

 Ann. Funct. Anal. 6 (2015), no. 2, 104–115 http://doi.org/10.15352/afa/06-2-10
ISSN: 2008-8752 (electronic) http://projecteuclid.org/afa

INNER FUNCTIONS AND WEIGHTED COMPOSITION OPERATORS ON THE HARDY-HILBERT SPACE WITH THE UNBOUNDED WEIGHTS

KEI JI IZUCHI^{1*}, KOU HEI IZUCHI² AND YUKO IZUCHI³

Communicated by J. Esterle

ABSTRACT. Let φ be an analytic self-map of the open unit disk. It is given several sufficient conditions on φ for which there is $u \in H^2 \setminus H^\infty$ such that the weighted composition operator $M_u C_{\varphi}$ on H^2 is bounded.

1. INTRODUCTION

Let \mathbb{D} be the open unit disk and m be the normalized Lebesgue measure on $\partial \mathbb{D}$. We denote by $L^2(\partial \mathbb{D})$ the space of square integrable functions on $\partial \mathbb{D}$ with respect to m. For $1 \leq p < \infty$, let H^p be the space of analytic functions f on \mathbb{D} satisfying

$$||f||_p^p := \lim_{r \to 1} \int_{\partial \mathbb{D}} |f(re^{i\theta})|^p \, dm(e^{i\theta}) < \infty.$$

The space H^p is called the Hardy space. We denote by H^{∞} the space of bounded analytic functions on \mathbb{D} with the supremum norm $||f||_{\infty}$. For each $f \in H^2$, there is the boundary function f^* of f defined by $f^*(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})$ a.e. on $\partial \mathbb{D}$. We have $f^* \in L^2(\partial \mathbb{D})$ (see [2, 3, 4]).

We denote by S the set of analytic self-maps of \mathbb{D} . For each $\varphi \in S$, we may define the composition operator C_{φ} by $C_{\varphi}f = f \circ \varphi$ for $f \in H^2$. By the Littlewood subordination theorem [6], C_{φ} is a bounded linear operator on H^2 . Recently there are many researches on composition operators on various spaces of analytic functions. For $u \in H^{\infty}$, we may define the weighted composition

Date: Received: Jun. 1, 2014; Accepted: Jul. 13, 2014.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B38; Secondary 30H10.

 $Key\ words\ and\ phrases.$ Hardy space, inner function, weighted composition operator, boundedness.

operator $M_u C_{\varphi} : H^2 \to H^2$ by $(M_u C_{\varphi})f = u(f \circ \varphi)$. Of course, $M_u C_{\varphi}$ is bounded on H^2 . See [1, 9] for the basic properties of (weighted) composition operators. Let $u \in H^2$ and $\varphi \in \mathcal{S}$. For each $f \in H^2$, we have

 $\|M_u C_{\varphi} f\|_1 \le \|u\|_2 \|C_{\varphi} f\|_2 \le \|u\|_2 \|C_{\varphi}\| \|f\|_2.$

Hence $M_u C_{\varphi} : H^2 \to H^1$ is a bounded linear map. If $\|\varphi\|_{\infty} < 1$, then it is not difficult to see that $M_u C_{\varphi} : H^2 \to H^2$ is bounded.

In this paper, for $\varphi \in \mathcal{S}$ with $\|\varphi\|_{\infty} = 1$ we shall study the boundedness of $M_u C_{\varphi} : H^2 \to H^2$ (see [5, 8]). More precisely, we consider the following problem.

Problem 1.1. For which $\varphi \in S$, is there $u \in H^2 \setminus H^\infty$ such that $M_u C_{\varphi} : H^2 \to H^2$ is bounded?

A function $\psi \in H^{\infty}$ is called inner if $|\psi^*| = 1$ a.e. on $\partial \mathbb{D}$. In [5, Corollary 2.2], Nguyen, Ohno and the first author showed that if $\varphi \in \mathcal{S}$ is not inner, then there is $u \in H^2 \setminus H^{\infty}$ such that $M_u C_{\varphi} : H^2 \to H^2$ is bounded. So mainly we assume that φ is an inner function. We denote by $supp(\varphi)$ the set of $e^{i\theta} \in \partial \mathbb{D}$ at which φ does not have a continuous extension. Then $supp(\varphi)$ is a closed subset of $\partial \mathbb{D}$. It is known that $supp(\varphi) = \emptyset$ if and only if φ is a finite Blaschke product. It is not difficult to see that if $supp(\varphi) = \emptyset$, then $M_u C_{\varphi} : H^2 \to H^2$ is unbounded for every $u \in H^2 \setminus H^{\infty}$ (see [5, p. 1335]).

It is known that φ may be extended to a non-vanishing analytic function on some neighborhood of each $e^{i\theta} \in \partial \mathbb{D} \setminus supp(\varphi)$. Hence we may think that φ^* is differentiable on $\partial \mathbb{D} \setminus supp(\varphi)$. In [5, Proposition 2.9], Nguyen, Ohno and the first author essentially proved that if $\sup_{z \in \partial \mathbb{D} \setminus supp(\varphi)} |\varphi^{*'}(z)| = \infty$, then there is $u \in H^2 \setminus H^{\infty}$ such that $M_u C_{\varphi} : H^2 \to H^2$ is bounded.

In Section 2, we shall prove that if there is an open subarc U of $\partial \mathbb{D}$ such that $U \cap supp(\varphi) \neq \emptyset$ and $U \cap supp(\varphi)$ does not contain any interior points, then $\sup_{z \in \partial \mathbb{D} \setminus supp(\varphi)} |\varphi^{*'}(z)| = \infty$, so there exists a function $u \in H^2 \setminus H^\infty$ such that $M_u C_{\varphi} : H^2 \to H^2$ is bounded.

For an inner function φ , we consider the following two conditions.

(α) There is a sequence of mutually disjoint measurable subsets $\{C_n\}_{n\geq 1}$ of $\partial \mathbb{D}$ and a sequence of positive numbers $\{\delta_n\}_{n\geq 1}$ satisfying $\sum_{n=1}^{\infty} \delta_n < \infty$ such that $m(C_n) > 0$ and $m(C_n \cap \varphi^{*(-1)}(E)) \leq \delta_n m(E)$ for every measurable subset E of $\partial \mathbb{D}$ and for every $n \geq 1$.

(β) There is a sequence of mutually disjoint measurable subsets $\{E_n\}_{n\geq 1}$ of $\partial \mathbb{D}$ such that $m(E_n \cap \varphi^{*(-1)}(E)) > 0$ for every measurable subset E of $\partial \mathbb{D}$ satisfying m(E) > 0 and for every $n \geq 1$.

We do not know whether conditions (α) and (β) hold or not for every inner function φ satisfying $m(supp(\varphi)) > 0$. In Section 3, we shall prove that if an inner function φ satisfies condition (α) , then there is $u \in H^2 \setminus H^{\infty}$ such that $M_u C_{\varphi} : H^2 \to H^2$ is bounded. We also show that if φ satisfies condition (β) , then φ satisfies condition (α) .

The techniques used here will give us some light on further study of Problem 1.1.

2. Bounded weighted composition operators

The following proposition was proven in [5, Corollary 2.2]. We shall give its another proof.

Proposition 2.1. Let $\varphi \in S$. If φ is not inner, then there is $u \in H^2 \setminus H^\infty$ such that $M_u C_{\varphi} : H^2 \to H^2$ is bounded.

Proof. For 0 < r < 1, we write $\{|\varphi^*| < r\} = \{e^{it} \in \partial \mathbb{D} : |\varphi^*(e^{it})| < r\}$. Take 0 < r < 1 satisfying $m(\{|\varphi^*| < r\}) > 0$. Let η be a positive unbounded function in $L^2(\partial \mathbb{D})$ such that $\eta = 1$ on $\partial \mathbb{D} \setminus \{|\varphi^*| < r\}$ and $\eta \ge 1$ a.e. on $\{|\varphi^*| < r\}$. By [4, p. 53], there is $u \in H^2$ satisfying $|u^*| = \eta$ a.e. on $\partial \mathbb{D}$. We have $u \notin H^{\infty}$. For $f \in H^2$, by [2, p. 36] we have

$$|f(z)| \le \frac{\sqrt{2}||f||_2}{\sqrt{1-r}}, \quad |z| \le r.$$

Hence

$$|f(\varphi^*(e^{i\theta}))| \le \frac{\sqrt{2}||f||_2}{\sqrt{1-r}}, \quad e^{i\theta} \in \{|\varphi^*| < r\}.$$

Therefore

$$\begin{split} \|M_{u}C_{\varphi}f\|_{2}^{2} &= \int_{\partial \mathbb{D}} |u^{*}|^{2} |(f \circ \varphi)^{*}|^{2} dm \\ &= \int_{\{|\varphi^{*}| < r\}} |u^{*}|^{2} |(f \circ \varphi)^{*}|^{2} dm + \int_{\partial \mathbb{D} \setminus \{|\varphi^{*}| < r\}} |u^{*}|^{2} |(f \circ \varphi)^{*}|^{2} dm \\ &\leq \frac{2 \|f\|_{2}^{2}}{1-r} \int_{\partial \mathbb{D}} |u^{*}|^{2} dm + \int_{\partial \mathbb{D}} |(f \circ \varphi)^{*}|^{2} dm \\ &\leq \left(\frac{2 \|\eta\|_{2}^{2}}{1-r} + \|C_{\varphi}\|^{2}\right) \|f\|_{2}^{2}. \end{split}$$

Thus $M_u C_{\varphi} : H^2 \to H^2$ is bounded.

Hereafter, to study Problem 1.1 we assume that φ is an inner function satisfying $supp(\varphi) \neq \emptyset$. In [5, Proposition 2.9], Nguyen, Ohno and the first author proved the following essentially.

Lemma 2.2. Let φ be an inner function. If $\sup_{z \in \partial \mathbb{D} \setminus supp(\varphi)} |\varphi^{*'}(z)| = \infty$, then there exists a function $u \in H^2 \setminus H^\infty$ such that $M_u C_{\varphi} : H^2 \to H^2$ is bounded.

Let φ be an inner function and $I = \{e^{it} : t_1 < t < t_2\}$ satisfy $I \cap supp(\varphi) = \emptyset$. Then there is a real valued differentiable function $\sigma(t)$ such that $\varphi^*(e^{it}) = e^{i\sigma(t)}$ and $\sigma'(t) > 0$ on (t_1, t_2) . Admitting the values $\infty, -\infty$, we may define $s_k = \lim_{t \to t_k} \sigma(t)$ for k = 1, 2. Putting $\sigma(t_k) = s_k$, we think $\sigma(t)$ of an extended real valued continuous function on $[t_1, t_2]$ and $\varphi^*(I) = \{e^{is} : s_1 < s < s_1\}$.

For $e^{it_0} \in \partial \mathbb{D}$ and $\varepsilon > 0$, we write $I_{\varepsilon}(e^{it_0}) = \{e^{it} : t_0 - \varepsilon < t < t_0 + \varepsilon\}.$

Lemma 2.3. Let φ be an inner function. If $supp(\varphi) = \{e^{it_0}\}$, then

$$\sup_{z \in I_{\varepsilon}(e^{it_0}) \setminus \{e^{it_0}\}} |\varphi^{*'}(z)| = \infty$$

for every $\varepsilon > 0$.

Proof. There is a real valued differentiable function $\sigma(t)$ on $(t_0, t_0 + 2\pi)$ such that $\varphi^*(e^{it}) = e^{i\sigma(t)}$ and $\sigma'(t) > 0$ for every $t_0 < t < t_0 + 2\pi$. Then either $\lim_{t \to t_0} \sigma(t) = -\infty$ or $\lim_{t \to t_0+2\pi} \sigma(t) = \infty$ (see [3, p. 90–91]). Hence we get the assertion.

Lemma 2.4. Let φ_1, φ_2 be inner functions and I be an open subarc of $\partial \mathbb{D}$ such that $I \cap supp(\varphi_1\varphi_2) = \emptyset$. Then $|(\varphi_1\varphi_2)^{*'}| = |\varphi_1^{*'}| + |\varphi_2^{*'}|$ on I.

Proof. Let $I = \{e^{it} : t_1 < t < t_2\}$. There are real valued differentiable functions $\sigma_1(t), \sigma_2(t)$ on (t_1, t_2) such that $\varphi_1^*(e^{it}) = e^{i\sigma_1(t)}, \varphi_2^*(e^{it}) = e^{i\sigma_2(t)}, \sigma_1'(t) > 0$ and $\sigma_2'(t) > 0$ for every $t_1 < t < t_2$. We have $(\varphi_1 \varphi_2)^*(e^{it}) = e^{i(\sigma_1(t) + \sigma_2(t))}$. Hence

$$(\varphi_1\varphi_2)^{*'}(e^{it}) = -ie^{-it}\frac{d}{dt}(\varphi_1\varphi_2)^{*}(e^{it}) = e^{-it}(\sigma_1'(t) + \sigma_2'(t))e^{i(\sigma_1(t) + \sigma_2(t))}$$

for $t_1 < t < t_2$. Therefore

$$|(\varphi_1\varphi_2)^{*'}(e^{it})| = \sigma_1'(t) + \sigma_2'(t) = |\varphi_1^{*'}(e^{it})| + |\varphi_2^{*'}(e^{it})|.$$

For a subset E of $\partial \mathbb{D}$, we denote by *int* E the interior of E in $\partial \mathbb{D}$.

Theorem 2.5. Let φ be an inner function. If $supp(\varphi) \neq int supp(\varphi)$, then $sup_{z \in \partial \mathbb{D} \setminus supp(\varphi)} |\varphi^{*'}(z)| = \infty$.

Proof. Take $e^{it_0} \in supp(\varphi) \setminus \overline{int supp(\varphi)}$ and then take an open subarc I of $\partial \mathbb{D}$ such that $e^{it_0} \in I$ and $I \cap \overline{int supp(\varphi)} = \emptyset$. For each $\lambda \in \mathbb{D}$, let $\tau_{\lambda}(z) = (z - \lambda)/(1 - \overline{\lambda}z), z \in \mathbb{D}$. By Frostman's theorem (see [3, p. 79]), there is $\lambda \in \mathbb{D}$ such that $\psi := \tau_{\lambda} \circ \varphi$ is a Blaschke product. We have $supp(\psi) = supp(\varphi)$. Then there is a sequence $\{a_k\}_{k\geq 1}$ in \mathbb{D} such that $\psi(a_k) = 0$ for every $k \geq 1$ and $a_k \to e^{it_0}$ as $k \to \infty$. Let ψ_1 be the Blaschke subproduct of ψ with zeros $\{a_k\}_{k\geq 1}$. Then $supp(\psi_1) = \{e^{it_0}\}$. Let $\psi_2 = \psi/\psi_1$. Retaking a further subsequence of $\{a_k\}_{k\geq 1}$, we may assume that $supp(\psi_2) = supp(\psi)$. Since $e^{it_0} \in I$, we may take $\varepsilon > 0$ satisfying

$$I_{\varepsilon}(e^{it_0}) = \{e^{it} : t_0 - \varepsilon < t < t_0 + \varepsilon\} \subset I.$$

By Lemma 2.3, we have $\sup_{z \in I_{\varepsilon}(e^{it_0}) \setminus \{e^{it_0}\}} |\psi_1^{*'}(z)| = \infty$. Since $I \cap \overline{int \, supp(\psi)} = \emptyset$, $I_{\varepsilon}(e^{it_0}) \setminus supp(\psi)$ is dense in $I_{\varepsilon}(e^{it_0})$. Hence

$$\sup_{z \in I_{\varepsilon}(e^{it_0}) \setminus supp(\psi)} |\psi_1^{*\prime}(z)| = \infty.$$

Therefore by Lemma 2.4, we have

$$\sup_{z \in I_{\varepsilon}(e^{it_0}) \setminus supp(\psi)} |\psi^{*'}(z)| = \sup_{z \in I_{\varepsilon}(e^{it_0}) \setminus supp(\psi)} (|\psi_1^{*'}(z)| + |\psi_2^{*'}(z)|)$$
$$\geq \sup_{z \in I_{\varepsilon}(e^{it_0}) \setminus supp(\psi)} |\psi_1^{*'}(z)| = \infty.$$

We have $\varphi = \tau_{-\lambda} \circ \psi$ and $\varphi^{*'} = \psi^{*'}(\tau_{-\lambda}' \circ \psi^*)$ on $I_{\varepsilon}(e^{it_0}) \setminus supp(\psi)$. Since $\inf_{z \in \partial \mathbb{D}} |\tau_{-\lambda}'(z)| > 0$, we have $\sup_{z \in I_{\varepsilon}(e^{it_0}) \setminus supp(\psi)} |\varphi^{*'}(z)| = \infty$. Since $supp(\varphi) = supp(\psi)$, we get the assertion.

By Lemma 2.2 and Theorem 2.5, we have the following theorem.

Theorem 2.6. Let φ be an inner function. If $supp(\varphi) \neq int supp(\varphi)$, then there exists a function $u \in H^2 \setminus H^{\infty}$ such that $M_u C_{\varphi} : H^2 \to H^2$ is bounded.

There are many examples of inner functions φ such that $supp(\varphi) = int supp(\varphi)$ and there exists a function $u \in H^2 \setminus H^\infty$ such that $M_u C_{\varphi} : H^2 \to H^2$ is bounded. For example, let φ_1 be an inner function satisfying $supp(\varphi_1) = \{e^{it} : 0 \le t \le \pi\}$. Let

$$\varphi_2(z) = \exp\left(\frac{z+1}{z-1} + \frac{z-1}{z+1}\right).$$

Then φ_2 is a singular inner function satisfying $supp(\varphi_2) = \{1, -1\}$. Put $\varphi = \varphi_1 \varphi_2$. Then we have that $supp(\varphi) = \{e^{it} : 0 \le t \le \pi\}$ and

$$\sup_{\pi < t < 2\pi} |\varphi^{*\prime}(e^{it})| = \infty$$

Hence there exists a function $u \in H^2 \setminus H^\infty$ such that $M_u C_{\varphi} : H^2 \to H^2$ is bounded.

Let ψ be an inner function with $supp(\psi) = \partial \mathbb{D}$. By the above fact, $C_{\psi}(M_u C_{\varphi}) = M_{u \circ \psi} C_{\varphi \circ \psi}$ is bounded on H^2 . We have that $supp(\varphi \circ \psi) = \partial \mathbb{D}$ and $u \circ \psi \in H^2 \setminus H^{\infty}$. Hence there are an inner function η with $supp(\eta) = \partial \mathbb{D}$ and $v \in H^2 \setminus H^{\infty}$ such that $M_v C_\eta : H^2 \to H^2$ is bounded.

We shall give another sufficient condition. One may check the following easily.

Lemma 2.7. Let φ_1, φ_2 be inner functions and I be an open subarc of $\partial \mathbb{D}$ such that $I \cap supp(\varphi_1\varphi_2) = \emptyset$. Then $m(\varphi_1^*(I)) \leq m((\varphi_1\varphi_2)^*(I))$.

Lemma 2.8. Let φ be an inner function and I be an open subarc of $\partial \mathbb{D}$ such that $I \cap supp(\varphi) = \emptyset$. We write $I = \{e^{it} : t_1 < t < t_2\}$. Let $\sigma(t)$ be an extended real valued continuous function on $[t_1, t_2]$ such that $\varphi^*(e^{it}) = e^{i\sigma(t)}, \sigma(t)$ is differentiable and $\sigma'(t) > 0$ on (t_1, t_2) . If $\sigma(t_2) - \sigma(t_1) < \infty$, then for each $\varepsilon > 0$, there is an inner function ψ such that φ/ψ is inner, $supp(\psi) = supp(\varphi)$ and $m(\psi^*(I)) < \varepsilon$.

Proof. By the assumption, $-\infty < \sigma(t_1) < \sigma(t_2) < \infty$. Take a positive integer n satisfying $(\sigma(t_2) - \sigma(t_1))/2n\pi < \varepsilon$. It is not difficult to see the existence of inner functions $\varphi_1, \varphi_2, \cdots, \varphi_n$ such that $\varphi = \varphi_1 \varphi_2 \cdots \varphi_n$ and $supp(\varphi_j) = supp(\varphi)$ for every $1 \le j \le n$. For each $1 \le j \le n$, there is a real valued continuous function $\sigma_j(t)$ on $[t_1, t_2]$ such that $\varphi_j^*(e^{it}) = e^{i\sigma_j(t)}, \sigma_j(t)$ is differentiable and $\sigma'_j(t) > 0$ on (t_1, t_2) . We have

$$\sigma(t_2) - \sigma(t_1) = \sum_{j=1}^n (\sigma_j(t_2) - \sigma_j(t_1)).$$

Then $(\sigma_{j_0}(t_2) - \sigma_{j_0}(t_1))/2\pi < \varepsilon$ for some $1 \le j_0 \le n$. Hence $m(\varphi_{j_0}^*(I)) < \varepsilon$. Put $\psi = \varphi_{j_0}$. Then φ/ψ is inner, $supp(\psi) = supp(\varphi)$ and $m(\psi^*(I)) < \varepsilon$. \Box

For an inner function φ and a measurable subset $E \subset \partial \mathbb{D}$, we put

$$\varphi^{*(-1)}(E) = \left\{ e^{i\theta} \in \partial \mathbb{D} : \varphi^{*}(e^{i\theta}) \in E \right\}.$$

If $\varphi(0) = 0$, then it is known that

$$m(\varphi^{*(-1)}(E)) = m(E)$$

for any measurable subset E of $\partial \mathbb{D}$.

Theorem 2.9. Let φ be an inner function. Suppose that there is a sequence of mutually disjoint open subarcs $\{I_n\}_{n\geq 1}$ of $\partial \mathbb{D}$ such that $\bigcup_{n=1}^{\infty} I_n = \partial \mathbb{D} \setminus \operatorname{supp}(\varphi)$. For each $n \geq 1$, let $I_n = \{e^{it} : t_{n,1} < t < t_{n,2}\}$ and $\sigma_n(t)$ be an extended real valued continuous function on $[t_{n,1}, t_{n,2}]$ such that $\varphi_n^*(e^{it}) = e^{i\sigma_n(t)}$, $\sigma_n(t)$ is differentiable and $\sigma'_n(t) > 0$ on $(t_{n,1}, t_{n,2})$. Then we have the following.

- (i) If $\sigma_n(t_{n,2}) \sigma_n(t_{n,1}) = \infty$, then $\sup_{z \in I_n} |\varphi^{*'}(z)| = \infty$.
- (ii) Suppose that $\sigma_n(t_{n,2}) \sigma_n(t_{n,1}) < \infty$ for every $n \ge 1$. If $\sum_{n=1}^{\infty} (\sigma_n(t_{n,2}) \sigma_n(t_{n,1})) = \infty$, then

$$\sup_{\substack{\in \partial \mathbb{D} \setminus supp(\varphi)}} |\varphi^{*'}(z)| = \infty$$

(iii) Suppose that $\sigma_n(t_{n,2}) - \sigma_n(t_{n,1}) < \infty$ for every $n \ge 1$. If $m(supp(\varphi)) = 0$, then $\sum_{n=1}^{\infty} (\sigma_n(t_{n,2}) - \sigma_n(t_{n,1})) = \infty$.

If one of the assumptions of (i), (ii) and (iii) holds, then there exists $u \in H^2 \setminus H^\infty$ such that $M_u C_{\varphi} : H^2 \to H^2$ is bounded.

Proof. (i) follows from the mean valued theorem.

(ii) For each positive integer j, there is n_j such that

$$j \le \frac{\sigma_{n_j}(t_{n_j,2}) - \sigma_{n_j}(t_{n_j,1})}{t_{n_j,2} - t_{n_j,1}}$$

For, if not, then there is j_0 such that

$$\frac{\sigma_n(t_{n,2}) - \sigma_n(t_{n,1})}{t_{n,2} - t_{n,1}} < j_0$$

for every $n \geq 1$. Then we have

$$\infty = \sum_{n=1}^{\infty} (\sigma_n(t_{n,2}) - \sigma_n(t_{n,1})) < j_0 \sum_{n=1}^{\infty} (t_{n,2} - t_{n,1}) \le 2\pi j_0.$$

This is a contradiction.

By the mean valued theorem, there is $t_{n_j,1} < \theta_j < t_{n_j,2}$ satisfying $j \leq \sigma'_{n_j}(\theta_j) = |\varphi^{*'}(e^{i\theta_j})|$ for every j. Therefore we get

$$\sup_{z \in \partial \mathbb{D} \setminus supp(\varphi)} |\varphi^{*'}(z)| = \sup_{n \ge 1} \sup_{z \in I_n} |\varphi^{*'}(z)| = \infty.$$

(iii) To prove (iii), suppose that $\sum_{n=1}^{\infty} (\sigma_n(t_{n,2}) - \sigma_n(t_{n,1})) < \infty$. We shall lead a contradiction. By the assumption, there is n_0 such that $\sum_{n=n_0}^{\infty} (\sigma_n(t_{n,2}) - \sigma_n(t_{n,1})) < 1$. By Lemmas 2.7 and 2.8, there is an inner function ψ such that φ/ψ is inner, $supp(\psi) = supp(\varphi)$ and $\sum_{n=1}^{\infty} m(\psi^*(I_n)) < 1$. Therefore

$$m\left(\psi^*\left(\bigcup_{n=1}^{\infty} I_n\right)\right) = m\left(\bigcup_{n=1}^{\infty} \psi^*(I_n)\right) \le \sum_{n=1}^{\infty} m(\psi^*(I_n)) < 1.$$

Let $\lambda = \psi(0)$ and $\tau_{\lambda}(z) = (z - \lambda)/(1 - \lambda z)$. Set $\eta(z) = \tau_{\lambda} \circ \psi$. Since τ_{λ} is an automorphism, m(E) = 0 if and only if $m(\tau_{\lambda}^{*}(E)) = 0$ for every measurable subset E of $\partial \mathbb{D}$. Then we have

$$m\left(\eta^*\left(\bigcup_{n=1}^{\infty}I_n\right)\right) = m\left(\tau^*_{\lambda}\left(\psi^*\left(\bigcup_{n=1}^{\infty}I_n\right)\right)\right) < 1.$$

Since η is an inner function and $\eta(0) = 0$, we have

$$m\Big(\bigcup_{n=1}^{\infty}I_n\Big) \le m\Big(\eta^{*(-1)}\Big(\eta^*\Big(\bigcup_{n=1}^{\infty}I_n\Big)\Big)\Big) = m\Big(\eta^*\Big(\bigcup_{n=1}^{\infty}I_n\Big)\Big) < 1.$$

Since $m(supp(\varphi)) = 0$, we have $m(\bigcup_{n=1}^{\infty} I_n) = 1$. Thus we get a contradiction.

The last part of the assertion follows from Lemma 2.2.

3. Other sufficient conditions

For an inner function φ , first we consider the following condition.

(α) There is a sequence of mutually disjoint measurable subsets $\{C_n\}_{n\geq 1}$ of $\partial \mathbb{D}$ and a sequence of positive numbers $\{\delta_n\}_{n\geq 1}$ satisfying $\sum_{n=1}^{\infty} \delta_n < \infty$ such that $m(C_n) > 0$ and $m(C_n \cap \varphi^{*(-1)}(E)) \leq \delta_n m(E)$ for every measurable subset E of $\partial \mathbb{D}$ and for every $n \geq 1$.

We do not know whether condition (α) holds or not for any inner function φ satisfying $m(supp(\varphi)) > 0$. We shall show the following theorem.

Theorem 3.1. Let φ be an inner function satisfying condition (α). Then there is $u \in H^2 \setminus H^\infty$ such that $M_u C_{\varphi} : H^2 \to H^2$ is bounded.

Proof. Since $\{C_n\}_{n\geq 1}$ is a sequence of mutually disjoint measurable subsets of $\partial \mathbb{D}$, we have $\sum_{n=1}^{\infty} \overline{m}(C_n) \leq \overline{m}(\partial \mathbb{D}) = 1$. Then there is a sequence of positive numbers $\{a_n\}_{n\geq 1}$ such that $a_n\geq 1$ for every n,

$$\sum_{n=1}^{\infty} a_n m(C_n) < \infty$$

and $a_n \to \infty$ as $n \to \infty$. Since $\sum_{n=1}^{\infty} \delta_n < \infty$, moreover we may assume that

$$\sum_{n=1}^{\infty} a_n \delta_n < \infty$$

Put $a_0 = 1$ and $C_0 = \partial \mathbb{D} \setminus \bigcup_{n=1}^{\infty} C_n$. Let η be the function on $\partial \mathbb{D}$ defined by $\eta = a_n$ on C_n for every $n \ge 0$. Then $\eta \ge 1$ on $\partial \mathbb{D}$ and

$$\int_{\partial \mathbb{D}} \eta \, dm = \sum_{n=0}^{\infty} a_n m(C_n) < \infty.$$

By [4, p. 53], there exists $u \in H^2$ such that $|u|^2 = \eta$ a.e. on $\partial \mathbb{D}$. Since $a_n \to \infty$ as $n \to \infty$ and $m(C_n) > 0$ for every $n \ge 1$, we have $u \notin H^{\infty}$.

Let \mathcal{L} be the set of measurable simple functions on $\partial \mathbb{D}$. Let $f \in \mathcal{L}$. We may write

$$f = \sum_{i=1}^{\ell} c_i \chi_{\Lambda_i},$$

where $m(\Lambda_i) > 0$ for every *i* and $\Lambda_i \cap \Lambda_j = \emptyset$ for $i \neq j$. We have

$$\begin{split} \|M_{u}C_{\varphi}f\|_{2}^{2} &= \int_{\partial \mathbb{D}} |u|^{2} |f \circ \varphi^{*}|^{2} dm = \sum_{n=0}^{\infty} a_{n} \int_{C_{n}} |f \circ \varphi^{*}|^{2} dm \\ &= \int_{C_{0}} |f \circ \varphi^{*}|^{2} dm + \sum_{n=1}^{\infty} a_{n} \sum_{i=1}^{\ell} |c_{i}|^{2} \int_{C_{n}} \chi_{\Lambda_{i}} \circ \varphi^{*} dm \\ &\leq \int_{\partial \mathbb{D}} |f \circ \varphi^{*}|^{2} dm + \sum_{n=1}^{\infty} a_{n} \sum_{i=1}^{\ell} |c_{i}|^{2} m(C_{n} \cap \varphi^{*(-1)}(\Lambda_{i})) \\ &\leq \|C_{\varphi}\|^{2} \|f\|_{2}^{2} + \sum_{n=1}^{\infty} a_{n} \delta_{n} \sum_{i=1}^{\ell} |c_{i}|^{2} m(\Lambda_{i}) \quad \text{by condition } (\alpha) \\ &= \left(\|C_{\varphi}\|^{2} + \sum_{n=1}^{\infty} a_{n} \delta_{n}\right) \|f\|_{2}^{2}. \end{split}$$

Since $\sum_{n=1}^{\infty} a_n \delta_n < \infty$, $M_u C_{\varphi} : \mathcal{L} \to L^2(\partial \mathbb{D})$ is a bounded linear map. Since \mathcal{L} is dense in $L^2(\partial \mathbb{D})$, $M_u C_{\varphi}$ may be extended boundedly on $L^2(\partial \mathbb{D})$. Thus $M_u C_{\varphi} : H^2 \to H^2$ is bounded.

We shall give a sufficient condition on an inner function φ for which satisfies condition (α). We consider the following condition for φ .

(β) There is a sequence of mutually disjoint measurable subsets $\{E_n\}_{n\geq 1}$ of $\partial \mathbb{D}$ such that $m(E_n \cap \varphi^{*(-1)}(E)) > 0$ for every measurable subset E of $\partial \mathbb{D}$ satisfying m(E) > 0 and for every $n \geq 1$.

We do not know whether condition (β) holds or not for any inner function φ satisfying $m(supp(\varphi)) > 0$.

Theorem 3.2. If an inner function φ satisfies condition (β), then φ satisfies condition (α).

Proof. We divide the proof into two cases.

Case 1. Suppose that $\varphi(0) = 0$. Then it is known that

(3.1)
$$m(\varphi^{*(-1)}(E)) = m(E)$$

for any measurable subset E of $\partial \mathbb{D}$. By condition (β), there is a family of mutually disjoint measurable subsets $\{E_{n,j} : 1 \leq n, 1 \leq j \leq N_n\}$ of $\partial \mathbb{D}$ such that

(3.2)
$$m(E_{n,j} \cap \varphi^{*(-1)}(E)) > 0$$

for every measurable subset E of $\partial \mathbb{D}$ satisfying m(E) > 0 and for every $n \ge 1, 1 \le j \le N_n$. Moreover we may assume that

(3.3)
$$\sum_{n=1}^{\infty} \frac{1}{N_n} < \infty.$$

For each $n \ge 1$, let $W_n = \bigcup_{j=1}^{N_n} E_{n,j}$. Then

(3.4)
$$\{W_n\}_{n\geq 1}$$
 is a sequence of mutually disjoint sets

Put

$$\mu_{n,j}(E) = m(E_{n,j} \cap \varphi^{*(-1)}(E))$$

for every measurable subset E of $\partial \mathbb{D}$. Then $\mu_{n,j}$ is a positive measure on $\partial \mathbb{D}$. By (3.1), we have $\mu_{n,j} \ll m$, so there is a nonnegative integrable function $f_{n,j}$ on $\partial \mathbb{D}$ such that

(3.5)
$$\int_{E} f_{n,j} \, dm = m(E_{n,j} \cap \varphi^{*(-1)}(E)).$$

By (3.1) again, we have

$$\int_{E} \sum_{j=1}^{N_n} f_{n,j} \, dm = m(W_n \cap \varphi^{*(-1)}(E)) \le m(\varphi^{*(-1)}(E)) = m(E)$$

for every measurable subset E of $\partial \mathbb{D}$. Hence

(3.6)
$$0 \le \sum_{j=1}^{N_n} f_{n,j} \le 1 \quad \text{a.e. on } \partial \mathbb{D}.$$

3.7

Let

(3.7)
$$A_{n,j} = \left\{ e^{i\theta} \in \partial \mathbb{D} : f_{n,j}(e^{i\theta}) \le \frac{1}{N_n} \right\}.$$

By (3.6) and (3.7), we have

$$m\left(\partial \mathbb{D} \setminus \bigcup_{j=1}^{N_n} A_{n,j}\right) = 0.$$

Let

(3.8)
$$B_{n,1} = A_{n,1}, \quad B_{n,j} = A_{n,j} \setminus \bigcup_{i=1}^{j-1} A_{n,i} \ (2 \le j \le N_n).$$

Then

(3.9)
$$\{B_{n,j}: 1 \le j \le N_n\}$$
 is a set of mutually disjoint sets
and

(3.10)
$$m\left(\bigcup_{j=1}^{N_n} B_{n,j}\right) = m\left(\bigcup_{j=1}^{N_n} A_{n,j}\right) = 1.$$

We have that

(3.11)
$$m(B_{n,j}) > 0$$
 for some $1 \le j \le N_n$.

For a measurable subset E of $B_{n,j}$, we have

$$m(E_{n,j} \cap \varphi^{*(-1)}(E)) = \int_E f_{n,j} dm \quad \text{by (3.5)}$$

 $\leq \frac{m(E)}{N_n} \quad \text{by (3.7) and (3.8).}$

Hence

(3.12)
$$m(E_{n,j} \cap \varphi^{*(-1)}(E)) \le \frac{m(E)}{N_n} \quad \text{for every } E \subset B_{n,j}.$$

For each $1 \leq j \leq N_n$, let

(3.13)
$$C_{n,j} = E_{n,j} \cap \varphi^{*(-1)}(B_{n,j})$$

and for each $n \ge 1$, set $C_n = \bigcup_{j=1}^{N_n} C_{n,j}$. Then $C_n \subset W_n$ and by (3.4), $\{C_n\}_{n\ge 1}$ is a sequence of mutually disjoint sets. For each $n \ge 1$, we have

$$m(C_n) = \sum_{j=1}^{N_n} m(C_{n,j})$$

= $\sum_{j=1}^{N_n} m(E_{n,j} \cap \varphi^{*(-1)}(B_{n,j}))$ by (3.13)
> 0 by (3.2) and (3.11).

Hence $m(C_n) > 0$ for every $n \ge 1$.

For a measurable subset E of $\partial \mathbb{D}$ and $n \geq 1$, we have

$$m(C_n \cap \varphi^{*(-1)}(E)) = \sum_{j=1}^{N_n} m(C_{n,j} \cap \varphi^{*(-1)}(E))$$
$$= \sum_{j=1}^{N_n} \sum_{k=1}^{N_n} m(C_{n,j} \cap \varphi^{*(-1)}(B_{n,k} \cap E))$$
by (3.9) and (3.10)

$$= \sum_{j=1}^{N_n} \sum_{k=1}^{N_n} m (E_{n,j} \cap \varphi^{*(-1)}(B_{n,j}) \\ \cap \varphi^{*(-1)}(B_{n,k} \cap E)) \quad \text{by (3.13)}$$
$$= \sum_{j=1}^{N_n} m (E_{n,j} \cap \varphi^{*(-1)}(B_{n,j} \cap E)) \quad \text{by (3.9)}$$
$$\leq \sum_{j=1}^{N_n} \frac{m(B_{n,j} \cap E)}{N_n} \quad \text{by (3.12)}$$
$$= \frac{m(E)}{N_n} \quad \text{by (3.9) and (3.10).}$$

Putting $\delta_n = 1/N_n > 0$, we have $m(C_n \cap \varphi^{*(-1)}(E)) \leq \delta_n m(E)$. By (3.3), $\sum_{n=1}^{\infty} \delta_n < \infty$. Thus φ satisfies condition (α).

Case 2. Suppose that $\lambda := \varphi(0) \neq 0$. Let $\tau_{\lambda}(z) = (z - \lambda)/(1 - \overline{\lambda}z)$ and $\psi = \tau_{\lambda} \circ \varphi$. We have $\psi^* = \tau_{\lambda}^* \circ \varphi^*$. For a measurable subset E of $\partial \mathbb{D}$ with $m(E) > 0, \psi^{*(-1)}(E) = \varphi^{*(-1)}(\tau_{\lambda}^{*(-1)}(E))$. Since $m(\tau_{\lambda}^{*(-1)}(E)) > 0$ and φ satisfies condition (β) , we have

$$m(E_n \cap \psi^{*(-1)}(E)) = m(E_n \cap \varphi^{*(-1)}(\tau_{\lambda}^{*(-1)}(E))) > 0$$

for every $n \ge 1$. Hence ψ satisfies condition (β). By Case 1, ψ satisfies condition (α). Then there is a sequence of mutually disjoint measurable subsets $\{D_n\}_{n\ge 1}$ of $\partial \mathbb{D}$ and a sequence of positive numbers $\{\sigma_n\}_{n\ge 1}$ satisfying $\sum_{n=1}^{\infty} \sigma_n < \infty$ such that $m(D_n) > 0$ and

$$m(D_n \cap \psi^{*(-1)}(A)) \le \sigma_n m(A)$$

for every measurable subset A of $\partial \mathbb{D}$ and for every $n \geq 1$. Since τ_{λ} is an automorphism, there is K > 0 such that $m(\tau_{\lambda}^*(A)) \leq Km(A)$ for every A. We have $\psi^{*(-1)}(\tau_{\lambda}^*(A)) = \varphi^{*(-1)}(A)$ and

$$m(D_n \cap \varphi^{*(-1)}(A)) = m(D_n \cap \psi^{*(-1)}(\tau_{\lambda}^*(A)))$$

$$\leq \sigma_n m(\tau_{\lambda}^*(A)) \leq \sigma_n K m(A).$$

Hence φ satisfies condition (α).

By Theorems 3.1 and 3.2, we have the following.

Corollary 3.3. Let φ be an inner function satisfying condition (β). Then there is $u \in H^2 \setminus H^\infty$ such that $M_u C_{\varphi} : H^2 \to H^2$ is bounded.

Acknowledgement. The first author is partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science (No.24540164).

References

- C.C. Cowen and B.D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.
- 2. P. Duren, Theory of H^p Spaces, Academic Press, New York, 1970.

- 3. J.B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N.J., 1962.
- 5. K.J. Izuchi, Q.D. Nguyen and S. Ohno, Composition operators induced by analytic maps to the polydisk, Canadian J. Math. **64** (2012), 1329–1340.
- J. Littlewood, On inequalities in the theory of function, Proc. London Math. Soc. (2) 23 (1925), 481–519.
- A. Richards Jr, Isometries and composition-operators on Hardy spaces in connection with the measure-theoretic properties of inner-functions, Thesis, University of Wisconsin– Madison, 1974.
- 8. W. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill, New York, 1987.
- J.H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.

¹ DEPARTMENT OF MATHEMATICS, NIIGATA UNIVERSITY, NIIGATA 950-2181, JAPAN. *E-mail address*: izuchi@m.sc.niigata-u.ac.jp

² Department of Mathematics, Faculty of Education, Yamaguchi University, Yamaguchi 753-8511, Japan.

E-mail address: izuchi@yamaguchi-u.ac.jp

³ AOYAMA-SHINMACHI 18-6-301, NIIGATA 950-2006, JAPAN. *E-mail address:* yfd10198@nifty.com