=1; in fact, Cf is

the best possible even if the differences X1, . . . , Xn are assumed to be any
independent zero-mean r.v.’s.

(III) For each f ∈ F1,2 \ {0},

1 6 Cf 6 2. (1.5)

(IV) For each C ∈ [1, 2] there is some f ∈ F1,2 \ {0} such that Cf = C; in
particular, it follows that the bounds 1 and 2 on Cf in (1.5) are the best
possible ones.

Since all functions f in F1,2 are nonnegative, the expressions on both sides of
inequality (1.2) are well defined. At that, it is possible for the right-hand side, or
for both sides, of (1.2) to equal ∞. In the case when the differences X1, . . . , Xn

are independent zero-mean r.v.’s, if the left-hand side of (1.2) is finite then (by
Jensen’s inequality) E f(Xj) <∞ for each j ∈ 1, n, so that the right-hand side is
finite as well; thus, for independent zero-mean X1, . . . , Xn, the two sides of (1.2)
are either both finite or both infinite.
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1.2. Discussion. In this subsection, we shall

1. describe the structure of the class F1,2 as a convex cone, which will be useful
in most of the proofs, and provide examples of functions in the class F1,2,
including the (absolute) power functions and “extreme” functions (that is,
functions belonging to the extreme rays of the convex cone F1,2);

2. present a general approach to effective calculation of the best possible constant
Cf , with further information on this constant for the power functions and
“extreme” functions;

3. give an application to the concentration of measure for separately Lipschitz
functions on product spaces;

4. state other corollaries of the main theorem and relate the results with the rele-
vant ones in the literature, by von Bahr and Esseen (vBE) and other authors.

Each of these items will be presented in a separate subsubsection.

1.2.1. Structure of the class F1,2 and examples of functions in this class. The
following proposition describes the convex-cone structure of the class F1,2.

Proposition 1.2.

(I) A function f : R→ R belongs to the class F1,2 if and only if there exists a
(nonnegative, possibly infinite) Borel measure γ = γf on (0,∞] such that∫

(0,∞]
(t ∧ 1)γ( dt) <∞ and

f(x) =

∫
(0,∞]

ψt(x)γ( dt) (1.6)

for all x ∈ R, where

ψt(x) := x2 − (|x| − t)2
+,

assuming the conventions u+ := 0 ∨ u, up+ := (u+)p, u −∞ := −∞, and
(−∞)+ := 0, for all real u, so that ψ∞(x) = x2 for all x ∈ R. Also,

1
2t
ψt(x) −→

t↓0
|x| (1.7)

uniformly in x ∈ R.
(II) For each f ∈ F1,2, the corresponding measure γ = γf is unique and deter-

mined by the condition that

γ
(
(x,∞]

)
= 1

2
f ′′(x) (1.8)

for all x ∈ (0,∞).
(III) For any f ∈ F1,2 and x ∈ [0,∞),

f ′(x) =

∫
(0,∞]

ψ′t(x)γ( dt) = 2

∫
(0,∞]

(x ∧ t)γ( dt). (1.9)

Proposition 1.2 will be used in the proofs of most of the other results of this
paper.

Note that the rays R+ψt corresponding to the functions ψt
(
for t ∈ (0,∞]

)
are precisely the extreme rays of the convex cone F1,2, where R+f := {λf : λ ∈
(0,∞)}, for any f ∈ F1,2 \ {0}. This follows because the rays R+γψt = R+δt(
with t ∈ (0,∞]

)
are precisely the extreme rays of the corresponding convex cone



4 I. PINELIS

{γf : f ∈ F1,2} of measures, where δt stands for the Dirac measure at the point
t.
(
A ray R+f of a convex cone is called extreme if, for any nonzero f1 and f2 in

the cone such that f1 + f2 = f , both f1 and f2 must lie on the ray.
)

Also, note that ψt(x) = x2 I{|x| < t} + (2t|x| − t2) I{|x| > t}, so that ψt(x)
equals x2 for small enough |x| and is asymptotic to 2t|x| as |x| → ∞. Thus, the
“extreme” function ψt is in a sense intermediate between the absolute powers | · |
and | · |2. So, by (1.6), all functions f ∈ F1,2 inherit such a property. This should
explain the choice of the notation F1,2.

Classes of moment functions similar to F1,2 arise naturally in extremal prob-
lems in probability and statistics; see e.g. [14, 39, 28, 16, 4, 31, 30] and further
references therein; F1,2 is especially similar to the class O2,3 considered in [16].

Let us now give some examples of functions f in F1,2. The “extreme” functions
ψt have been already mentioned. Perhaps the most important members of the
class F1,2 are the power functions | · |p with p ∈ (1, 2]. The function | · | is not in
F1,2, since it is not in C1(R).

It is easy to construct many other kinds of examples of functions f ∈ F1,2 by (i)
letting f ′′ be

(
on (0,∞)

)
any function, say g, which is nonnegative, nonincreasing,

right-continuous, and integrable on any interval of the form (0, u], for any u ∈
(0,∞); then (ii) finding f on [0,∞) as the solution to the following initial value
problem: f(0) = f ′(0) = 0 and f ′′ = g on (0,∞); and finally (iii) extending f to
the entire real line R as an even function.

E.g., taking g(x) = (1 + x)p−2 for p ∈ (1, 2) and x ∈ (0,∞), one ends up
with f(x) = 1

p(p−1)
[(1 + |x|)p − 1 − p|x|] for all x ∈ R, which is asymptotic

to 1
2
x2 as x → 0 and to 1

p(p−1)
|x|p as |x| → ∞; if the condition p ∈ (1, 2) is

replaced here by p ∈ (−∞, 0)∪ (0, 1), then f(x) is asymptotic to |x|
1−p as |x| → ∞.

Similarly one can get f(x) ≡ e−|x| − 1 + |x|
(
by starting with g(x) = e−x for

x ∈ (0,∞)
)
; f(x) ≡ |x| − ln(1 + |x|)

(
with g(x) ≡ 1

(1+x)2

)
; f(x) ≡ |x| ln(1 + |x|)(

with g(x) ≡ 1
1+x

+ 1
(1+x)2

)
.

Perhaps a more interesting example is the following family of functions, which
are parabolic splines (and will also be used in Remark 1.5):

f alt(x) :=
(|x| − xj)2

2(xj + 1)2/3
+

j−1∑
k=0

[
|x| − 1

2
(xk + xk+1)

]
(xk+1 − xk)

(xk + 1)2/3
(1.10)

if xj 6 |x| < xj+1 and j ∈ 0,∞, where x0 := 0, x1 is any positive real number,

and xj := q2j−1−1 for q := x1 +1 and all j ∈ 2,∞, so that xj+1 +1 = (xj +1)2 for

all j = 1, 2, . . . (we use the standard conventions ab
c

:= a(bc) and
∑−1

k=0 . . . := 0).
It is easy to check that f alt ∈ F1,2 and f ′′alt(x) = (xj + 1)−2/3 = (xj+1 + 1)−1/3

if xj 6 |x| < xj+1 and j ∈ 0,∞, so that the function f ′′alt alternates between the
powers (| · | + 1)−2/3 and (| · | + 1)−1/3, as shown in the left panel of Figure 1.
So, one might expect that the function f alt alternates (far away from 0) between
something like the powers |·|−2/3+2 = |·|4/3 and |·|−1/3+2 = |·|5/3. This expectation
is only partially justified.
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Indeed, introduce the (local) “effective” exponent of the function f alt at a point
x ∈ R \ {0} by the formula

p eff(x) := log|x| f alt(x), so that f alt(x) = |x|p eff(x).

The following proposition shows that the effective exponent p eff eventually, “in
the limit”, alternates between 3

2
(rather than the expected 4

3
) and 5

3
. In this sense,

one might say that f ′′alt stays closer to (| · |+ 1)−1/3 than to (| · |+ 1)−2/3, “most
of the time”.

Proposition 1.3.

(i) p eff(x) = p̃ eff

(
ρ(x)

)
+ o(1) as x → ∞, where p̃ eff(r) := (2 − 2

3r
) ∨ (1 + 2

3r
)

and ρ(x) := 21−j logq(x+ 1) for x ∈ (xj, xj+1].

(ii) For each j ∈ 1,∞, the function ρ increases from 1 to 2 on the interval
(xj, xj+1].

(iii) For each j ∈ 1,∞, the approximate effective exponent p̃ eff

(
ρ(x)

)
decreases

from 5
3

to 3
2

and then increases back to 5
3

as x + 1 increases from xj + 1 to

(xj + 1)4/3 and then on to xj+1 + 1 = (xj + 1)2, respectively.

Part of the graph of the (exact) effective exponent p eff (with x1 = 1
10

) is shown
in the right panel of Figure 1. Recall that the xj’s grow very fast in j for large
j. Therefore, for better presentation, the horizontal axis in the right panel is
nonlinearly rescaled so that the xj’s appear equally spaced. Namely, what is
actually shown here is part of the graph {

(
log2 logq(x + 1), p eff(x)

)
: x > x1};

note that log2 logq(xj + 1) = j − 1 for all j ∈ 1,∞.

x2 x3 x4 x5

x0

1

f ''HxL

x5 x6 x7 x8 x9 x10 x11

x

3�2

5�3

peffHxL

Figure 1. Left panel: f ′′ (solid) for f = f alt alternates between
(| · | + 1)−2/3 (dotted) and (| · | + 1)−1/3 (dotted). Right panel:
the effective exponent p eff (solid) for f = f alt eventually alternates
between 3

2
(dotted) and 5

3
(dotted).

1.2.2. On the best possible constant Cf in general and, in particular, for the
power and extreme functions. The following proposition concerns some general
properties of the constant factor Cf for nonzero f in F1,2 except for f = ψ∞; in
the latter, trivial case, one has Cf = 1, as also stated in Proposition 1.6; recall
that ψ∞(x) = x2 for all x ∈ R.
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Proposition 1.4. Take any f ∈ F1,2 \ {0, ψ∞}. Let sf := inf supp γ, where
supp γ stands for the support of the measure γ = γf defined in Proposition 1.2.
Recall the definition of Lf ;s(x) in (1.4). Then the following statements hold.

(i) sf ∈ [0,∞).
(ii) For any s ∈ (0, sf ], one has Lf ;s(x) = f(s) for all x ∈ (0, s).

(iii) For any s ∈ (sf ,∞), one has L′f ;s(0+) > 0 and L′f ;s(s−) < 0.
(iv) For any s ∈ (0,∞), there is some (not necessarily unique) xf ;s ∈ (0, s)

such that Lf ;s(x) is nondecreasing in x ∈ (0, xf ;s] and nonincreasing in
x ∈ [xf ;s, s).

(v) One has

Cf = sups∈(sf ,∞)

[
1

f(s)
maxx∈(0,s) Lf ;s(x)

]
= sups∈(sf ,∞)

[
1

f(s)
Lf ;s(xf ;s)

]
> 1.

Remark 1.5. Proposition 1.4 provides for an effective maximization of Lf ;s(x) in
x ∈ (0, s), for any given s ∈ (0,∞), so that Lf (s) := 1

f(s)
maxx∈(0,s) Lf ;s(x) =

1
f(s)

Lf ;s(xf ;s) can be effectively found. In the important special case when f is a

power function | · |p
(
with p ∈ (1, 2]

)
, one can also use the homogeneity of f in

order to compute the constant Cf quite effectively, as described in Proposition 1.8.
However, in general it remains to maximize Lf (s) in s ∈ (sf ,∞). It appears that
usually Lf (s) is monotonically nondecreasing in s, if the function f is not too
irregular; one “exceptional” function f for which Lf lacks such a monotonicity
property is a function f alt of the “alternating” family described by formula (1.10).
Indeed, take f = f alt with x1 = 1

5
. Then L(107

100
) < L(106

100
). One may still ask

whether it is true for all f ∈ F1,2 that the limit Lf (∞−) exists, and if so,
whether it is true that Lf (s) 6 Lf (∞−) for all s ∈ (sf ,∞), so that Cf be found
as Lf (∞−). In any case, Theorem 1.1 reduces the problem of finding the optimal
constant C in (1.2) to a maximization just in two real variables, s and x, which
should not usually be too difficult.

Now let us provide a simple description of the constant Cf in the case when
f is an “extreme” function ψt, representing the extreme rays of the convex cone
F1,2:

Proposition 1.6. One has Cψt = 2 for each t ∈ (0,∞), whereas Cψ∞ = 1.

Remark 1.7. Proposition 1.6 might seem quite surprising: whereas, by Theo-
rem 1.1, the range of the values of Cf over all nonzero f in the convex cone F1,2

is the entire interval [1, 2], the only value that Cf takes on all the extreme rays
R+ψt

(
which span the cone F1,2 in the sense of (1.6)

)
is 2. This suggests strong

nonlinearity of the optimal constant factor Cf in f . However, as seen from the
proof of Proposition 1.6, the fact that Cψt is the same for all t ∈ (0,∞) is due to
a simple homogeneity property. Note also the discontinuity of Cψt in t at t =∞.

As mentioned earlier, for any p ∈ (1, 2] the power function | · |p belongs to the
class F1,2; for such p, consider the corresponding constant factor

C̃p := C|·|p ,
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so that for any v-martingale (Sj)
n
j=1

E |Sn|p 6 E |X1|p + C̃p

n∑
j=2

E |Xi|p. (1.11)

Note that | · |2 = ψ∞, so that, by Proposition 1.6,

C̃2 = 1. (1.12)

Proposition 1.8.

(i) For any p ∈ (1, 2)

C̃p = `(p, xp) = max
x∈(0,1)

`(p, x),

where

`(p, x) := L|·|p;1(x) = (1− x)p − xp + pxp−1 (1.13)

for x ∈ (0, 1), and xp is the only root x ∈ (0, 1) of the equation

(1− x)p−1 + xp−1 = (p− 1)xp−2. (1.14)

Moreover, `(p, x) is increasing in x ∈ (0, xp) and decreasing in x ∈ (xp, 1),
for each p ∈ (1, 2).

(ii) In fact, xp ∈ (p−1
5
, p−1

2
) ⊂ (0, 1

2
) for all p ∈ (1, 2).

(iii) Further, C̃p is continuously (and strictly) decreasing in p ∈ (1, 2] from C̃1+ =

2 to C̃2 = 1; furthermore, C̃p is real-analytic in p ∈ (1, 2).

(iv) The values C̃p are algebraic for all rational p ∈ (1, 2]; in particular, C̃3/2 =√
1 + 1√

2
= 1.306 . . . (with x3/2 = 1

4

(
2−
√

2
)

= 0.146 . . . ).

(v) Explicit upper and lower bounds on C̃p are given by the inequalities

C̃−,1p ∨ C̃−,2p < C̃p < C̃+,1
p ∧ C̃+,2

p 6 C̃+,2
p < Wp (1.15)

for all p ∈ (1, 2), where

C̃−,1p :=2−p
(
(3− p)p + (p− 1)p−1(p+ 1)

)
,

C̃−,2p :=5−p
(
(6− p)p + (p− 1)p−1(4p+ 1)

)
,

C̃+,1
p := 2−p

50(3−p)

(
(p− 1)p−1(150 + 181p− 152p2 + 21p3)

+ (3− p)p−1(450− 381p+ 152p2 − 21p3)
)
,

C̃+,2
p := 5−p

8(6−p)

(
4(p− 1)p−1(12− 35p+ 94p2 − 21p3)

+ (6− p)p−1(288− 15p− 94p2 + 21p3)
)
,

Wp :=22−p.

The upper bound Wp on C̃p is exact at the endpoints of the interval (1, 2) in

the sense that C̃1+ = W1+ and C̃2 = C̃2− = W2− = W2; each of the bounds
C̃−,1p , C̃−,2p , C̃+,1

p , and C̃+,2
p is also exact in the similar sense.
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1.0 1.2 1.4 1.6 1.8 2.0
p

0.90

0.95

1.00

C�22-p

Figure 2. The ratios of C̃p (black),

C̃−,1p (red), C̃−,2p (orange), C̃+,1
p

(green), C̃+,2
p (blue), and Wp (ma-

genta) to 22−p.

The graphs of the ratios of C̃p, C̃
−,1
p ,

C̃−,2p , C̃+,1
p , C̃+,2

p , and Wp to Wp = 22−p

are shown in Figure 2. The graph of C̃p,
in comparison with Wp and the von Bahr–
Esseen constant CvBE

p , is presented in Fig-
ure 3.

As mentioned in Subsubsection 1.2.1,
the absolute-value function | · | is is not in
the class F1,2. However, by (1.7), | · | is in
the closure of F1,2 with respect to the uni-
form convergence on R. It is also clear that
inequality (1.2) holds for f = | · | (and any
r.v.’s X1, . . . , Xn) with C = C̃1 := 1. From
this viewpoint, there is a discontinuity of
Cp at p = 1, namely, C̃1+ = 2 6= 1 = C̃1.

1.2.3. Application: concentration inequalities for separately Lipschitz functions
on product spaces. LetX1, . . . , Xn be independent r.v.’s with values in measurable
spaces X1, . . . ,Xn, respectively. Let g : P → R be a measurable function on the
product space P := X1 × · · · × Xn. Let us say (cf. [5, 30]) that g is separately
Lipschitz if it satisfies a Lipschitz type condition in each of its arguments:

|g(x1, . . . , xi−1, x̃i, xi+1, . . . , xn)− g(x1, . . . , xn)| 6 ρi(x̃i, xi) (1.16)

for some measurable functions ρi : Xi×Xi → R and all i ∈ 1, n, (x1, . . . , xn) ∈ P,
and x̃i ∈ Xi.

Take now any separately Lipschitz function g and let

Y := g(X1, . . . , Xn).

Suppose that the r.v. Y has a finite mean. Then one has the following.

Corollary 1.9. For each i ∈ 1, n, take any xi ∈ Xi.

(I) For any f ∈ F1,2 \ {0}

E f(Y ) 6 f(EY ) + κfCf

n∑
i=1

E f
(
ρi(Xi, xi)

)
, (1.17)

where

κf := sup
{Uf (c, s, 0)

Uf (c, s, a)
: s ∈ (0,∞), c ∈ (0, s

2
), a ∈ (0, c)

}
∈ [1, 2], (1.18)

Uf (c, s, a) := cf(s− c+ a) + (s− c)f(a− c) (1.19)(
the above definition of κf is valid, because f > 0 on R \ {0} and hence

Uf (c, s, a) > 0 for any s ∈ (0,∞), c ∈ (0, s
2
), and a ∈ (0, c)

)
.

(II) For any p ∈ (1, 2]

E |Y |p 6 |EY |p + κ̃pC̃p

n∑
i=1

E
∣∣ρi(Xi, xi)

∣∣p, (1.20)
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where

κ̃p := κ|·|p = max
c∈[0,1/2]

[
(cp−1 + (1− c)p−1)

(
c

1
p−1 + (1− c)

1
p−1
)p−1]

. (1.21)

Moreover, κ̃p continuously and strictly decreases in p ∈ (1, 2] from 2 to 1.
Furthermore, the values of κ̃p are algebraic for all rational p ∈ (1, 2]; in

particular, κ̃3/2 = 1
9

√
51 + 21

√
7 = 1.14 . . . , corresponding to c = 1

6
(3 −√

1 + 2
√

7) = 0.081 . . . in (1.21). The graph of κ̃p is shown below.

1 2
p0

1

2

Κ
�

p

κ̃p, solid; 1, dotted.

One can observe some similarity be-
tween Cf , C̃p and κf , κ̃p. Thus, going
from the “one-dimensional” inequality
(1.2) or (1.11) for v-martingales to the
“multi-dimensional” measure concen-
tration inequality (1.17) or (1.20) en-
tails an extra factor, κf or κ̃p, whose
values are between 1 and 2.

The proof of Corollary 1.9 is partly based on the following proposition, which
may be of independent interest.

Proposition 1.10. For any zero-mean r.v. X, f ∈ F1,2 \ {0}, and a ∈ R

E f(X) 6 κE f(X + a) (1.22)

with κ = κf , and κf is the best possible constant κ in (1.22).

In turn, the proof of Proposition 1.10 uses

Proposition 1.11. Take any f ∈ F1,2 \ {0}, s ∈ (0,∞), and c ∈ (0, s
2
). Then

Uf (c, s, a) (defined in (1.19)) is convex in a ∈ R. Moreover, Uf (c, s, a) attains
its minimum over all a ∈ R at a unique point af ;c,s ∈ [0, c). In particular, for all
t ∈ (0,∞), s ∈ (0,∞), and c ∈ (0, s

2
)

aψt;c,s = c
s−c (s− c− t)+ (1.23)

and κψt = 2.

On the other hand, Proposition 1.11 obviously complements Corollary 1.9.
A difficulty in proving the uniqueness of the minimizer of Uf (c, s, a) in a in

Proposition 1.11 is that, in general, Uf (c, s, a) is not strictly convex in a.
An example of separately Lipschitz functions g : Xn → R is given by the

formula g(x1, . . . , xn) = ‖x1 + · · · + xn‖ for all x1, . . . , xn in a separable Banach
space (X, ‖ · ‖). In this case, one may take ρi(x̃i, xi) ≡ ‖x̃i − xi‖. Thus, one
obtains

Corollary 1.12. Let X1, . . . , Xn be independent random vectors in the Banach
space (X, ‖ · ‖). Let Sn := X1 + · · · + Xn. For each i ∈ 1, n, take any xi ∈ X.
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Then for any f ∈ F1,2 \ {0}

E f(‖Sn‖) 6 f(E ‖Sn‖) + κfCf

n∑
i=1

E f
(
‖Xi − xi‖

)
.

Moreover, for any p ∈ (1, 2]

E ‖Sn‖p 6 (E ‖Sn‖)p + κpC̃p

n∑
i=1

E ‖Xi − xi‖p. (1.24)

For p = 2, inequality (1.24) was obtained in [36, Theorem 4], based on an
improvement the method of Yurinskĭı(1974) [19]. The proof of Corollary 1.9 is
based in part on the same kind of improvement.

As can be seen from that proof, both Corollaries 1.9 and 1.12 will hold even if
the separately-Lipschitz condition (1.16) is relaxed to

|E g(x1, . . . , xi−1, x̃i, Xi+1, . . . , Xn)− E g(x1, . . . , xi, Xi+1, . . . , Xn)| 6 ρi(x̃i, xi).
(1.25)

Note also that in Corollaries 1.9 and 1.12 the r.v.’s Xi do not have to be zero-
mean, or even to have any definable mean; at that, the arbitrarily chosen xi’s
may act as the centers, in some sense, of the distributions of the corresponding
Xi’s.

Clearly, the separate-Lipschitz (sep-Lip) condition (1.16) is easier to check
than a joint-Lipschitz one. Also, sep-Lip (especially in the relaxed form (1.25)) is
more generally applicable. On the other hand, when a joint-Lipschitz condition is
satisfied, one can generally obtain better bounds. Literature on the concentration
of measure phenomenon, almost all of it for joint-Lipschitz settings, is vast; let
us mention here only [24, 22, 21, 6, 23].

1.2.4. Other corollaries of Theorem 1.1 and comparisons with known results.
Take any p ∈ (1, 2]. A normed space (X, ‖ ·‖) (or, briefly, X) is called p-uniformly
smooth [3] if for some constant D ∈ (0,∞) (referred to as a p-uniform smoothness
constant of X) and all x and y in X one has 1

2
(‖x+y‖p+‖x−y‖p) 6 ‖x‖p+Dp‖y‖p

or, equivalently,
E ‖x+Xy‖p 6 ‖x‖p +Dp E |X|p‖y‖p (1.26)

for all symmetric(ally distributed) real-valued r.v. X. If X is p-uniformly smooth
with a p-uniform smoothness constant D, let us say that X is (p,D)-uniformly
smooth or, simply, (p,D)-smooth. For instance, for any q ∈ [2,∞) the space
Lq(µ) is (2, D)-smooth with D =

√
q − 1, which is the best possible constant of

the 2-uniform smoothness as long as the space Lq(µ) is at least two-dimensional
— see e.g. [29, Proposition 2.1], [3, Proposition 3], and [13, Corollary 2.8].

Dual to the notion of (p,D)-uniform smoothness is that of (q,D−1)-uniform
convexity, whose definition can be obtained by reversing the inequality sign in
(1.26) and replacing there p and D by q and D−1, respectively; here, 1

p
+ 1

q
= 1. In

particular, a result due to Ball, Carlen, and Lieb [3, Lemma 5] is that X is (p,D)-
uniformly smooth iff its dual X∗ is (q,D−1)-uniformly convex; cf. e.g. [11, 25].
Note that q-uniform convexity and p-uniform smoothness are refinements of the
notions of uniform convexity and uniform smoothness, which go back to Clarkson
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[9] and Day [11]; cf. [18, 41]. These notions are important in functional analysis.
In particular, Pisier [37] showed that every super-reflexive space is q-uniformly
convex and p-uniformly smooth for some q and some p; an earlier result due
to Enflo [15] stated that X is super-reflexive iff it is isomorphic to a uniformly
convex space. Among many other results, Pisier [37] also showed that the super-
reflexivity is equivalent to the super-Radon-Nikodym property. Applications of
the 2-uniform convexity/2-uniform smoothness to Finsler manifolds were given
by Ohta [27].

It is clear that X is (p,D)-smooth iff inequality (1.2) with C = Dp and f =
‖ · ‖p holds for all martingales (or even v-martingales) (Sj)

n
j=1 with values in X

and conditionally symmetric differences X2, . . . , Xn; by symmetrization, the same
inequality will then hold without the conditional symmetry restriction, but with
the worse constant C = (2D)p instead of C = Dp. These considerations suggest
the following.

Let us say that the space X is completely (p,D)-smooth if inequality (1.26)
holds for all zero-mean real-valued r.v.’s X (and all x and y in X). It is clear that
X is completely (p,D)-smooth iff inequality (1.2) with C = Dp and f = ‖ · ‖p
holds for all martingales (or even v-martingales) (Sj)

n
j=1 with values in X. Also,

Proposition 1.8 immediately implies

Corollary 1.13. Take any p ∈ (1, 2] and any measure µ on any measurable space.
Then the space Lp(µ) is completely (p,D)-smooth with the best possible constant

D = C̃
1/p
p . So, for any n ∈ 2,∞ and v-martingale (Sj)

n
j=1 with values in Lp(µ),

E ‖Sn‖pp 6 E ‖X1‖pp + C̃p

n∑
j=2

E ‖Xj‖pp

(cf. (1.24)).

The above discussion suggests that the form of inequality (1.2) is rather natural
in such contexts as concentration of measure, uniform smoothness, and martin-
gales (or v-martingales). Yet, in the case when the differences X1, . . . , Xn are
independent real-valued zero-mean r.v.’s, the form of the following immediate
corollary of Theorem 1.1 may be more relevant.

Corollary 1.14. For any f ∈ F1,2, n ∈ 2,∞, and (real-valued) v-martingale
(Sj)

n
j=1,

E f(Sn) 6 K
n∑
j=1

E f(Xj) (1.27)

with K = Cf .

However, in inequality (1.27) the constant factor K = Cf is no longer the best
possible one, at least for independent zero-mean Xj’s. One way to reduce the
constant is as follows. In the conditions of Corollary 1.14, rewrite the right-hand
side of (1.2) with C = Cf as Cf

∑n
j=1 E f(Xj)−(Cf−1)E f(X1). Then, assuming

that E f(X1) > λ
n

∑n
j=1 E f(Xj) for some λ ∈ (0,∞), one sees that the constant
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factor K = Cf in (1.27) can be reduced by spreading the “excess” Cf − 1 > 0
over all the summands E f(X1), . . . ,E f(Xn), to get (1.27) with

K = Cf − λ
n

(Cf − 1) 6 Cf . (1.28)

To develop this simple observation a bit further, let us take any λ ∈ (0,∞)
and say that a sequence (Sj)

n
j=1 is a λ-good rearranged-v-martingale if there are

(i) some i ∈ 1, n such that E f(Xi) > λ
n

∑n
j=1 E f(Xj) and (ii) a permutation

(j1, . . . , jn−1) of the set 1, n \ {i} such that (Xi, Xj1 , . . . , Xjn−1) is the difference
sequence of a v-martingale. Note that, if the differences X1, . . . , Xn of a sequence
(Sj)

n
j=1 are independent zero-mean r.v.’s, then (Sj)

n
j=1 is a 1-good rearranged-v-

martingale. (In general, a λ-good rearranged-v-martingale does not have to be a
v-martingale.) Thus, one obtains

Corollary 1.15. For any f ∈ F1,2 \ {0}, n ∈ 2,∞, and λ-good rearranged-v-
martingale (Sj)

n
j=1, inequality (1.27) holds, again with K as in (1.28).

In the special case of the power functions | · |p
(
with p ∈ (1, 2)

)
in place of

general f ∈ F1,2 \{0}, an inequality of the form (1.27) was obtained by von Bahr
and Esseen (vBE) [2]:

E |Sn|p 6 K
n∑
j=1

E |Xj|p, (1.29)

with the constant factor K = 2 − 1
n

= 2 − 1
n
(2 − 1), which, by part (iii) of

Proposition 1.8, is greater than the K in (1.28), again for f = | · |p with p ∈ (1, 2).
The vBE inequality (1.29) has been used in various kinds of studies.

As noted by vBE [2], the special case of inequality (1.29) (with K = 1) when
the conditional distributions of the differences Xi given Si−1 are symmetric for
all i ∈ 2, n easily follows from Clarkson’s inequality [9]

|x+ y|p + |x− y|p 6 2|x|p + 2|y|p (1.30)

for all real x and y and all p ∈ [1, 2].
(
As pointed out in [9], inequality (1.30)

obviously implies that Lp is uniformly smooth, and in fact p-uniformly smooth.
)

Actually, it is easy to see that Clarkson’s inequality (1.30) is equivalent to the
symmetric case of (1.29), with K = 1.

As mentioned in [2], an inequality of the form (1.29) is not of optimal order
in n for independent identically distributed real-valued zero-mean Xi’s and may
be used together with a Hölder bound such as E |Sn|p 6 (ES2

n)p/2. Using similar
considerations together with symmetrization and truncation, Manstavichyus [26]
obtained bounds on E |Sn|p from above and below, which differ from each other by
an (unspecified) factor depending only on p. The proof of Theorem 1.1 (and espe-
cially that of part (II) of Lemma 2.5) shows that near-extremal r.v.’s X1, . . . , Xn,
for which the constant C in (1.2) cannot be non-negligibly less than Cf , are as
follows: X1 and X2 are independent, zero-mean, and both highly skewed in the
same direction (both to the right or both to the left); |X2| is much smaller than
|X1|; and X3, . . . , Xn are zero or nearly so. This suggests that the inequality
(1.29) should be most useful for independent real-valued zero-mean Xi’s when
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the distributions of the Xi’s are quite different from one another and/or highly
skewed and/or heavy-tailed.

Again in the case when the differences X1, . . . , Xn are independent zero-mean
r.v.’s, von Bahr and Esseen [2] made an effort to improve their constant K = 2− 1

n

in (1.29). For such Xi’s and the values of p in a left neighborhood of 2 such that
D(p) := 13.52

π(2.6)p
Γ(p) sin πp

2
= 2

π
(13

5
)2−pΓ(p) sin πp

2
< 1, they showed that (1.29)

holds with K = CvBE
p := 1(

1−D(p)
)

+

, assuming the convention 1
0

:=∞; in fact, the

constant factor CvBE
p may improve on (i.e., may be less than) the factor 2 − 1

n

only for values of p in a left neighborhood of 2 such that D(p) < 1
2
. It is stated

(without proof) in [2] that D(p) decreases in p ∈ (1, 2) and that the mentioned
left neighborhood contains the interval [1.6, 2]; cf. Figure 3, where the von Bahr–
Esseen constant factor 2∧CvBE

p is compared with the optimal (for (1.2)) constant

factor C̃p.
(
There are a couple of typos in [2]: in [2, (11)], one should have r(2.6)r

instead of (r2.6)r, and also the expression [2, (12)] for D(p) should have π(2.6)r

instead of (π2.6)r.
)

1 2
p0

1

2

K

Figure 3. C̃p, solid; Wp, magenta;
2 ∧ CvBE

p , dashed; 1, dotted.

The method of [2] is based on a repre-
sentation of the absolute moment E |X|p
of a r.v. X as a certain integral transform
of the Fourier transform of the distribu-
tion of X. More general representations,
for the positive-part moments EXp

+, were
obtained in [7, 33].

Take now again any p ∈ (1, 2]. Woy-
czyński [40] considered the class Gp−1 of
Banach spaces X defined by the following
condition: there exist a map G : X → X∗

and a constant A = Ap,X ∈ (0,∞) such
that for all x and y in X one has (i)
‖G(x)‖ = ‖x‖p−1, (ii) G(x)x = ‖x‖p, and

(iii) ‖G(x) − G(y)‖ 6 A‖x − y‖p−1. The class G1 was introduced by Fortet and
Mourier [17]. Hoffmann-Jørgensen [18] proved that X ∈ Gp−1 iff X is p-uniformly
smooth.

Woyczyński [40] showed that inequality (1.29) holds for any independent zero-
mean random vectors X1, . . . , Xn in any Banach space X ∈ Gp−1, with | · | and
K replaced by ‖ · ‖ and Ap,X. As noted in [40], the space Lp is in Gp−1, with the
constant A = 2; at that, one should take G(x) = x[p−1] := |x|p−1 signx ∈ Lq =
(Lp)∗ for all x ∈ Lp. It is not hard to see that the best possible constant A = Ap,X
for X = Lp is

Wp := sup
u∈(−1,1)

1− u[p−1]

(1− u)p−1
= 22−p,

which is in agreement with the definition of Wp in part (v) of Proposition 1.8.
Thus, one has (1.29) with K = Wp = 22−p for independent zero-mean differences
X1, . . . , Xn, which may be either real-valued or, equivalently, with values in Lp

(in which case | · | is replaced by ‖ · ‖p). The constant K = Wp in (1.29) is not the
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best possible one, even for independent zero-mean real-valued X1, . . . , Xn, even
if n is not fixed; indeed, by part (v) of Proposition 1.8, Wp > C̃p. On the other
hand, the following proposition takes place.

Proposition 1.16. One has CvBE
p > Wp for all p ∈ [1, 2).

So, CvBE
p > Wp > C̃p for all p ∈ (1, 2). This comparison is illustrated in

Figure 3.
Topchii and Vatutin [38, Theorem 2] obtained inequality (1.27) with K = 4.

Alsmeyer and Rösler [1] improved Topchii and Vatutin’s constant factor K = 4
to K = 2. In fact, they showed that inequality (1.2) holds with C = 2 for all
f ∈ F1,2, and they also showed that the constant factor C = 2 is optimal over
the entire class F1,2 of functions. The main difference between Theorem 1.1 in
the present paper and the result of [1] is that the factor Cf in Theorem 1.1 is
optimal for each given moment function f in F1,2, and one can see that Cf is
strictly less than 2 for all f ∈ F1,2 except f lying on the extreme rays R+ψt of
the convex cone F1,2, discussed after the statement of Proposition 1.2. Another
advantage of having the individualized optimal factor Cf is that it directly leads

to the optimal factor C̃p for the pth absolute power moments, and the optimal

C̃p is different for different values of p between 1 and 2; at that, by part (iii)

of Proposition 1.8, C̃p is strictly less than 2 for all p ∈ (1, 2]. Recall also that
the matter of effective calculation of the constant Cf for any given f in F1,2 is
addressed in Proposition 1.4. On the other hand, in view of (1.5), the result of
[1] immediately follows from our Theorem 1.1.

Note also that a result very similar to the “only if” half of part (I) of our
Proposition 1.2 was presented as Lemma 1 in [1]. However, the conclusion
in that lemma that the “mixing” measure (denoted by Qφ in [1] and by γ in
Proposition 1.2 here) must be finite is mistaken. Indeed, as Proposition 1.2
shows, it is enough that

∫
(0,∞]

(t ∧ 1)γ( dt) < ∞. For instance, in the case

when f is the absolute power function | · |p with p ∈ (1, 2), the correspond-
ing mixing measure γ = γf is given, according to (1.8), by the formula γ

(
(x,∞]

)
= 1

2
p(p− 1)xp−2 for x ∈ (0,∞), and so, γf is an infinite measure on (0,∞].

Kemperman and Smit [20] give an expression for the best possible constant
factor C̃p in a version of the von Bahr–Esseen inequality for the absolute pth power
moments. The paper [20] appears to be an abstract of a conference presentation,
with only a brief description of the method of proof, which latter seems to consist
in deriving, and then working with, a recursion formula. I have been unable to
reconstruct the proof based on that description. It appears that the method in
the present paper – based on the optimal inequality for moment functions f in
the general class F1,2 – is quite different from that in [20]. Also, the corresponding
inequality in [20] contains the constant factor at the first summand, E |X1|p, as
well, and thus is a bit weaker than inequality (1.11) in the present paper; cf.
(1.27) and (1.28).

Cox [10] gives a version of the von Bahr–Esseen inequality for the pth power
moment of the norm of a martingale with values in a p-smooth Banach space
(with p ∈ (1, 2]). Based on the mentioned result in Kemperman and Smit [20],
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it is shown in [10] that the constant factor in the inequality in [10] is optimal in
Hilbert space case. In contrast, the focus in applications in the present paper is
on a different kind of extension of the von Bahr–Esseen inequality, which is valid
for all Banach spaces (smooth or not) and also, more generally, for the f -moments
for all f in the class F1,2, and at that for arbitrary separately Lipschitz functions
on product spaces – instead of martingales; indeed, recall our Corollaries 1.91.12.
For other, related results on martingales with values in a 2-smooth Banach spaces,
one may see [29, 34].

2. Proofs

This section consists of four subsections. In Subsection 2.1, we shall prove 5
propositions, of the 8 ones stated in Section 1; three of these 5 propositions will
be used in the proof of Theorem 1.1, in Subsection 2.4. The proof of Proposi-
tion 1.8 (which is also used in the proof of Theorem 1.1) is more involved than
those of the other propositions, and it will be presented separately, in Subsec-
tion 2.2. Corollary 1.9 and the related Propositions 1.10 and 1.11 will be proved
in Subsection 2.3.

2.1. Proofs of Propositions 1.2, 1.3, 1.4, 1.6, and 1.16.

Proof of Proposition 1.2. To begin, note that

ψ′t(x) = 2(t ∧ x) (2.1)

for all x ∈ [0,∞) and t ∈ (0,∞). Take any f ∈ F1,2. Then, by (1.1) and the right
continuity of the monotonic right derivative f ′′ of f ′, the relation (1.8) defines a
nonnegative Borel measure γ = γf on (0,∞] and, by Fubini’s theorem,

f ′(x) =

∫ x

0

f ′′(u) du = 2

∫ x

0

du

∫
(u,∞]

γ( dt) = 2

∫
(0,∞]

γ( dt)

∫ t∧x

0

du

= 2

∫
(0,∞]

(t ∧ x)γ( dt) (2.2)

for all x ∈ [0,∞). In particular, this proves part (III) of the proposition and
(taken with x = 1) implies the condition

∫
(0,∞]

(t∧ 1)γ( dt) <∞ in part (I) of the

proposition. Further, for all x ∈ [0,∞) (2.2) yields

f(x) =

∫ x

0

f ′(u) du = 2

∫ x

0

du

∫
(0,∞]

(t ∧ u)γ( dt) = 2

∫
(0,∞]

γ( dt)

∫ x

0

(t ∧ u) du,

which implies (1.6), since
∫ x

0
(t∧u) du = 1

2
ψt(x) for all x ∈ [0,∞) and t ∈ (0,∞].

This proves the “only if” implication in part (I) of the proposition, since the
functions f and ψt are even.

To prove the “if” implication, assume that (1.6) holds for some nonnegative
Borel measure γ on (0,∞] such that

∫
(0,∞]

(t ∧ 1)γ( dt) < ∞ and for all x ∈ R.

In view of (2.1), the condition
∫

(0,∞]
(t ∧ 1)γ( dt) < ∞ implies that the integral∫

(0,∞]
ψ′t(x)γ( dt) converges uniformly over all x in any given compact subset of

the interval (0,∞). So, one finds that (1.6) implies (1.9), which in turn implies
that f ′ is nondecreasing and concave on [0,∞)

(
because the function ψt is so,
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for each t ∈ (0,∞)
)
. It is also easy to see that f ∈ C1(R), f(0) = 0, and f is

even. Thus, it is checked that f ∈ F1,2, which completes the proof of the “if”
implication in part (I) of the proposition.

It remains to prove part (II). Take indeed any f ∈ F1,2. Take also any nonneg-
ative Borel measure γ on (0,∞] such that

∫
(0,∞]

(t∧ 1)γ( dt) <∞ and (1.6) holds

for all x ∈ R. We have to show that (1.8) takes place for all x ∈ (0,∞). Take
indeed any such x. Then, as has been shown, one has identities (1.9). Therefore,
for any h ∈ (0,∞)

1

2

f ′(x+ h)− f ′(x)

h
=

∫
(0,∞]

rt(x, h)γ( dt), (2.3)

where rt(x, h) := 1
h

[(
(x+ h)∧ t

)
− (x∧ t)

]
, which is bounded (between 0 and 1)

and converges to I{t > x} as h ↓ 0. So, (1.8) follows from (2.3) by dominated
convergence. This completes the proof of part (II) of the proposition as well. �

Proof of Proposition 1.3. Part (ii) of the proposition is obvious on recalling that

xj = q2j−1 − 1 for j ∈ 1,∞. Note also that ρ
(
(xj + 1)4/3 − 1

)
= 4

3
for j ∈ 1,∞.

So, to prove then part (iii), it is enough to show that p̃ eff(r) decreases from 5
3

to
3
2

and then increases back to 5
3

as r increases from 1 to 4
3

and then to 2, which

follows because the expressions 2− 2
3r

and 1 + 2
3r

are, respectively, increasing and

decreasing in r ∈ [1, 2], and they are equal to each other at r = 4
3
.

It remains to prove part (i) of the proposition, which is equivalent to

f alt(x) = xp̃ eff(r)+o(1) (2.4)

as x → ∞, where r := ρ(x) ∈ (1, 2], so that x = qr2
j−1 − 1. In other words,

it suffices to prove that the convergence (2.4) with x = qr2
j−1 − 1 takes place

uniformly in r ∈ (1, 2] as j →∞. Assume indeed that j →∞ and x = qr2
j−1−1.

Introduce yj := xj + 1, so that yj = q2j−1
for j = 1, 2, . . . . Then x = y

r+o(1)
j , and

uniformly over all k ∈ {0, . . . , j−1} one has x− 1
2
(xk+xk+1) = x1+o(1); moreover,

if at that k → ∞ then xk+1 − xk = x
1+o(1)
k+1 = y

2+o(1)
k , which shows that the kth

summand in the sum
∑j−1

k=0 . . . in (1.10) is (xy
2−2/3
k )1+o(1) = (yrj y

4/3
k )1+o(1) as k →

∞. So, the sum
∑j−1

k=0 . . . in (1.10) is (yrj y
4/3
j−1)1+o(1) = (yrj y

2/3
j )1+o(1) = y

r+ 2
3

+o(1)

j .
To estimate the difference x−xj, which appears on the right-hand side of (1.10),

we need to distinguish two possible cases: r ∈ [1, 4
3
) and r ∈ [4

3
, 2]. Uniformly

over all r ∈ [4
3
, 2] one has x − xj = x1+o(1) = y

r+o(1)
j , so that the term on the

right-hand side of (1.10) before the sum
∑j−1

k=0 . . . is y
2r− 2

3
+o(1)

j , which yields

f alt(x) = y
2r− 2

3
+o(1)

j + y
r+ 2

3
+o(1)

j = y
(2r− 2

3
)∨(r+ 2

3
)+o(1)

j = y
rp̃ eff(r)+o(1)
j = xp̃ eff(r)+o(1),

as in (2.4).
It remains to consider the values r ∈ [1, 4

3
). For such values of r, the relation x−

xj = x1+o(1) no longer holds; for instance, x−xj = 0 if r = 1. However, in this case
one can obviously write 0 6 x−xj 6 x and also p̃ eff(r) = 1 + 2

3r
> 2− 2

3r
. So, the

term on the right-hand side of (1.10) before the sum
∑j−1

k=0 . . . is 6 y
2r− 2

3
+o(1)

j 6
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y
r+ 2

3
+o(1)

j , whereas still
∑j−1

k=0 · · · = y
r+ 2

3
+o(1)

j ; so, y
r+ 2

3
+o(1)

j 6 f alt(x) 6 y
r+ 2

3
+o(1)

j +

y
r+ 2

3
+o(1)

j , whence f alt(x) = y
r+ 2

3
+o(1)

j = y
rp̃ eff(r)+o(1)
j = xp̃ eff(r)+o(1), thus proving

(2.4) uniformly over all r ∈ [1, 4
3
) as well. �

Proof of Proposition 1.4.
(i) Since the function f is nonzero, the set supp γ is a nonempty subset of

(0,∞]. So, sf = inf supp γ ∈ [0,∞]. If sf = ∞ then supp γ = {∞}, which
implies, in view of (1.6), that f = ψ∞, which contradicts the assumption on f in
Proposition 1.4. This proves part (i) of the proposition.

(ii) Take any s ∈ (0, sf ] and t ∈ supp γ, so that t ∈ [sf ,∞]. Then sf > 0 and
it is straightforward to check that Lψt;s(x) = ψt(s) for any x ∈ (0, s). Hence, by
(1.6) and (1.9),

Lf ;s(x) =

∫
(0,∞]

Lψt;s(x)γ( dt) =

∫
(0,∞]

ψt(s)γ( dt) = f(s),

which proves part (ii) of Proposition 1.4.
(iii) Take any s ∈ (sf ,∞). Then L′ψt;s

(0+) = 2(s − t)+ for any t ∈ (0,∞].
So, by (1.9) and (1.8),

L′f ;s(0+) =

∫
(0,∞]

L′ψt;s(0+)γ( dt) = 2

∫
(0,∞]

(s− t)+γ( dt) > 0,

since for any s ∈ (sf ,∞) one has γ
(
(0, s)

)
> 0. Similarly,

L′f ;s(s−) =

∫
(0,∞]

L′ψt;s(s−)γ( dt) = −2

∫
(0,∞]

t I{t < s}γ( dt) < 0.

This proves part (iii) of Proposition 1.4.
(iv) In view of the rescaling identity Lf ;s(x) = Lfs;1(x

s
) with fs(u) := f(su),

without loss of generality (w.l.o.g.) s = 1. Then part (iv) of the proposition
follows by parts (ii) and (iii) and the observation that `f (z) := Lf ;1(1 −

√
z) is

concave in z ∈ (0, 1). In view of (1.6), it is enough to prove this observation for
f = ψt with t ∈ (0,∞]; at that, by part (ii) of Proposition 1.4 and because sψt = t,
w.l.o.g. let us assume that 0 < t < s = 1. Observe that the second derivative
`′′ψt

(z) in z admits of a piecewise-algebraic expression, which may be quickly
obtained by using the Mathematica command PiecewiseExpand. Applying then
a Reduce command, one finds that `′′ψt

(z) 6 0 for all t ∈ (0, 1) and z ∈ (0, 1).
Now part (iv) of Proposition 1.4 follows.

(v) Part (v) of the proposition follows by parts (i)–(iv), on recalling (1.3)
and taking into account that Lf ;s(0+) = f(s), for all s ∈ (0,∞).

Proposition 1.4 is now completely proved. �

Proof of Proposition 1.6. Take any t ∈ (0,∞]. That Cψ∞ = 1 follows im-
mediately by (1.3). So, w.l.o.g. t ∈ (0,∞), and then, by (1.3) and homo-
geneity, w.l.o.g. t = 1. Thus, it remains to show that Cψ1 = 2. Take any
s ∈ (sψ1 ,∞) = (1,∞) and observe that L′ψ1;s(1) = −2(s ∧ 2) < 0, whereas
L′ψ1;s(1−) = −2(s ∧ 2) + 2s > 0. Therefore, by part (iv) of Proposition 1.4,
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maxx∈(0,s) Lψ1;s(x) = Lψ1;s(1) = s2 − (s − 2)2
+. Now, using part (v) of Proposi-

tion 1.4, it is easy to see that Cψ1 = sups∈(1,∞)
s2−(s−2)2

+

s2−(s−1)2
+

= lims→∞
s2−(s−2)2

+

s2−(s−1)2
+

=

2. �

Proof of Proposition 1.16. Take any p ∈ [1, 2). It suffices to show that

β(p) :=
(
1−D(p)

)
22−p (?)

< 1. (2.5)

Observe that

β′(p) = −22−p ln 2 + (26
5

)2−p Γ(p)
π

[
2(sin πp

2
)
(

ln 26
5
− (ln Γ)′(p)

)
− π cos πp

2

]
> −22−p ln 2 > −2 ln 2 > −1.4;

the first inequality here follows because cos πp
2
6 0, sin πp

2
> 0, and ln 26

5
−

(ln Γ)′(p) > ln 26
5
− (ln Γ)′(2) > 0, taking into account that ln Γ is convex and

hence (ln Γ)′ is increasing. It is easy to see that max{β(1+ i
4
) : i ∈ 1, 2} < 1−0.49.

So, β(p) < β(1 + i
4
) + (1.4)1

4
< 1− 0.49 + (1.4)1

4
< 1 for p ∈ [1 + i−1

4
, 1 + i

4
] and

i ∈ 1, 2; thus, (2.5) holds for all p ∈ [1, 3
2
].

Next,

β2(p) := 25π β′′(p) 2p−1 = A+B(E1 + E2 + E3 + E4),

where

A := 50π ln2 2, B := 169 Γ(p) ( 5
13

)p,

E1 := 4π (cos πp
2

) ln 26
5
, E2 := κ sin πp

2
,

E3 := −4
(
(ln Γ)′(p)2 + (ln Γ)′′(p)

)
sin πp

2
,

E4 := (ln Γ)′(p)
(
− 4π cos πp

2
+ 8 ln 26

5
sin πp

2

)
,

and κ := π2 − 4 ln2 2 − 4 ln2 13
5
− 8 ln 2 ln 13

5
< 0, whence E2 < 0. Also, E3 < 0,

because (ln Γ)′′ > 0. Let us next bound E1 and E4 from above, assuming that
p ∈ [3

2
, 2]. Then E1 6 4π (cos(π 3

4
) ln 26

5
< −14.6; also, (ln Γ)′(p) > (ln Γ)′(3

2
) > 0

and (ln Γ)′(p) 6 (ln Γ)′(2), so that E4 6 (ln Γ)′(2)
(
4π+ 8 ln 26

5

)
< 10.9. Thus, for

all p ∈ [3
2
, 2]

β2(p) 6 50π ln2 2 + 169 Γ(3
2
) ( 5

13
)2(−14.6 + 10.9) < −6 < 0

and hence β′′(p) < 0, so that β is strictly concave on [3
2
, 2]. At that, β(2) = 1

and β′(2) = 1− ln 2 > 0; so, (2.5) holds for all p ∈ [3
2
, 2) as well. �

2.2. Proof of Proposition 1.8. Of the 5 parts of the proposition, the most
difficult to prove are parts (iii) and (v), which are based to a certain extent
on several lemmas. To state these lemmas, we need more notation. Recall the
definition of `(p, x) in (1.13) and introduce

`p(p, x) :=
∂

∂p
`(p, x), `x(p, x) :=

∂

∂x
`(p, x),

`x,x(p, x) :=
∂

∂x
`x(p, x) =

∂2

∂x2
`(p, x)
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and also

p∗x := 1
4
(25x+ 2) and x∗p := 2

25
(2p− 1),

so that x = x∗p ⇐⇒ p = p∗x. Now we are ready to state the lemmas:

Lemma 2.1. For all p ∈ (1, 2) and x ∈ (0, 1
2
), one has `x,x(p, x) < 0 and hence

`x,x(p, x) 6= 0.

Lemma 2.2. For all p ∈ (1, 2),

B(p) := 4(p− 1)p−1 − (6− p)p−1 > 0. (2.6)

Lemma 2.3. For all p ∈ (1, 2) and x ∈ (0, 1
2
) such that x > x∗p, one has `x(p, x) <

0.

Lemma 2.4. For all p ∈ (1, 2) and x ∈ (0, 1
2
) such that x < x∗p, one has `p(p, x) <

0.

The proofs of these lemmas are deferred to the end of this subsection. Let us
now consider the four parts of Proposition 1.8.

(i,ii) Take any p ∈ (1, 2). Observe that `x(p,
p−1

2
) = 21−p((p − 1)p−1 −

(3−p)p−1
)
p < 0, since p−1 < 3−p. On the other hand, `x(p,

p−1
5

) = 51−ppB(p) >
0, by Lemma 2.2. So, any value of xf ;s as in part (iv) of Proposition 1.4 (for
f = | · |p) must be in the interval (p−1

5
, p−1

2
) ⊂ (0, 1

2
). By Lemma 2.1 and part (iii)

of Proposition 1.4 (with sf = 0), `x(p, x) is strictly decreasing in x ∈ (0, 1
2
) from a

positive value to a negative one. Now, in view of part (v) of Proposition 1.4, parts
(i) and (ii) of Proposition 1.8 follow, taking also into account that the equation
(1.14) is equivalent to `x(p, x) = 0.

(iii) By part (i) of Proposition 1.8, xp is the only root x ∈ (0, 1
2
) of the equa-

tion `x(p, x) = 0, for each p ∈ (1, 2). So, by Lemma 2.1 and the implicit function
theorem, C̃p is differentiable, and even real-analytic, and hence continuous in
p ∈ (1, 2).

Next, by Lemma 2.3, for any p ∈ (1, 2) and x ∈ (0, 1
2
) the equality `x(p, x) = 0

implies x < x∗p, which in turn implies `p(p, x) < 0, by Lemma 2.4. So, for

any p ∈ (1, 2) one has `p(p, xp) < 0, whence d
dp
C̃p = d

dp
`(p, xp) = `p(p, xp) +

`x(p, xp)
∂
∂p
xp = `p(p, xp) < 0, which verifies that C̃p is decreasing in p ∈ (1, 2).

Thus, to complete the proof of part (iii) of the proposition, it remains to show
that C̃1+ = 2 and C̃2− = 1 (recall that C̃2 = 1, by (1.12)). Here, consider first the
case p ↓ 1. Observe that then `(p− 1, p) = (2− p)p − (p− 1)p + p(p− 1)p−1 → 2;
on the other hand, by (1.5), C̃p 6 2 for all p ∈ (1, 2]. It indeed follows that

C̃1+ = 2. Next, for all x ∈ (0, 1) and p ∈ (3
2
, 2), one has `(2, x) = 1 and

|xp lnx| < |xp−1 lnx| < |x1/2 lnx| < 2
e
< 1, whence |`p(p, x)| = |xp−1 +pxp−1 lnx−

xp lnx+(1−x)p ln(1−x)| 6 |xp−1|+ |pxp−1 lnx|+ |xp lnx|+ |(1−x)p ln(1−x)| 6
1 + 2 + 1 + 1 = 5; so, letting p ↑ 2, one has `(p, x) = `(2, x) −

∫ 2

p
`p(r, x) dr 6

1 + 5(2 − p) → 1, whence lim supp↑2 C̃p = lim supp↑2 `(p, xp) 6 1. It remains to
refer, again, to (1.5).

(iv) The proof of part (iv) of the proposition is straightforward.
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(v) The equalities C̃1+ = W1+ and C̃2 = C̃2− = W2− = W2, and the similar
equalities for the upper and lower bounds C̃−,1p , C̃−,2p , C̃+,1

p , and C̃+,2
p on C̃p follow

immediately by part (iii) of the proposition. Take now any p ∈ (1, 2). Consider
˜̀(p, z) := `(p, 1−

√
z ), where z ∈ (0, 1). By parts (i) and (ii) of Proposition 1.8,

C̃p = max
z∈(0,1)

˜̀(p, z) = max
z∈(z1,z2)

˜̀(p, z),

where z1 := z1(p) := (3−p
2

)2 and z2 := z2(p) := (6−p
5

)2
(
since the values p−1

2

and p−1
5

of x correspond, respectively, to the values z1 and z2 of z under the

correspondence given by the formula x = 1−
√
z.
)

Hence, C̃p > ˜̀(p, z1)∨ ˜̀(p, z2) =

C̃−,1p ∨ C̃−,2p , which proves the first inequality in (1.15). It follows from the proof

of part (iv) of Proposition 1.4 that ˜̀(p, z) is concave in z ∈ (0, 1). Also, in the
proof of parts (i) and (ii) of the proposition it was observed that `x(p,

p−1
5

) >

0 > `x(p,
p−1

2
), which is equivalent to ˜̀

z(p, z2) < 0 < ˜̀
z(p, z1), where ˜̀

z := ∂ ˜̀

∂z
.

Therefore, ˜̀(p, z) 6 ˜̀(p, z1)+ ˜̀
z(p, z1)(z−z1) < ˜̀(p, z1)+ ˜̀

z(p, z1)(z2−z1) = C̃+,1
p

and ˜̀(p, z) 6 ˜̀(p, z2) + ˜̀
z(p, z2)(z − z2) < ˜̀(p, z2) + ˜̀

z(p, z2)(z1 − z2) = C̃+,2
p for

all z ∈ (z1, z2), which yields the second inequality in (1.15). The third inequality
in (1.15) is trivial.

So, it remains to prove the last inequality in (1.15). It is enough to show that
ρ(p) < 0, where

ρ(p) := 2× 5p
(
C̃+,2
p − 22−p)

= A(p) + 3
4

27−7p
6−p p(p− 1)B(p),

A(p) := 10p(p− 1)p−1 − 2(p− 1)p − 23−p5p + 2(6− p)p,

and B(p) is as in (2.6). Observe next that 27 − 7p 6 49
60

(6 − p)2. Hence and in
view of Lemma 2.2,

4ρ(p) 6 ρ̃(p) := 4A(p) + 49
20

(6− p)p(p− 1)B(p);

thus, it suffices to show that ρ̃(p) < 0, which can be rewritten as ρ̂(r) < 0 for
r ∈ (0, 2

5
), where

ρ̂(r) := 16(2
5
)1+ 5

2
rρ̃(1 + 5

2
r).

One has

ρ1(s) := ρ̂′(r)
(1 + s)3

r5r/2
= A1(s) + 4B1(s)s

5
s+1 ,

where

A1(s) := 16(−62 + 2202s+ 1160s2 + 121s3) + 80(40 + 382s+ 105s2 + 8s3) ln 2
1+s

,

B1(s) := 1572− 367s− 795s2 − 81s3 + (−1310s+ 75s2 + 160s3) ln 2s
1+s

,

and s := 2
r
− 1, so that r = 2

1+s
, and r ∈ (0, 2

5
) iff s > 4. Using a Reduce

command, one finds that B1(s) switches in sign from − to + as s increases from
4 to ∞, and the switch occurs at a certain point s∗ = 31.4 . . . . With

ρ̃1(s) :=
ρ1(s)

s5/(1+s)B1(s)
=

A1(s)

s5/(1+s)B1(s)
+ 4,
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another Reduce command shows (in about 12 sec) that

ρ2(s) := ρ̃′1(s)B1(s)2s(6+s)/(1+s) (1+s)2

80

switches in sign from + to − to + to − as s increases from 4 to ∞, and the
switches occur at certain points s1 = 5.2 . . . , s2 = 21.5 . . . , and s3 = 42.7 . . . .
So, ρ̃1(s) switches from increase to decrease to increase as s increases from 4
to s1 = 5.2 . . . to s2 = 21.5 . . . to s∗ = 31.4 . . . , and then ρ̃1(s) switches from
increase to decrease as s increases from s∗ = 31.4 . . . to s3 = 42.7 . . . to∞. Next,
ρ̃1(s) < 0 for s ∈ {4, s1, s2, s3}; also, ρ1(s∗) < 0, whence ρ̃1(s∗−) = ∞ > 0 and
ρ̃1(s∗+) = −∞ < 0 (on recalling the definitions of ρ̃1(s) and s∗). It follows that
ρ̃1(s) switches in sign from − to + as s increases from 4 to s∗, and ρ̃1 < 0 on
(s∗,∞). Therefore, ρ1(s) switches in sign from + to − as s increases from 4 to
∞. Equivalently, ρ̂′(r) switches in sign from − to + as r increases from 0 to
2
5
. This implies that ρ̂(r) switches from decrease to increase as r increases from

0 to 2
5
. Equivalently, (2

5
)pρ̃(p) switches from decrease to increase as p increases

from 1 to 2. Note also that ρ̃(1+) = ρ̃(2−) = ρ̃(2) = 0. So, indeed ρ̃(p) < 0,
for all p ∈ (1, 2). This proves part (v) and thus the entire proposition, modulo
Lemmas 2.1–2.4.

Proof of Lemma 2.1. Introduce the new variable y := 1−x
x

, so that y > 1 for

x ∈ (0, 1
2
). Then, for any p ∈ (1, 2) and x ∈ (0, 1

2
),

`x,x(p, x)
(1− x)2−p

p(p− 1)
= 1− (2− p)y3−p − (3− p)y2−p

< 1− (2− p)− (3− p) = 2(p− 2) < 0,

which proves the lemma. �

Proof of Lemma 2.2. Take indeed any p ∈ (1, 2). Note that (2.6) is equivalent
to B̃(p) := ln (4(p− 1)p−1) − ln ((6− p)p−1) > 0. Next, B̃′(p) = 1 + r + ln r,
where r := p−1

6−p , so that B̃′(p) is increasing in p, and B̃′(2) < 0, which implies

that B̃′(p) < 0 and hence B̃(p) is decreasing in p, with B̃(2) = 0. Thus, indeed
B̃(p) > 0. �

Proof of Lemma 2.3. Throughout the proof, it is assumed that indeed p ∈ (1, 2)
and x ∈ (0, 1

2
). Let

(Dx`)(p, x) :=
`x(p, x)

p(1− x)p−1
,

so thatDx` equals `x in sign. Then ∂
∂x

(Dx`)(p, x) = (p−2)(p−1)(1−x)−pxp−3 < 0,
so that (Dx`)(p, x) decreases in x. Consider now

H(p) := (Dx`)(p, x
∗
p) = (27− 4p)1−p(4p− 2)p−2(21p− 23)− 1.
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Obviously, H(p) < 0 for p 6 23
21

. Let us show that H(p) < 0 for p ∈ (23
21
, 2) as

well. Observe that

H ′(p)
4(27− 4p)p−1(2p− 1)2(4p− 2)−p

21p− 23

= H1(p) :=
25 (42p2 − 92p+ 73)

(27− 4p)(2p− 1)(21p− 23)
+ ln

4p− 2

27− 4p
.

Using the Mathematica command Minimize, one finds that H1(p) > 0 and hence
H ′(p) > 0 for p ∈ (23

21
, 2]. Since H(2) = 0, it indeed follows that H(p) < 0 for

p ∈ (23
21
, 2) and thus for all p ∈ (1, 2). So, one has (Dx`)(p, x

∗
p) < 0. Recalling that

(Dx`)(p, x) decreases in x, one has (Dx`)(p, x) < 0 or, equivalently, `x(p, x) < 0
— provided that x > x∗p. �

Proof of Lemma 2.4. Throughout the proof, it is assumed that indeed p ∈ (1, 2)
and x ∈ (0, 1

2
). Let

(Dp`)(p, x) :=
`p(p, x)

−(1− x)p ln(1− x)
=
xp−1(1 + (p− x) lnx)

−(1− x)p ln(1− x)
− 1,

(DpDp`)(p, x) :=
∂(Dp`)(p, x)

∂p

(1− x)p

xp−1

ln(1− x)

lnx
,

so that Dp` and DpDp` equal `p and ∂(Dp`)

∂p
in sign, respectively. Then

∂
∂p

(DpDp`)(p, x) = ln(1 − x) − lnx > 0
(
since x ∈ (0, 1

2
)
)
, so that (DpDp`)(p, x)

increases in p. Consider now

(DpDp`)(p
∗
x, x) =

[4 + (21x+ 2) lnx] ln(1− x)− [8 + (21x+ 2) lnx] lnx

4 lnx
.

Observe that 1 < p∗x < 2 ⇐⇒ 2
25
< x < 6

25
, and then use the Mathematica

command Reduce to find that (DpDp`)(p
∗
x, x) > 0 provided that 2

25
< x < 6

25
.

Similarly, (DpDp`)(1, x) > 0 provided that 0 < x 6 2
25

. Thus, (DpDp`)(1 ∨
p∗x, x) > 0 for all x ∈ (0, 6

25
). Recalling that (DpDp`)(p, x) increases in p, one

has (DpDp`)(p, x) > 0 for all p ∈ [1 ∨ p∗x, 2). It follows that (Dp`)(p, x) increases
in p ∈ [1 ∨ p∗x, 2). Now use Reduce to check that (Dp`)(2, x) < 0, which yields
(Dp`)(p, x) < 0 or, equivalently, `p(p, x) < 0 for p ∈ [1 ∨ p∗x, 2) or, equivalently,
for x 6 x∗p. �

2.3. Proofs of Corollary 1.9 and Propositions 1.10 and 1.11. First in this
subsection we shall prove Proposition 1.11, then Proposition 1.10, and finally
Corollary 1.9.

Proof of Proposition 1.11. The convexity of Uf (c, s, a) in a ∈ R follows immedi-
ately from that of f . Since f ′ is strictly positive and nondecreasing on (0,∞),
it follows that f(∞−) = ∞; similarly (or because f is even), f(−∞+) = ∞.
So, Uf (c, s, a) → ∞ as |a| → ∞. Therefore and by continuity, there is a
minimizer of Uf (c, s, a) in a ∈ R. Take any such minimizer, say a∗. Since
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f ∈ C1(R), the partial derivative of Uf (c, s, a) in a at a = a∗ is 0; that is,
cf ′(s− c+ a∗) + (s− c)f ′(a∗ − c) = 0, which can be rewritten as

cf ′(s− c+ a∗) = (s− c)f ′(c− a∗), (2.7)

since f is even and hence f ′ is odd. Recall also that f ′ is strictly positive and
hence nowhere zero on (0,∞). It follows that the arguments s− c+a∗ and c−a∗
of f ′ in (2.7) must be of the same sign; noting that the sum of these arguments is
s > 0, one concludes that they must be both positive; equivalently, a∗ ∈ (c−s, c).
Moreover, f ′ is positive and nondecreasing on (0,∞) and 0 < c < s − c, so that
(2.7) yields f ′(s− c+ a∗) > f ′(c− a∗) and hence

s− c+ a∗ > c− a∗. (2.8)

If a minimizer of Uf (c, s, a) in a is not unique, then the first two partial deriva-
tives of Uf (c, s, a) in a are identically zero for all a in some nonempty open
interval (a1, a2) ⊂ (c − s, c). That is, cf ′(s − c + a) = (s − c)f ′(c − a) and
cf ′′(s− c+ a) + (s− c)f ′′(a− c) = 0 for all a ∈ (a1, a2). Since f ′′ is nonnegative
and even, it follows that f ′′(c − a) = f ′′(a − c) = 0 for all a ∈ (a1, a2), so that
f ′′ = 0 on the interval (c− a2, c− a1). Because a2 6 c and f ′′ is nonnegative and
nonincreasing on (0,∞), one has f ′′ = 0 on the interval (c− a2,∞), so that f ′ is
constant on the same interval. On recalling (2.8), one has s−c+a > c−a > c−a2

for any a ∈ (a1, a2), which shows that f ′(s − c + a) = f ′(c − a); however, this
contradicts the previously obtained inequality f ′(s− c+ a∗) > f ′(c− a∗) for any
minimizer a∗.

Next, the formula (1.23) for the unique minimizer of Uψt(c, s, a) in a is easy to
verify by noting that the partial derivative of Uψt(c, s, a) in a at a = c

s−c (s−c−t)+

is 0. Moreover, for any real c an t such that c > t > 0 one has
Uψ1(c, s, 0)

Uψ1(c, s, aψ1;c,s)
−→
s→∞

2− t
2c

, and then 2− t
2c
−→
c→∞

2, which shows that κψt = 2.

It remains to prove that the unique minimizer a = af ;c,s is nonnegative. Equiv-
alently, it remains to show that the partial derivative of Uf (c, s, a) in a is no
greater than 0 at a = 0, that is,

cf ′(s− c) > (s− c)f ′(c). (2.9)

By the linearity relation (1.9) and homogeneity, w.l.o.g. f = ψt for some t ∈
(0,∞), in which case (2.9) is equivalent to aψt;c,s > 0, and that is obvious from
(1.23). �

Proof of Proposition 1.10. Take indeed any f ∈ F1,2 \ {0}. By e.g. [32, Proposi-
tion 3.18], any zero-mean probability distribution on R\{0} is a mixture of zero-
mean probability distributions on 2-point sets. Therefore, w.l.o.g. the zero-mean
r.v. X takes on only two values, so that X = Xc,d, where c and d are positive real
numbers, and Xc,d is a r.v. such that P(Xc,d = −c) = d

c+d
and P(Xc,d = d) = c

c+d
.

Take now any c and s such that 0 < c < s <∞, and introduce

Rf (c, s, a) :=
Uf (c, s, 0)

Uf (c, s, a)
=

E f(Xc,s−c)

E f(Xc,s−c + a)
.
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So, the best constant κ in (1.22) is given by a formula similar to (1.18), but with
the restrictions c ∈ (0, s) and a ∈ R instead of c ∈ (0, s

2
) and a ∈ (0, c). That c ∈

(0, s) can be reduced to c ∈ (0, s
2
) follows by the symmetry relation Rf (c, s, a) ≡

Rf (s−c, s,−a) and the continuity of Rf (c, s, a) in c. Finally, the condition a ∈ R
can be reduced to a ∈ (0, c) by Proposition 1.11 and the continuity of Rf (c, s, a)
in a. �

Proof of Corollary 1.9.
(I) Take indeed any f ∈ F1,2 \ {0}. Consider the martingale expansion

Y = EY + ξ1 + · · ·+ ξn

of Y with the martingale-differences

ξi := Ei Y − Ei−1 Y

for i ∈ 1, n, where Ei stands for the conditional expectation given the σ-algebra
generated by (X1, . . . , Xi), with E0 := E. For each i ∈ 1, n introduce the r.v.
ηi := Ei(Y − Ỹi), where Ỹi := g(X1, . . . , Xi−1, xi, Xi+1, . . . , Xn); then, in view of
(1.16) or (1.25), |ηi| 6 ρi(Xi, xi); because f(u) is increasing in |u|, it follows that
f(ηi) 6 f

(
ρi(Xi, xi)

)
and hence E f(ηi) 6 E f

(
ρi(Xi, xi)

)
; also, ξi = ηi − Ei−1 ηi,

since the r.v.’s X1, . . . , Xn are independent. Now (1.17) follows from Theorem 1.1
and Proposition 1.10, which latter yields Ei−1 f(ξi) 6 κf Ei−1 f(ηi) and hence
E f(ξi) 6 κf E f(ηi).

To check the inclusion κf ∈ [1, 2] in (1.18), note first that the inequality κf > 1
follows by the continuity of Uf (c, s, a) in a, at a = 0. As for the inequality κf 6 2,
it can be rewritten as

Uf (c, s, 0) 6 2Uf (c, s, a) (2.10)

for all s ∈ (0,∞), c ∈ (0, s
2
), and a ∈ (0, c), where w.l.o.g. f = ψt

(
for some

t ∈ (0,∞), by (1.19) and (1.6)
)

and s = 1 (by homogeneity). Take then indeed

any c ∈ (0, 1
2
) and a ∈ (0, c). By Proposition 1.11, w.l.o.g. a = aψt;c,1. Using a

Simplify Mathematica command for Uψt(c, 1, aψt;c,1) and then following with a
Reduce, one quickly verifies that (2.10) indeed holds for f = ψt. This completes
the proof of part (I) of Corollary 1.9.

(II) To obtain the expression in (1.21) for κ̃p = κ|·|p , note first that, by homo-
geneity of the power function f = | · |p, w.l.o.g. s = 1. Then solve the equation
(2.7) to find the unique minimizer

a∗ = ãp;c := a|·|p;c = c− c1/(p−1)

c1/(p−1) + (1− c)1/(p−1)

of Ũp(c, a) := U|·|p(c, 1, a) in a. Finally, substitute this minimizer for a in R̃p(c, a)

:= Ũp(c,0)

Ũp(c,a)
and simplify, to show that r̂c(p) := R̃p(c, ãp;c) equals the expression

under the max sign in (1.21).
The continuity of κ̃p in p follows because r̂c(p) is continuous in p ∈ (1, 2]

uniformly in c ∈ [0, 1
2
]
(
indeed, the derivative, r̂′c(p), of r̂c(p) in p is bounded over

all c ∈ [0, 1
2
] and all p in any compact subinterval of (1, 2]

)
. That κ̃2 = 1 is trivial.

To check that κ̃1+ = 2, observe that R̃p(p − 1, p) → 2 as p ↓ 1 and recall that
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κf 6 2 for all f ∈ F1,2 \ {0}. The statements that the values of κ̃p are algebraic

for all rational p ∈ (1, 2] and κ̃3/2 = 1
9

√
51 + 21

√
7 = 1.14 . . . , corresponding to

c = 1
6

(3−
√

1 + 2
√

7) = 0.081 . . . , are straightforward to check.
It remains to prove that κ̃p strictly decreases in p ∈ (1, 2]. To accomplish this,

it is enough to show that r̂c(p) does so for each c ∈ (0, 1
2
), since r̂0(p) = r̂1/2(p) = 1

for all p ∈ (1, 2] and r̂c(2) = 1 for all c ∈ [0, 1
2
]. Take indeed any p ∈ (1, 2) and

c ∈ (0, 1
2
) and observe that (ln r̂c)

′(p) = r1 + r2 − 1
p−1

r3, where

r1 :=
cp−1 ln c+ (1− c)p−1 ln(1− c)

cp−1 + (1− c)p−1
,

r2 := ln
(
c1/(p−1) + (1− c)1/(p−1)

)
,

r3 :=
c1/(p−1) ln c+ (1− c)1/(p−1) ln(1− c)

c1/(p−1) + (1− c)1/(p−1)
.

Note that r1+r2− 1
p−1

r3 = R1+R2, where R1 := r1−r3 and R2 := r2+(1− 1
p−1

)r3.

Observe that

R1 =

((
1−c
c

)p−1 −
(

1−c
c

) 1
p−1

)
cp−1+ 1

p−1 ln 1−c
c(

c
1

p−1 + (1− c)
1

p−1

)
(cp−1 + (1− c)p−1)

< 0,

since 1−c
c
> 1 and p− 1 < 1 < 1

p−1
.

It remains to show that R2 < 0. Consider the new variable

b :=
c1/(p−1)

c1/(p−1) + (1− c)1/(p−1)
,

so that b ∈ (0, 1
2
) and c = bp−1

bp−1+(1−b)p−1 . Then one can check that

R2 = h(b) := (p− 2)
(
b ln b+ (1− b) ln(1− b)

)
− ln

(
bp−1 + (1− b)p−1

)
and

h′′(b)b2−p(1− b)2−p(bp−1 + (1− b)p−1)2 = h21(b)h22(b),

where

h21(b) :=
(

2−p
b
− 1
)(

b
1−b

)2−p
+ 1, h22(b) :=

(
b

1−b

)p−1(p−1
b
− 1
)
− 1,

with h′21(b) = (p − 2)(p − 1)
(

b
1−b

)−p
(1 − b)−3 < 0 and h′22(b) = (p − 2)

× (p − 1)
(

b
1−b

)p
b−3 < 0, so that both h21(b) and h22(b) are decreasing in b.

Since h21(1
2
) = 2(2 − p) > 0, it follows that h21 > 0 on (0, 1

2
). So, h′′(b) equals

h22(b) in sign. Since h22(0+) = ∞ > 0 and h22(1
2
) = 2(p − 2) < 0, both h22(b)

and h′′(b) switch from + to − as b increases from 0 to 1
2
. Therefore, h(b) switches

from convexity to concavity in b ∈ (0, 1
2
). At that, h(0+) = h(1

2
) = h′(1

2
) = 0. It

follows that h < 0 and hence R2 < 0. This completes the proof of part (II) and
thus that of the entire Corollary 1.9. �
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2.4. Proof of Theorem 1.1.
(I, II) By induction and conditioning, parts (I) and (II) of Theorem 1.1 follow

immediately from

Lemma 2.5. Take any f ∈ F1,2 \ {0}.
(I) For any x ∈ R and zero-mean r.v. Y

E f(x+ Y ) 6 f(x) + Cf E f(Y ).

(II) If a constant factor C is such that

E f(X + Y ) 6 E f(X) + C E f(Y ) (2.11)

for all independent zero-mean r.v.’s X and Y , then C > Cf .

We shall turn to the proof of this lemma in a moment, after the proof of parts
(III) and (IV) of Theorem 1.1 is completed.

(III) Take any f ∈ F1,2 \ {0}. The inequality Cf > 1 follows by (1.3), since
Lf ;s(x)→ f(s) as x ↓ 0. On the other hand, in view of Proposition 1.6 and (1.3),
one has Lψt;s(x) 6 2ψt(s) for any t ∈ (0,∞] and x, s such that 0 < x < s < ∞;
so, (1.6) implies Lf ;s(x) 6 2f(s), whence, by (1.3), Cf 6 2.

(IV) Part (IV) of Theorem 1.1 follows immediately from Propositions 1.6
and 1.8.

Thus, Theorem 1.1 is proved, modulo Lemma 2.5.

Proof of Lemma 2.5. The main idea of this proof is to use appropriate Taylor
expansions. A similar approach was used e.g. in [12, 8, 35, 29, 28, 34].

(I) Clearly, for all real z and y,

f(z + y) 6 f(z) + yf ′(z) + Ĉff(y), (2.12)

where

Ĉf := sup
z∈R,

y∈R\{0}

Rf (z, y) and Rf (z, y) :=
f(z + y)− f(z)− yf ′(z)

f(y)
. (2.13)

Here one may recall that, as was noted at the end of the paragraph containing
(1.1), f > 0 on R \ {0}. Concerning the validity of (2.12) when y = 0, recall that

f(0) = 0 and assume that Ĉff(y) = 0 if y = 0 and Ĉf =∞ (in fact, later it will

be seen that Ĉf is always between 1 and 2.
It is not hard to see that

Ĉf = Cf . (2.14)

Indeed, because f is an even function and hence f ′ is an odd function, it follows
that Rf (−z,−y) = Rf (z, y) for any z ∈ R and y ∈ R \ {0}. So, one may replace
the condition y ∈ R \ {0} in (2.13) by y ∈ (−∞, 0). Take indeed any such y and
consider the Taylor expansion

Rf (z, y)f(y) = f(z + y)− f(z)− yf ′(z) = y2

∫ 1

0

(1− t)f ′′(z + ty) dt. (2.15)

By (1.1), f ′′ is nondecreasing on the interval (−∞, 0). Next, note that z+ ty < 0
whenever z ∈ (−∞, 0], y ∈ (−∞, 0), and t ∈ (0, 1). Therefore, in view of
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(2.15) and the continuity of f and f ′, Rf (z, y) is nondecreasing in z ∈ (−∞, 0].
Similarly, Rf (z, y) is nonincreasing in z ∈ [−y,∞), because f ′′ is nonincreasing
on the interval (0,∞) and z + ty > 0 whenever z ∈ [−y,∞), y ∈ (−∞, 0), and
t ∈ (0, 1). Hence, the condition z ∈ R, y ∈ R \ {0} in (2.13) can be replaced by
y ∈ (−∞, 0), z ∈ (0,−y). Thus, (2.14) follows by replacing s and x in (1.3) by
−y and z, respectively.

Now part (I) of Lemma 2.5 follows immediately from (2.12) and (2.14).
(II) For any positive real numbers c and d, let Xc,d stand for any r.v. such

that P(Xc,d = −c) = d
c+d

and P(Xc,d = d) = c
c+d

. Take now any c and s such that
0 < c < s <∞ and introduce

gf ;c,s(x) := E f(x+Xc,s−c)− f(x) and Jf ;c,s(x) :=
gf ;c,s(x)

gf ;c,s(0)
;

the latter definition is correct, because f > 0 on R \ {0} and hence gf ;c,s(0) =
E f(Xc,s−c) > 0.

In view of the Taylor expansion in (2.15), for any x ∈ R
sgf ;c,s(x) = cf(x+ s− c) + (s− c)f(x− c)− sf(x)

= (s− c)c
∫ 1

0

(1− t)
[
(s− c)f ′′

(
x+ (s− c)t

)
+ cf ′′(x− ct)

]
dt. (2.16)

Since f ′′ is even on R and nonnegative and nonincreasing on (0,∞), the identity
(2.16) implies that gf ;c,s(x) converges to a finite limit as x → −∞, and then so
does Jf ;c,s(x). Let now a and b be any positive real numbers. Then

E f(Xa,b +Xc,s−c)− E f(Xa,b)

E f(Xc,s−c)
=

b

a+ b
Jf ;c,s(−a) +

a

a+ b
Jf ;c,s(b) −→

a→∞
Jf ;c,s(b),

assuming that the r.v.’s Xa,b and Xc,s−c are independent. So, the constant C in
(2.11) cannot be less than Jf ;c,s(b), for any c, s, b such that 0 < c < s < ∞ and
0 < b <∞.

On the other hand, by l’Hospital’s rule, for any x ∈ R,

Jf ;c,s(x) −→
c↑s

Lf ;s(x)

f(s)
,

with Lf ;s(x) as in (1.4) So, in view of (1.3), C > Cf . So, part (II) of Lemma 2.5
is proved as well. �

Now Theorem 1.1 is completely proved.
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