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A QUALITATIVE DESCRIPTION OF GRAPHS OF
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Abstract. We prove that, if f : Rn → R satisfies Fréchet’s functional equa-
tion

∆m+1
h f(x) = 0 for all x = (x1, · · · , xn), h = (h1, · · · , hn) ∈ Rn,

and f(x1, · · · , xn) is not an ordinary algebraic polynomial in the variables
x1, · · · , xn, then f is unbounded on all non-empty open set U ⊆ Rn. Further-

more, the set G(f)
Rn+1

contains an unbounded open set.

1. Motivation

One of the best known functional equations that exists in the literature is
Fréchet’s functional equation, which is given by

∆m+1
h f(x) = 0 (x, h ∈ X), (1.1)

where f : X → Y denotes a function, X, Y are two Q-vector spaces, and ∆k
hf(x) is

defined inductively by ∆1
hf(x) = f(x + h)− f(x) and ∆k+1

h f(x) = ∆1
h

(
∆k

hf
)
(x),

k = 1, 2, · · · . A simple induction argument shows that (1.1) can be explicitly
written as

∆m+1
h f(x) :=

m+1∑
k=0

(
m + 1

k

)
(−1)m+1−kf(x + kh) = 0 (x, h ∈ X).
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This equation was introduced in the literature by M. Fréchet in 1909, for X =
Y = R, as a particular case of the functional equation

∆h1h2···hm+1f(x) = 0 (x, h1, h2, . . . , hm+1 ∈ R),

where f : R → R and ∆h1h2···hsf(x) = ∆h1 (∆h2···hsf) (x), s = 2, 3, · · · . Indeed,
thanks to a classical result by Djoković [6], the equation with variable steps
∆h1h2···hm+1f(x) = 0 is equivalent to the equation with fixed step ∆m+1

h f(x) =
0 (see also [16] for a different proof of this fact, based on spectral synthesis).
After Fréchet’s seminal paper [7], the solutions of (1.1) are named “polynomial
functions” by the Functional Equations community, since it is known that, under
very mild regularity conditions on f , if f : R → R satisfies (1.1), then f(x) =
a0+a1x+· · · amxm for all x ∈ R and certain constants ai ∈ R. Indeed, it is known
that if f is a solution of (1.1) with X = Y = R, then f is an ordinary polynomial
of degree ≤ m, f(x) = a0 +a1x+ · · ·+amxm, if and only if f is bounded on some
set A ⊂ R with positive Lebesgue measure |A| > 0. In particular, all measurable
polynomial functions f : R → R are ordinary polynomials. This result was firstly
proved for the Cauchy functional equation by Kormes in 1926 [8]. Later on, in
1959, the result was proved for polynomials by Ciesielski [4] (see also [10], [11],
[12], [15]). A weaker result is the so called Darboux type theorem, which claims
that the polynomial function f : R → R is an ordinary polynomial if and only
if f|(a,b) is bounded for some nonempty open interval (a, b) (see [5], [14] for the
original result, which was stated for solutions of the Cauchy functional equation
and [1], [2], [15] for a direct proof of this result with polynomial functions).

In [1], [2] Fréchet’s equation was studied from a new fresh perspective. The
main idea was to use the basic properties of Lagrange interpolation polynomials in
one real variable. This allowed the authors to give a description of the closure of
the graph G(f) = {(x, f(x)) : x ∈ R} of any discontinuous polynomial functionf :
R → R. Concretely, they proved that

G(f)
R2

= C(l, u) = {(x, y) ∈ R2 : l(x) ≤ y ≤ u(x)}
for a certain pair of functions l, u : R → R ∪ {+∞,−∞} such that

(i) u is lower semicontinuous and l is upper semicontinuous.
(ii) For all x ∈ R we have that u(x)− l(x) = +∞.
(iii) There exist two non-zero ordinary polynomials p, q such that p 6= q and

for all x ∈ R, we have that {x} × [p(x), q(x)] ⊆ C(l, u).

Clearly, this result implies the Darboux type theorem for the Fréchet func-
tional equation. Furthermore, it states that, for every discontinuous polynomial

functionf : R → R, the set G(f)
R2

contains an unbounded open set. This is
a nice property which stands up, in a very visual form, the fact that discon-
tinuous polynomial function functions have wild oscillations. In this paper we
present a new proof of this result, based on the standard tensor product tech-
nique for the Lagrange interpolation problem in several variables, and we use
the new focus to prove that, for every n > 1, if f : Rn → R is a discontinuous
polynomial function, then f is locally unbounded and the closure of its its graph,

G(f)
Rn+1

= {(x, f(x) : x ∈ Rn}
Rn+1

, contains an unbounded open set.
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Along this paper, Πn
m,max denotes the set of algebraic polynomials in the n

variables x1, x2, · · · , xn with degree ≤ m in each one of these variables,

Πn
m,max = {

∑
0≤i1,i2,··· ,in≤m

ai1,i2,··· ,inxi1
1 xi2

2 · · ·xin
n : ai1,i2,··· ,in ∈ R for all (i1, · · · , in)}.

When n = 1 we simply write Πm.

2. Main results

Let f : Rn → R be an arbitrary function. Take a = (a1, · · · , an) ∈ Rn,
h1, · · · , hn+1 ∈ R \ {0}, and γ = {vk}n+1

k=1 ⊂ Rn \ {(0, 0, · · · , 0)}. Then, by tensor
product interpolation, it is known that there exists a unique algebraic polynomial
P (t1, · · · , tn+1) ∈ Πn+1

m,max such that

P (i1h1, i2h2, · · · , in+1hn+1) = fi1,··· ,in+1 := f(a +
n+1∑
k=1

ikhkvk),

for all 0 ≤ ik ≤ m, 1 ≤ k ≤ n + 1. In all what follows, we denote this polynomial
by Pa,h,γ, where h := (h1, · · · , hn+1).

Lemma 2.1. If f : Rn → R satisfies Fréchet’s functional equation of order m+1,
∆m+1

h f(x) = 0 for all x, h ∈ Rn, then

Pa,h,γ(i1h1, i2h2, · · · , in+1hn+1) = f(a +
n+1∑
k=1

ikhkvk), for all (i1, · · · , in+1) ∈ Zn+1.

Proof. Let us fix the values of k ∈ {1, · · · , n+1} and i1, · · · , ik−1, ik+1, · · · , in+1 ∈
{0, 1, · · · , m}, and let us consider the polynomial of one variable

qk(x) = Pa,h,γ(i1h1, · · · , ik−1hk−1, x, ik+1hk+1, · · · , in+1hn+1).

Obviously qk ∈ Π1
m, so that

0 = ∆m+1
hk

qk(0) =
m+1∑
r=0

(
m + 1

r

)
(−1)m+1−rqk(rhk)

=
m∑

r=0

(
m + 1

r

)
(−1)m+1−rPa,h,γ(i1h1, · · · , ik−1hk−1, rhk, ik+1hk+1, · · · , in+1hn+1)

+ qk((m + 1)hk)

=
m∑

r=0

(
m + 1

r

)
(−1)m+1−rf(a +

∑
(0≤j≤n+1; j 6=k)

ijhjvj + rhkvk) + qk((m + 1)hk)

= ∆m+1
hkvk

f(a +
∑

(0≤j≤n+1; j 6=k)

ijhjvj)− f(a +
∑

(0≤j≤n+1; j 6=k)

ijhjvj + (m + 1)hkvk)

+ qk((m + 1)hk)

= qk((m + 1)hk)− f(a +
∑

(0≤j≤n+1; j 6=k)

ijhjvj + (m + 1)hkvk).
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It follows that

qk((m + 1)hk) = Pa,h,γ(i1h1, · · · , ik−1hk−1, (m + 1)hk, ik+1hk+1, · · · , in+1hn+1)

= f(a +
∑

(0≤j≤n+1; j 6=k)

ijhjvj + (m + 1)hkvk). (2.1)

Let us now consider the unique polynomial P ∈ Πn+1
m,max which satisfies the La-

grange interpolation conditions

P (i1h1, i2h2, · · · , in+1hn+1) = f(a +
n+1∑
k=1

ikhkvk)

for all 0 ≤ ij ≤ m, 1 ≤ j ≤ n + 1, j 6= k, and all 1 ≤ ik ≤ m + 1. We have
already demonstrated, with formula (2.1), that this polynomial coincides with
Pa,h,γ. Furthermore, the very same arguments used to prove (2.1), applied to the
polynomial P = Pa,h,γ, lead us to the conclusion that

Pa,h,γ(i1h1, · · · , ik−1hk−1, (m + 2)hk, ik+1hk+1, · · · , in+1hn+1)

= f(a +
∑

(0≤j≤n+1; j 6=k)

ijhjvj + (m + 2)hkvk)

In an analogous way, clearing this time the first term of the sum, and taking as
starting point the equality

∆m+1
hkvk

f(a +
∑

(0≤j≤n+1; j 6=k)

ijhjvj − hkvk) = 0,

we conclude that

Pa,h,γ(i1h1, · · · , ik−1hk−1,−hk, ik+1hk+1, · · · , in+1hn+1)

= f(a +
∑

(0≤j≤n+1; j 6=k)

ijhjvj − hkvk).

Repeating these arguments forward and backward infinitely many times, and for
each k ∈ {1, · · · , n + 1}, we get

Pa,h,γ(i1h1, i2h2, · · · , in+1hn+1)

= f(a +
n+1∑
k=1

ikhkvk), for all (i1, · · · , in+1) ∈ Zn+1,

which is what we wanted to prove. �

Lemma 2.2. If f : Rn → R satisfies Fréchet’s functional equation of order m+1,
then

Pa,h,γ(r1h1, r2h2, · · · , rn+1hn+1) = f(a+
n+1∑
k=1

rkhkvk), for all (r1, · · · , rn+1) ∈ Qn+1.

Consequently, G(f)
Rn+1

contains the set ϕγ(Rn+1), where

ϕγ(t1, · · · , tn+1) = (a +
n+1∑
k=1

tkvk, Pa,h,γ(t1, · · · , tn+1)).
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Proof. It is enough to take into account that, if p1, p2, · · · , pn+1 ∈ Z \ {0},
and we use Lemma 2.1 with the polynomial P ∗(t1, · · · , tn+1) which satisfies the
interpolation conditions

P ∗(i1h
∗
1, i2h

∗
2, · · · , in+1h

∗
n+1) = f(a+

n+1∑
k=1

ikh
∗
kvk), for all 0 ≤ ik ≤ m, 1 ≤ k ≤ n+1,

where h∗
i = hi/pi, i = 1, · · · , n + 1, then

P ∗(i1h1, i2h2, · · · , in+1hn+1) = P ∗(p1i1h
∗
1, p2i2h

∗
2, · · · , pn+1in+1h

∗
n+1)

= f(a +
n+1∑
k=1

pkikh
∗
kvk)

= f(a +
n+1∑
k=1

ikhkvk)

= Pa,h,γ(i1h1, i2h2, · · · , in+1hn+1),

for all 0 ≤ ik ≤ m and 1 ≤ k ≤ n + 1. Thus, P ∗ = Pa,h,γ, which implies the first
claim in the lemma, since p1, p2, · · · , pn+1 ∈ Z \ {0} were arbitrary. Second claim
is a direct consequence of the density of Q in the real line R. �

Lemma 2.3. Every polynomial P (x, y) ∈ Π2
m,max can be decomposed as

P (x, y) =
2m∑
i=0

Ai(x + y)xi,

where Ai(t) ∈ Πm is a polynomial in one variable of degree ≤ m, for all i =
0, 1, · · · , 2m.

Proof. Let us consider the change of variables ϕ(x, y) = (x, x+y). If we denote
f1 = x, f2 = x+y, then y = f2−f1 and, consequently, a simple computation shows
that every polynomial P (x, y) =

∑m
i=0

∑m
j=0 ai,jx

iyj ∈ Π2
m can be decomposed as

follows:

P (x, y) =
m∑

i=0

m∑
j=0

ai,jx
iyj =

m∑
i=0

m∑
j=0

ai,jf
i
1(f2 − f1)

j

=
m∑

i=0

m∑
j=0

ai,jf
i
1(

j∑
s=0

(
j

s

)
(−1)j−sf s

2f j−s
1 )

=
m∑

i=0

m∑
j=0

(

j∑
s=0

ai,j

(
j

s

)
(−1)j−sf s

2f i+j−s
1 )

=
2m∑
i=0

Ai(f2)f
i
1

=
2m∑
i=0

Ai(x + y)xi,
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where Ai(t) is a polynomial in one variable of degree ≤ m, for all i = 0, 1, · · · , 2m.
�

Theorem 2.4 (Description of G(f) for the univariate setting). If f : R → R
satisties Fréchet’s functional equation

∆m+1
h f(x) = 0 for all (x, h) ∈ R2,

and f(x) is not an ordinary algebraic polynomial, then f is locally unbounded.
Indeed, for each x ∈ R there exists an unbounded interval Ix ⊆ R such that

{x} × Ix ⊆ G(f)
R2

. Furthermore, G(f)
R2

contains an unbounded open set.

Proof. Let f : R → R be a solution of Fréchet’s equation ∆m+1
h f = 0. Then

Lemma 2.2 guarantees that there exists a unique polynomial px0,h1,h2(x, y) ∈
Π2

m,max satisfying

f(x0 + ih1 + jh2) = p(ih1, jh2) for all (i, j) ∈ Q2.

and

Γx0,h1,h2 := {(x0 + u + v, px0,h1,h2(u, v)) : u, v ∈ R} ⊆ G(f)
R2

, (2.2)

Thus, we are now interested on studying the sets Γx0,h1,h2 . If px0,h1,h2(x, y) =
A(x + y) for a certain univariate polynomial A, then Γx0,h1,h2 has empty interior
and, in fact, it coincides with the graph of an ordinary algebraic polynomial.
Hence, in this case the property (2.2) does not add any extra interesting infor-
mation.

We claim that, if f is not an ordinary algebraic polynomial, there exist real
numbers x0, h1, h2 ∈ R such that px0,h1,h2(x, y) is not a polynomial in the variable
x + y. Concretely, we will prove that, for adequate values x0, h1 and h2, this
polynomial admits a decomposition of the form

px0,h1,h2(x, y) =
N∑

i=0

Ai(x + y)xi, with AN(t) 6= 0 and N ≥ 1, (2.3)

where Ai(t) is an univariate polynomial of degree ≤ m, for i = 0, 1, · · · , N .
Obviously, if (2.3) holds true, then for every α ∈ R \ Z(AN) (where Z(AN) =

{s ∈ R : AN(s) = 0} is a finite set with at most m points), we have that

mα(x) = px0,h1,h2(x, α− x) =
∑N

i=0 Ai(α)xi is a non-constant polynomial, so that
mα(R) is an unbounded interval. Furthermore,

{x0 + α} ×mα(R) ⊆ Γx0,h1,h2 ⊆ G(f)
R2

.

Thus, if (2.3) is satisfied, then f is locally unbounded and, for each x ∈ R there

exists an unbounded interval Ix ⊆ R such that {x} × Ix ⊆ G(f)
R2

.
Let us demonstrate that, if P = px0,h1,h2 satisfies (2.3), then Γx0,h1,h2 contains

an unbounded open set. To prove this, we consider the function ϕ : R2 → R2,

ϕ(x, y) = (x + y + x0, P (x, y)).
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A simple computation reveals that

det ϕ′(x, y) = Py − Px = −
N∑

k=1

kAk(x + y)xk−1

is a nonzero polynomial, so that Ω = R2\{(x, y) : det ϕ′(x, y) = 0} is a non-empty
open subset of the plane. Indeed, Ω is a dense open subset of R2. Thus, we can
apply the Open Mapping Theorem for differentiable functions defined over finite
dimensional Euclidean spaces, to the function ϕ, concluding that W = ϕ(Ω) is an
open subset of R2 which is contained into Γx0,h1,h2 . Furthermore, the inclusions
{x0 + α} ×mα(R) ⊆ Γx0,h1,h2 prove that W is unbounded.

Let us now show that, in fact, the relation (2.3) holds true for certain values
x0, h1, h2. It follows from Lemma 2.3 that px0,h1,h2(x, y) admits a decomposition
of the form

px0,h1,h2(x, y) =
N∑

i=0

Ai(x + y)xi, with AN(t) 6= 0 and N ≥ 0. (2.4)

Thus, our claim is that, for certain choice of x0, h1, h2, the decomposition (2.4)
satisfies N ≥ 1. Assume, on the contrary, that N = 0 for all x0, h1, h2. Then, for
any fixed pair of values h1, h2, every polynomial px0,h1,h2(x, y) satisfies a relation
of the form px0,h1,h2(x, y) = Ax0(x + y) for certain polynomial Ax0 ∈ Πm. Hence,
the assumption that f is not an ordinary algebraic polynomial, implies that there
exist two distinct points x0, x1 ∈ R such that Ax1(0) 6= Ax0(x1 − x0), since
otherwise, if we fix the value x0 and take x ∈ R arbitrary, we would have that

f(x) = px,h1,h2(0) = Ax(0) = Ax0(x− x0),

and f would be an ordinary polynomial.
Let us now consider the polynomial px0,x1−x0,h2(x, y). By hypothesis, this poly-

nomial satisfies the identity px0,x1−x0,h2(x, y) = A(x + y) for certain A ∈ Πm.
Now, a simple computation shows that

A(x1 − x0) = px0,x1−x0,h2(x1 − x0, 0) = f(x0 + (x1 − x0)) = f(x1) = Ax1(0).

On the other hand, for each j ∈ Z, we have that

A(jh2) = px0,x1−x0,h2(0, jh2) = f(x0 + jh2) = Ax0(jh2),

so that A and Ax0 coincide in infinitely many points. Thus they are the same
polynomial, and Ax1(0) = Ax0(x1−x0), which contradicts the assumption that f
is not a polynomial. �

Now we state and prove the main result of this paper:

Theorem 2.5 (Description of G(f) for the multivariate setting). If f : Rn → R
satisfies Fréchet’s functional equation

∆m+1
h f(x) = 0 for all x, h ∈ Rn,

and f(x1, · · · , xn) is not an ordinary algebraic polynomial, then f is locally un-

bounded. Furthermore, G(f)
Rn+1

contains an unbounded open set.
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Previous to give the formal proof of Theorem 2.5, some remarks are neces-
sary. Thus, just to start, we observe that if f(x1, · · · , xn) is not an ordinary
algebraic polynomial, then there exist some values (which we fix from now on)
s ∈ {1, · · · , n} and (a1, a2, · · · , as−1, as+1, · · · , an) ∈ Rn−1 such that

g(x) = f(a1, a2, · · · , as−1, x, as+1, · · · , an)

is not an ordinary algebraic polynomial. This result has been proved in several
ways and can be found, for example, in [3], [9], and [13]. Furthermore, if we take
into account the proof of Theorem 2.4, we know that, if we denote by px0,α,β(x, y)
the unique element of Π2

m,max such that

px0,α,β(iα, jβ) = g(x0 + iα + jβ), for all i, j = 0, 1, · · · , m,

then there exist as, hs, hn+1 ∈ R, 1 ≤ N ≤ 2m, and polynomials Ak ∈ Πm,
k = 0, 1, · · · , N such that

pas,hs,hn+1(x, y) =
N∑

k=0

Ak(x + y)xk, and AN 6= 0.

We also fix, from now on, the values as, hs and ,hn+1. Furthermore, we also fix
the values h1, · · · , hs−1, hs+1, · · · , hn with the only imposition that they are all
real numbers different from zero.

Lemma 2.6. Let us use, with the values a = (a1, · · · , an), h = (h1, · · · , hn+1) and
γ = {vk}n+1

k=1 ⊂ Rn, the notation of Lemmas 2.1 and 2.2. If we impose that vk = ek

for k = 1, 2, · · · , n and vn+1 = es, where ei = (0, 0, · · · , 1(i-th position), 0, · · · , 0) ∈
Rn, i = 1, · · · , n, then

ϕγ(t1, · · · , tn+1) = (a + (t1, · · · , ts−1, ts + tn+1, ts+1, · · · , tn), Pa,h,γ(t1, · · · , tn+1)),

and

Pa,h,γ(0, · · · , 0, ts, 0, · · · , 0, tn+1) = pas,hs,hn+1(ts, tn+1) =
N∑

k=0

Ak(ts + tn+1)t
k
s .

Proof. It is trivial. The result follows just by imposing the substitutions
vk = ek for k = 1, 2, · · · , n and vn+1 = es and using the definition of pas,hs,hn+1 as
an interpolation polynomial. �
Proof of Theorem 2.5 The first equality from Lemma 2.6 implies that

ϕ′
γ =



1 0 0 · · · 0 · · · 0 0
0 1 0 · · · 0 · · · 0 0
...

...
...

. . .
... · · · ...

...
0 0 0 · · · 1 · · · 0 1
...

...
...

. . .
... · · · ...

...
0 0 0 · · · 0 · · · 1 0

∂Pa,h,γ

∂t1

∂Pa,h,γ

∂t2

∂Pa,h,γ

∂t3
· · · ∂Pa,h,γ

∂ts
· · · ∂Pa,h,γ

∂tn

∂Pa,h,γ

∂tn+1


,
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so that, developing the determinant det ϕ′
γ by its last file, and using the notation

P = Pa,h,γ, we get

ξ(t1, · · · , tn+1) := det ϕ′
γ(t1, · · · , tn+1)

= (−1)n+1+s ∂P

∂ts
(t1, · · · , tn+1) · (−1)n−s +

∂P

∂tn+1

(t1, · · · , tn+1)

= (
∂P

∂tn+1

− ∂P

∂ts
)(t1, · · · , tn+1).

Evaluating the polynomial ξ in (0, 0, · · · , 0, ts, 0, · · · , tn+1) and using the second
equality from Lemma 2.6, we get

det ϕ′
γ(0, 0, · · · , 0, ts, 0, · · · , tn+1) = −

N∑
k=1

kAk(ts + tn+1)t
k−1
s 6= 0.

Hence det ϕ′
γ(t1, t2, · · · , tn+1) is a nonzero algebraic polynomial in the variables

t1, · · · , tn+1. Thus, the associated algebraic variety

Z(det ϕ′
γ) = {(α1, · · · , αn+1) ∈ Rn+1 : det ϕ′

γ(α1, · · · , αn+1) = 0}

is a proper closed subset of Rn+1 with empty interior. Thus, Ω = Rn+1\Z(det ϕ′
γ)

is an unbounded open set and the Open Mapping Theorem for differentiable
functions defined on Euclidean vector spaces implies that ϕγ(Ω) is an open subset

of Rn+1 which is contained into G(f)
Rn+1

, which is what we were looking for. The
part of the theorem which claims that ϕγ(Ω) is locally unbounded follows directly
from the second equality from Lemma 2.6. �
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