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SPECTRAL PROPERTIES AND RESTRICTIONS OF BOUNDED
LINEAR OPERATORS
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Communicated by M. S. Moslehian

Abstract. Assume T ∈ L(X) is a bounded linear operator on a Banach space
X, and that Tn is a restriction of T on R(Tn) = Tn(X). In general, almost
nothing can be said concerning the relationship between the spectral properties
of T and Tn. However, under some conditions, it is shown that several spectral
properties introduced recently are the same for T and Tn.

1. Introduction and preliminaries

Throughout this paper L(X) denotes the algebra of all bounded linear operators
acting on an infinite-dimensional complex Banach space X. For T ∈ L(X), we
denote by N(T ) the null space of T and by R(T ) = T (X) the range of T . We
denote by α(T ) := dim N(T ) the nullity of T and by β(T ) := codim R(T ) =
dimX/R(T ) the defect of T . Other two classical quantities in operator theory are

the ascent p = p(T ) of an operator T , defined as the smallest non-negative integer
p such that N(T p) = N(T p+1) ( if such an integer does not exist, we put p(T ) =
∞), and the descent q = q(T ), defined as the smallest non-negative integer q such
that R(T q) = R(T q+1) (if such an integer does not exist, we put q(T ) = ∞). It is
well known that if p(T ) and q(T ) are both finite then p(T ) = q(T ). Furthermore,
0 < p(λI − T ) = q(λI − T ) < ∞ if and only if λ is a pole of the resolvent, see
[15, Prop. 50.2]. An operator T ∈ L(X) is said to be Fredholm (resp. upper
semi -Fredholm, lower semi-Fredholm), if α(T ), β(T ) are both finite (resp. R(T )
closed and α(T ) < ∞ , β(T ) < ∞). T ∈ L(X) is said to be semi-Fredholm if
T is either an upper semi-Fredholm or a lower semi-Fredholm operator. If T is
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semi-Fredholm then the index of T defined by ind T := α(T )− β(T ). Other two
important classes of operators in Fredholm theory are the classes of upper/lower
semi-Browder operators. These classes are defined as follows: T ∈ L(X) is said to
be Browder (resp. upper semi-Browder, lower semi-Browder) if T is a Fredholm
(resp. upper semi-Fredholm, lower semi-Fredholm) operator and both p(T ) and
q(T ) are finite (resp. p(T ) < ∞, q(T ) < ∞). A operator T ∈ L(X) is said to
be upper semi-Weyl (resp. lower semi-Weyl) if T is upper Fredholm (resp. lower
semi-Fredholm) operator and index ind T ≤ 0 (resp. ind T ≥ 0). T ∈ L(X) is
said to be Weyl if T is both upper and lower semi-Weyl, i.e. T is a Fredholm
operator having index 0. The Browder spectrum and the Weyl spectrum are
defined, respectively, by

σb(T ) := {λ ∈ C : λI − T is not Browder},

and

σw(T ) := {λ ∈ C : λI − T is not Weyl}.
Since every Browder operator is Weyl, σw(T ) ⊆ σb(T ). Analogously, the upper
semi-Browder spectrum and the upper semi-Weyl spectrum are defined by

σub(T ) := {λ ∈ C : λI − T is not upper semi-Browder},

and

σuw(T ) := {λ ∈ C : λI − T is not upper semi-Weyl}.
Given n ∈ N, we denote by Tn the restriction of T ∈ L(X) on the subspace
R(T n) = T n(X). According [5] and [6], T ∈ L(X) is said to be semi B-Fredholm
(resp. B-Fredholm, upper semi B-Fredholm, lower semi B-Fredholm), if for some
integer n ≥ 0 the range R(T n) is closed and Tn, viewed as a operator from
the space R(T n) into itself, is a semi-Fredholm (resp. Fredholm, upper semi-
Fredholm, lower semi-Fredholm) operator. Analogously, T ∈ L(X) is said to be
B-Browder (resp. upper semi B-Browder, lower semi B-Browder), if for some
integer n ≥ 0 the range R(T n) is closed and Tn is a Browder (resp. upper semi-
Browder, lower semi -Browder) operator. If Tn is a semi-Fredholm operator, it
follows from [6, Proposition 2.1] that also Tm is semi-Fredholm for every m ≥ n,
and ind Tm = ind Tn. This enables us to define the index of a semi B-Fredholm
operator T as the index of the semi-Fredholm operator Tn. Thus, T ∈ L(X)
is said to be a B-Weyl operator if T is a B-Fredholm operator having index 0.
T ∈ L(X) is said to be upper semi B-Weyl (resp. lower semi B-Weyl) if T is
upper semi B-Fredholm (resp. lower semi B-Fredholm) with index ind T ≤ 0
(resp. ind T ≥ 0). Note that if T is B-Fredholm then also T ∗ is B-Fredholm
with ind T ∗ = −ind T . An operator T ∈ L(X) is said to be left Drazin invertible
(resp. right Drazin invertible) if p(T ) < ∞ (resp. q(T ) < ∞) and R(T p(T )+1)
(resp. R(T q(T ))) is closed. T ∈ L(X) is called Drazin invertible if the ascent
and the descent of T are both finite. It is proved in [5, Theorem 3.6] that T
is a B-Browder operator (resp. upper semi B-Browder, lower semi B-Browder)
if and only if T is a Drazin invertible (resp. left Drazin invertible, right Drazin
invertible) operator.
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Another spectra related with semi B-Fredholm operators are defined as follows.
The Drazin invertible spectrum is defined by

σd(T ) := {λ ∈ C : λI − T is not Drazin invertible}.

The B-Weyl spectrum is defined by

σbw(T ) := {λ ∈ C : λI − T is not B-Weyl},

while the B-Browder spectrum is defined by

σbb(T ) = {λ ∈ C : λI − T is not B-Browder}.

Clearly, by [5, Theorem 3.6], σd(T ) = σbb(T ).

Now, we introduce an important property in local spectral theory. The localized
version of this property has been introduced by Finch [13], and in the framework
of Fredholm theory this property has been characterized in several ways, see
Chapter 3 of [1]. T ∈ L(X) is said to have the single valued extension property
at λ0 ∈ C (abbreviated, SVEP at λ0), if for every open disc Dλ0 ⊆ C centered at
λ0 the only analytic function f : Dλ0 → X which satisfies the equation

(λI − T )f(λ) = 0 for all λ ∈ Dλ0 ,

is the function f ≡ 0 on Dλ0 . The operator T is said to have SVEP if T
has the SVEP at every point λ ∈ C. Evidently, T ∈ L(X) has SVEP at every
point of the resolvent ρ(T ) := C \ σ(T ). Moreover, from the identity theorem
for analytic functions it is easily seen that T has SVEP at every point of the
boundary ∂σ(T ) of the spectrum. In particular, T has SVEP at every isolated
point of the spectrum. Note that (see [1, Theorem 3.8])

p(λI − T ) < ∞⇒ T has SVEP at λ, (1.1)

and dually

q(λI − T ) < ∞⇒ T ∗ has SVEP at λ. (1.2)

Recall that T ∈ L(X) is said to be bounded below if T is injective and has closed
range. Denote by σap(T ) the classical approximate point spectrum defined by

σap(T ) := {λ ∈ C : λI − T is not bounded below}.

Note that if σs(T ) denotes the surjectivity spectrum

σs(T ) := {λ ∈ C : λI − T is not onto},

then σap(T ) = σs(T
∗), σs(T ) = σap(T

∗) and σ(T ) = σap(T ) ∪ σs(T ).

It is easily seen from definition of localized SVEP that

λ /∈ acc σap(T ) ⇒ T has SVEP at λ, (1.3)

where acc σap(T ) means the set of all accumulation points of σap(T ), and if T ∗

denotes the dual of T then

λ /∈ acc σs(T ) ⇒ T ∗ has SVEP at λ, (1.4)
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Remark 1.1. The implications (1.1), (1.2), (1.3) and (1.4) are actually equiva-
lences whenever T ∈ L(X) is semi-Fredholm. Also, σb(T ) = σw(T ) ∪ acc σ(T )
and σub(T ) = σuw(T ) ∪ acc σap(T ) (see [1, Chapter 3]).

Denote by iso K the set of all isolated points of K ⊆ C. Let T ∈ L(X), define

p00(T ) = σ(T ) \ σb(T ),

pa
00(T ) = σap(T ) \ σub(T ),

π00(T ) = {λ ∈ iso σ(T ) : 0 < α(λI − T ) < ∞},
πa

00(T ) = {λ ∈ iso σap(T ) : 0 < α(λI − T ) < ∞},
Observe that, for every T ∈ L(X), we have p00(T ) ⊆ π00(T ) ⊆ πa

00(T ).

In the sequel we need the following basic results.

Lemma 1.2. For T ∈ L(X), we have the following statements:

(i) If p(T ) and q(T ) are both finite, then p(T ) = q(T );
(ii) If p(T ) and q(T ) are both finite, then α(T ) = β(T );
(iii) If α(T ) = β(T ) < ∞, and p(T ) or q(T ) is finite, then p(T ) = q(T ).

Proof. A proof of (i) may be found in [15, Prop. 38.3]. For (ii) and (iii), see [15,
Prop. 38.6]. �

Lemma 1.3. If T ∈ L(X) and p = p(T ) < ∞, then the following statements are
equivalent:

(i) There exists n ≥ p + 1 such that T n(X) is closed;
(ii) T n(X) is closed for all n ≥ p.

Proof. Define c′i(T ) = dim(N(T i)/N(T i+1)). Clearly, p = p(T ) < ∞ entails that
c′i(T ) = 0 for all i ≥ p, so ki(T ) = c′i(T ) − c′i+1(T ) = 0 for all i ≥ p. The
equivalence easily follows from [16, Lemma 12]. �

Lemma 1.4. [11, Lemma 2.1]. Let T ∈ L(X) and Tn, n ∈ N, be the restriction
of the operator T on the subspace R(T n) = T n(X). Then for all λ 6= 0, we have:

(i) N((λI − Tn)m) = N((λI − T )m), for any m;
(ii) R((λI − Tn)m) = R((λI − T )m) ∩R(T n), for any m;
(iii) α(λI − Tn) = α(λI − T );
(iv) p(λI − Tn) = p(λI − T );
(v) β(λI − Tn) = β(λI − T ).

Lemma 1.5. If R(T n) is closed in X and R((λI − Tn)m) is closed in R(T n) for
λ 6= 0, then R((λI − T )m) is closed in X.

Proof. If λ 6= 0 and R((λI − Tn)m) is a closed subspace of R(T n), since R(T n)
is closed in X, we have that R((λI − Tn)m) is closed in X. But, from the incise
(ii) in the Lemma 1.4, R((λI − Tn)m) = R((λI − T )m) ∩ R(T n). Thus R((λI −
T )m) ∩ R(T n) is closed in X. Also, if λ 6= 0, the polynomials (λ − z)m and
zn have not common divisors, so there exist two polynomials u and v such that
1 = (λ − z)mu(z) + znv(z), for all z ∈ C. Hence I = (λI − T )mu(T ) + T nv(T )
and so R((λI − T )m) + R(T n) = X. Since both R((λI − T )m) and R(T n) are



SPECTRAL PROPERTIES OF BOUNDED LINEAR OPERATORS 177

paraclosed subspaces, and R((λI −T )m)∩R(T n) and R((λI −T )m) + R(T n) are
closed, using the Neubauer Lemma [17, Prop. 2.1.2], we have that R((λI − T )m)
is closed. �

Recall that for an operator T ∈ L(X), 0 < p(λI − T ) = q(λI − T ) < ∞
precisely when λ is a pole of the resolvent of T (see [15, Prop. 50.2]). Also, every
pole of the resolvent of T is an isolated point of σ(T ).

Lemma 1.6. If 0 is not a pole of the resolvent of T ∈ L(X) and R(T n) is closed,
then

(i) π00(T ) ⊆ π00(Tn);
(ii) πa

00(T ) ⊆ πa
00(Tn);

Proof. The proof of (i) may be found in [11]. For (ii), see [12]. �

In the next definition, we describe several spectral properties introduced re-
cently (see [8], [9], [14], [18], [19], [20] and [21]).

Definition 1.7. An operator T ∈ L(X) is said to satisfy property:

(i) (w), if σap(T ) \ σuw(T ) = π00(T ) ([18]);
(ii) (aw), if σ(T ) \ σw(T ) = πa

00(T ) ([8]);
(iii) (b), if σap(T ) \ σuw(T ) = p00(T ) ([9]);
(iv) (ab), if σ(T ) \ σw(T ) = pa

00(T ) ([8]);
(v) (z) if σ(T ) \ σuw(T ) = πa

00(T ) ([21]);
(vi) (az), if σ(T ) \ σuw(T ) = pa

00(T ) ([21]);
(vii) (v), if σ(T ) \ σuw(T ) = π00(T ) ([20]);

Also, T is said to satisfy:

(viii) Browder’s theorem, if σw(T ) = σb(T ) ([14]);
(ix) a-Browder’s theorem, if σuw(T ) = σub(T ) ([19]);
(x) generalized Browder’s theorem, if σbw(T ) = σbb(T ) ([14]).

Specific spectral properties have been studied by several authors, through re-
strictions ([11], [12]) and extensions ([3], [4]). In this paper we show that for a
linear operator T ∈ L(X) acting on a Banach space X, all spectral properties in
Definition 1.7 are essentially the same for T and some restriction Tn.

2. Relations between the spectra of T and Tn

We begin by examining some relations between the spectra of T and Tn.

Lemma 2.1. Let T ∈ L(X) and Tn, n ∈ N, be the restriction of the operator T
on the subspace R(T n). If R(T n) is closed, then:

(i) σ(Tn) ⊆ σ(T ) and σap(Tn) ⊆ σap(T );
(ii) σw(Tn) ⊆ σw(T ) and σuw(Tn) ⊆ σuw(T );
(iii) σb(Tn) ⊆ σb(T ) and σub(Tn) ⊆ σub(T ).

Proof. (i) By Lemma 1.4, σ(Tn) \ {0} = σ(T ) \ {0}. Also, 0 /∈ σ(T ) implies T
bijective, thus T = Tn. Then 0 /∈ σ(T ) = σ(Tn). Consequently 0 /∈ σ(T ) implies
0 /∈ σ(Tn), or equivalently, 0 ∈ σ(Tn) implies 0 ∈ σ(T ). Hence σ(Tn) ⊆ σ(T ).
For the other inclusion, if λ /∈ σap(T ) then λI − T is injective and R(λI − T ) is
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closed. Now, here we consider two different cases λ 6= 0 and λ = 0. If λ 6= 0, by
Lemma 1.4, N(λI − Tn) = N(λI − T ) and R(λI − Tn) = R(λI − T ) ∩ R(T n) is
closed. Hence λI − Tn is bounded below, and so λ /∈ σap(Tn). In the other case,
−T bounded below implies that 0 = p(T ) = p(Tn) and R(T ) is closed. Thus Tn

is injective and, by Lemma 1.3, R(Tn) = R(T n+1) is closed. From this we obtain
that Tn is bounded below. Consequently, σap(Tn) ⊆ σap(T ).

(ii) By Lemma 1.4, σw(Tn)\{0} = σw(T )\{0}. Also, 0 /∈ σw(T ) implies T Weyl,
thus T is Fredholm and indT = 0. Then T0 = T is a Fredholm operator, it follows
from [6, Proposition 2.1] that also Tn Fredholm and indTn = indT0 = 0. But this
implies Tn is a Weyl operator, thus 0 /∈ σw(Tn). This proves that σw(Tn) ⊆ σw(T ).
For the other inclusion, by Lemma 1.4, σuw(Tn) \ {0} = σuw(T ) \ {0}. Now, sup-
pose 0 /∈ σuw(T ). Then T is upper semi-Weyl, thus T is upper semi-Fredholm
and indT ≤ 0. Again, by [6, Proposition 2.1], Tm is upper semi-Fredholm and
indTm = indT0 for all m ≥ 0. In particular, Tn is upper semi-Weyl. Conse-
quently, σuw(Tn) ⊆ σuw(T ).

(iii) Follows from (i), (ii) and the spectral equalities of the Remark 1.1. �

In general, almost nothing can be said concerning the equality between the
spectra of T and Tn. However, assuming some special conditions, the spectrum,
the Browder spectrum and the approximate point spectrum are the same for T
and Tn. Also, λ is said to be a left pole of the resolvent of T ∈ L(X), if λ ∈ σap(T )
and λI − T left Drazin invertible (see [7]).

Lemma 2.2. Let T ∈ L(X) and Tn, n ∈ N, be the restriction of the operator T
on the subspace R(T n). If R(T n) is closed, we have:

(i) If q(T ) = ∞, then σ(Tn) = σ(T );
(ii) If 0 is not a pole of the resolvent of T , then σb(Tn) = σb(T );
(iii) If 0 is not a left pole of the resolvent of T , then σap(Tn) = σap(T ).

Proof. (i) By Lemma 1.4, σ(Tn) \ {0} = σ(T ) \ {0}. Also, q(T ) = ∞ implies
R(X) 6= X and R(Tn) = R(T n+1) 6= R(T n), thus 0 ∈ σ(T ) and 0 ∈ σ(Tn). Then
σ(Tn) = σ(T ).

(ii) By Lemma 1.4, σb(Tn) \ {0} = σb(T ) \ {0}. Now suppose 0 /∈ σb(T ). Then
T is a Browder operator and both p(T ), q(T ) are finite. By [15, Proposition 38.6],
0 < p(T ) = q(T ) < ∞, so we have a contradiction. Thus 0 /∈ σb(T ). On the
other hand, 0 /∈ σb(Tn) implies Tn is a Browder, then 0 < p(Tn) = q(Tn) < ∞.
By Lemmas 2 and 3 in [10] and [15, Proposition 38.6], 0 < p(T ) = q(T ) < ∞,
so again we have a contradiction. Therefore 0 ∈ σb(T ) and 0 ∈ σb(Tn). Conse-
quently, σb(T ) = σb(Tn).

(iii) By Lemmas 1.4 and 1.5, σap(Tn) \ {0} = σap(T ) \ {0}. On the other hand,
0 /∈ σap(Tn) implies p(Tn) = 0, by Lemma 1.3, R(T n+k) = R((Tn)k) is closed for
all k ≥ 0. Also, by Lemma 2 in [10], p(T ) < ∞ because p(Tn) = 0. Thus, if
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0 ∈ σap(T ) then 0 is a left pole of the resolvent of T , a contradiction. Hence,
0 /∈ σap(T ). Similarly, 0 /∈ σap(T ) implies 0 /∈ σap(Tn). �

Similarly as in Lemma 1.6, we have the following relations.

Lemma 2.3. Let T ∈ L(X) and R(T n) is closed, then

(i) If 0 is not a pole of the resolvent of T , p00(T ) ⊆ p00(Tn);
(ii) If 0 is not a left pole of the resolvent of T , pa

00(T ) ⊆ pa
00(Tn).

Proof. (i) Let λ ∈ p00(T ) = σ(T ) \ σb(T ), we have that 0 < p(λI − T ) = q(λI −
T ) < ∞. From this equality, and by hypothesis, λ 6= 0. Hence λ ∈ σ(T ) \ {0} =
σ(Tn) \ {0} ⊆ σ(Tn). On the other hand, by Lemma 2.2, λ /∈ σb(T ) = σb(Tn).
Consequently, λ ∈ σ(Tn) \ σb(Tn) = p00(Tn).

(ii) Let λ ∈ pa
00(T ) = σap(T )\σub(T ), we have that λ ∈ σap(T ), 0 < p(λI−T ) <

∞ and (λI −T )k(X) is closed for all k ∈ N. Then λ is a left pole of the resolvent
of T , and by hypothesis, λ 6= 0. Thus, λ ∈ σap(T ) \ {0} = σap(Tn) \ {0} ⊆
σap(Tn). Also, by Lemma 2.2, λ /∈ σub(T ) ⊇ σub(Tn). Hence λ /∈ σub(Tn) and so
λ ∈ σap(Tn) \ σub(Tn) = pa

00(Tn). Therefore pa
00(T ) ⊆ pa

00(Tn). �

3. Spectral properties and restrictions

In this section we show that the properties studied in section one are essentially
the same for T and some restriction Tn of T on R(T n).

Theorem 3.1. If T ∈ L(X) have ascent infinite, then:

(i) there exists n ∈ N such that R(T n) is closed and Tn satisfies property (w)
if and only if T satisfies property (w);

(ii) there exists n ∈ N such that R(T n) is closed and Tn satisfies property (b)
if and only if T satisfies property (b);

(iii) there exists n ∈ N such that R(T n) is closed and Tn satisfies Browder’s
a-theorem if and only if T satisfies Browder’s a-theorem.

Proof. (i) Assume that R(T n) is closed and Tn satisfies property (w). Let λ ∈
π00(T ), by Lemma 1.6, λ ∈ π00(T ) ⊆ π00(Tn) = σap(Tn) \ σuw(Tn). Since λI − Tn

is a semi-Fredholm operator and λ ∈ iso σ(Tn), then λI−Tn has both ascent and
descent finite. Thus 0 < p(λI − Tn) = q(λI − Tn) < ∞. From this equality, and
by hypothesis, if λ = 0 we have that 0 < p(Tn) = q(Tn) < ∞. By Lemmas 2 and
3 in [10] and [15, Proposition 38.6], 0 < p(T ) = q(T ) < ∞, a contradiction. But
0 < α(λI − Tn) = β(λI − Tn) < ∞, because 0 < p(λI − Tn) = q(λI − Tn) < ∞.
Now, being λ 6= 0, by Lemma 1.4

0 < β(λI − T ) = β(λI − Tn) = α(λI − Tn) = α(λI − T ) < ∞,

also p(λI − T ) = p(λI − Tn) < ∞, then 0 < p(λI − T ) = q(λI − T ) < ∞.
Consequently λ ∈ σap(T ) \ σuw(T ). Hence, π00(T ) ⊆ σap(T ) \ σuw(T ). For the
reverse inclusion, observe that if λ ∈ σap(T ) \ σuw(T ), by hypothesis and the
Lemmas 2.1 and 2.2, we have that λ ∈ σap(Tn) \ σuw(Tn) = π00(Tn). From
this equality and proceding as in the first part, we easily obtain the equality
0 < p(λI − T ) = q(λI − T ) < ∞, which implies that λ ∈ π00(T ). Thus,
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σap(T )\σuw(T ) ⊆ π00(T ). Consequently, σap(T )\σuw(T ) = π00(T ) and T satisfies
property (w).

(ii) Suppose that property (b) holds for Tn. Let λ ∈ p00(T ), by Lemma 1.6,
λ ∈ p00(T ) ⊆ p00(Tn) = σap(Tn) \ σuw(Tn). Then λI − Tn is a semi-Fredholm
operator and both p(λI−Tn) and q(λI−Tn) are finite. Similarly, as in the proof
of part (i), we obtain the equality 0 < p(λI − T ) = q(λI − T ) < ∞ and hence
λ ∈ σap(T ) \ σuw(T ). Thus p00(T ) ⊆ σap(T ) \ σuw(T ). For the other inclusion,
suppose that λ ∈ σap(T ) \ σuw(T ). By the hypothesis and the Lemmas 2.1 and
2.2, λ ∈ σap(Tn) \ σuw(Tn) = p00(Tn). From this equality and proceding as above,
we obtain that 0 < p(λI − T ) = q(λI − T ) < ∞. Thus λ ∈ p00(T ). Therefore,
σap(T )\σuw(T ) ⊆ p00(T ). Consequently, σap(T )\σuw(T ) = p00(T ), and T satisfies
property (b).

(iii) If Tn satisfies a-Browder’s theorem, then iso σap(Tn) ⊆ σuw(Tn). By Lem-
mas 2.1 and 2.2, we have iso σap(T ) = iso σap(Tn) ⊆ σuw(Tn) ⊆ σuw(T ). Thus,
σub(T ) = σuw(T ) ∪ iso σap(T ) = σuw(T ) and hence T satisfies a-Browder’s theo-
rem.

For the converse of all these implications. Observe that for n = 0, trivially
R(T 0) = X is closed and T0 = T . �

Theorem 3.2. If T ∈ L(X) have descent infinite, then:

(i) there exists n ∈ N such that R(T n) is closed and Tn satisfies property (aw)
if and only if T satisfies property (aw);

(ii) there exists n ∈ N such that R(T n) is closed and Tn satisfies property (ab)
if and only if T satisfies property (ab);

(iii) there exists n ∈ N such that R(T n) is closed and Tn satisfies property (v)
if and only if T satisfies property (v);

(iv) there exists n ∈ N such that R(T n) is closed and Tn satisfies Browder’s
theorem if and only if T satisfies Browder’s theorem.

(v) there exists n ∈ N such that R(T n) is closed and Tn satisfies generalized
Browder’s theorem if and only if T satisfies generalized Browder’s theorem.

Proof. (i) Suppose that R(T n) is closed and Tn satisfies property (aw). Let λ ∈
πa

00(T ), by Lemma 1.6, λ ∈ πa
00(T ) ⊆ πa

00(Tn) = σ(Tn)\σw(Tn). Since λI−Tn is a
Fredholm operator, ind (λI−Tn) = 0 and λ ∈ iso σap(Tn). Then p(λI−Tn) < ∞
and 0 < α(λI − Tn) = β(λI − Tn) < ∞, thus 0 < p(λI − Tn) = q(λI − Tn) < ∞.
From this equality, and by hypothesis, λ = 0 implies that 0 < p(Tn) = q(Tn) < ∞.
By Lemmas 2 and 3 in [10] and [15, Proposition 38.6], 0 < p(T ) = q(T ) < ∞, a
contradiction. Now, being λ 6= 0, by Lemma 1.4

0 < β(λI − T ) = β(λI − Tn) = α(λI − Tn) = α(λI − T ) < ∞
But p(λI − T ) = p(λI − Tn) < ∞, then 0 < p(λI − T ) = q(λI − T ) < ∞.
Consequently λ ∈ σ(T ) \ σw(T ). Hence, πa

00(T ) ⊆ σ(T ) \ σw(T ). For the reverse
inclusion, observe that if λ ∈ σ(T ) \ σw(T ), by hypothesis and Lemmas 2.1 and
2.2, we have that λ ∈ σ(Tn)\σw(Tn) = πa

00(Tn). From this equality and preceding
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as in the first part, we easily obtain the equality 0 < p(λI−T ) = q(λI−T ) < ∞,
which implies that λ ∈ πa

00(T ). Thus, σ(T ) \ σw(T ) ⊆ πa
00(T ). Consequently,

σ(T ) \ σw(T ) = πa
00(T ) and T satisfies property (aw).

(ii) Suppose that R(T n) is closed and Tn satisfies property (ab). Let λ ∈ pa
00(T ),

by Lemma 1.6, λ ∈ pa
00(T ) ⊆ pa

00(Tn) = σ(Tn) \ σw(Tn). Since λI − Tn is a Fred-
holm operator, ind (λI − Tn) = 0 and p(λI − Tn) < ∞. Then p(λI − Tn) < ∞
and 0 < α(λI − Tn) = β(λI − Tn) < ∞, thus 0 < p(λI − Tn) = q(λI − Tn) < ∞.
By using the same argument of part (i), we obtain the equality 0 < p(λI − T ) =
q(λI−T ) < ∞, which implies that λ ∈ σ(T )\σw(T ). Thus pa

00(T ) ⊆ σ(T )\σw(T ).
For the reverse inclusion observe that if λ ∈ σ(T )\σw(T ), by hypothesis and Lem-
mas 2.1 and 2.2, we have that λ ∈ σ(Tn) \ σw(Tn) = pa

00(Tn). As above, it then
follows that 0 < p(λI − T ) = q(λI − T ) < ∞ and hence λ ∈ pa

00(T ). Thus,
σ(T ) \ σw(T ) ⊆ pa

00(T ). Consequently, σ(T ) \ σw(T ) = pa
00(T ) and T satisfies

property (ab).

(iii) Suppose that Tn satisfies property (v). Let λ ∈ π00(T ), by Lemma 1.6,
λ ∈ π00(T ) ⊆ π00(Tn) = σ(Tn) \ σuw(Tn). Then λI − Tn is a semi-Fredholm
operator and λI − Tn has both ascent and descent finite. By using the same
argument of Theorem 3.1, we deduce that 0 < p(λI − T ) = q(λI − T ) < ∞.
Then λ ∈ σ(T ) \ σuw(T ), thus π00(T ) ⊆ σ(T ) \ σuw(T ). For the reverse inclu-
sion observe that if λ ∈ σ(T ) \ σuw(T ), by hypothesis and Lemmas 2.1 and
2.2, we have that λ ∈ σ(Tn) \ σuw(Tn) = π00(Tn). As above, it then fol-
lows that 0 < p(λI − T ) = q(λI − T ) < ∞ and hence λ ∈ π00(T ). Thus,
σ(T ) \ σuw(T ) ⊆ π00(T ). Consequently, σ(T ) \ σuw(T ) = π00(T ) and T satisfies
property (v).

(iv) If Tn satisfies Browder’s theorem, then iso σ(Tn) ⊆ σw(Tn). By Lem-
mas 2.1 and 2.2, we have iso σ(T ) = iso σ(Tn) ⊆ σw(Tn) ⊆ σw(T ). Thus,
σb(T ) = σw(T ) ∪ iso σ(T ) = σw(T ) and hence T satisfies Browder’s theorem.

(v) It follows from (iv) and the equivalence between Browder’s theorem and
generalized Browder’s theorem proved in [2].

For the converse of all these implications. Observe that for n = 0, trivially
R(T 0) = X is closed and T0 = T . �

Theorem 3.3. If T ∈ L(X) has both ascent and descent infinite, then:

(i) there exists n ∈ N such that R(T n) is closed and Tn satisfies property (z)
if and only if T satisfies property (z);

(ii) there exists n ∈ N such that R(T n) is closed and Tn satisfies property (az)
if and only if T satisfies property (az);

(iii) there exists n ∈ N such that R(T n) is closed and Tn satisfies property (ab)
if and only if T satisfies property (ab).

Proof. The proof is analogous to the Theorems 3.1 and 3.2. �
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We give one illustrative example for the behavior of an operator T and its
restrictions Tn, when both p(T ) and q(T ) are finite.

Example 3.4. Let X be a Banach space, and assume that Y and Z are proper
closed subspaces of X with X = Y ⊕Z. Let T be the projection of X on Y which is
zero on Z. Since T is a projection operator, i.e T 2 = T , then p(T ) < ∞, q(T ) < ∞
and σ(T ) = {0, 1}. Also, the operator Tn = T |R(T n) is the identity operator on Y
for all n ≥ 1. Thus σ(Tn) = {1}, for all n ≥ 1. Assuming that neither Y nor Z is
finite dimensional, then both T and Tn satisfy the properties given in Definition
1.7. Now, if Y is infinite dimensional and Z is finite dimensional, then Tn satisfy
the properties given in Definition 1.7, for all n ≥ 1. But, T does not satisfy the
properties (i), (ii), (v) and (vii) in Definition 1.7.

Remark 3.5. There are more alternative ways to express Theorem 3.1 (resp. 3.2).
We may replace the assumption T have ascent infinite (resp. have descent infinite)
by T does not have SVEP at 0 (resp. T ∗ does not have SVEP at 0).

Acknowledgement. We thank very much the anonymous referee for his/her
helpful comments.
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10. C. Carpintero, O. Garćıa, E. Rosas and J. Sanabria, B-Browder Spectra an Localized SV EP ,
Rend. Circ. Mat. Palermo. 57 (2008), 241–255.
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