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Abstract

We consider an extant infinitary variant of Lawvere’s finitary definition of extensivity of a
category V. In the presence of cartesian closedness and finite limits in V, we give two char-
acterisations of the condition in terms of a biequivalence between the bicategory of matrices
over V and the bicategory of spans over discrete objects in V. Using the condition, we prove
that V-Cat and the category Catd(V) of internal categories in V with a discrete object of
objects are equivalent. Our leading example has V = Cat, making V-Cat the category of all
small 2-categories and Catd(V) the category of small double categories with discrete category
of objects. We further show that if V is extensive, then so are V-Cat and Cat(V), allowing
the process to iterate.
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1 Introduction

A standard definition of category [13, Section I.8] asks for a set of objects ob(C) together with, for
each A and B in ob(C), a set C(A,B), together with data and axioms for composition and identities.
Another standard definition of category [13, Section I.2] asks for a set of objects ob(C), together
with a set ar(C) of arrows, and functions dom, cod: ar(C) −→ ob(C), together with composition and
identity data and axioms. The two definitions are equivalent: given an instance of the former, one
may put ar(C) =

∐
A,B∈ob(C) C(A,B) to obtain an instance of the latter, and conversely, given an

instance of the latter, one may put C(A,B) = { f ∈ ar(C) | dom(f) = A and cod(f) = B } to obtain
an instance of the former, these constructions being mutually inverse up to isomorphism. The first
definition extends to that of enriched category [10] while the second extends to that of internal
category [9, Section B.2.3]. The relationship between these two generalisations of the notion of
category is the topic of this paper.

Our leading example of the relationship is that between 2-categories and double categories: a
2-category is a Cat-enriched category, while a double category is a category in Cat. There is
a natural adjunction between the categories 2-Cat = Cat-Cat of 2-categories and DblCat =
Cat(Cat) of double categories. The left adjoint 2-Cat −→ DblCat maps a 2-category to the
corresponding double category whose vertical morphisms are all identities, i.e., whose category of
objects is discrete: our convention is that a double category is a category in Cat whose category
of objects consists of objects and vertical morphisms and whose category of arrows consists of
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horizontal morphisms and 2-cells. This functor is fully faithful, allowing us to identify 2-categories
with “vertically discrete” double categories. The right adjoint DblCat −→ 2-Cat forgets the
vertical structure of a double category.

We extend this comparison between enrichment and internalisation from Cat to an arbitrary
base category V subject to axiomatically defined conditions. Specifically, we will require V to be
cartesian closed and have finite limits, together with small coproducts satisfying a stengthening
from a finitary condition to an infinitary condition of Lawvere’s [11, 12] notion of extensivity as
developed by Carboni et al. [6]. This infinitary version of extensivity has been studied by Borceux
and Janelidze [4], and by Centazzo and Vitale [7], probably also by others, and is an instance of
the notion of van Kampen colimit [8].

Cartesianness of V allows one to define the category V-Cat. Finite limits in V allow one to define
the category Cat(V). Adding closedness and an extensivity condition allows one to construct a
functor Int : V-Cat −→ Cat(V) with a right adjoint En, and to prove that, if one restricts the
image of Int to the category Catd(V) of categories in V with a “discrete” object of objects, i.e.,
with object of objects given by a copower of the terminal object, then Int generates an equivalence
of categories between V-Cat and Catd(V).

Informally, the idea is that a V-category C has a set of objects ob(C), which one sends to the
ob(C)-copower of the terminal object of V, and one sums the homs of C to give the object of arrows
of Int(C). One requires small coproducts in order to make the sum, and one requires an infinitary
extensivity condition in order to define composition in Int(C) and to prove the equivalence. Two
aspects of this require care.

First, the definition of composition in Int(C) involves a non-trivial coherence condition, and
proving its associativity requires a calculation. Although associativity can be proved directly,
it may be seen as a consequence of a characterisation of infinitary extensivity as the condition
that a natural oplax functor, denoted by Int, from the bicategory V-Mat of matrices over V
to the bicategory Spand(V) of spans in V over discrete objects, is a biequivalence of bicategories.
Infinitary extensivitiy may also be characterised by the assertion that a natural lax functor En from
Spand(V) to V-Mat is a biequivalence of bicategories. One does not need these characterisations in
order to establish the equivalence between V-Cat and Catd(V), but they provide a natural setting
for it.

Second, in general, Int : V-Cat −→ Cat(V) is not fully faithful. This failure occurs even in the
case where V = Set × Set. To see this, observe that a (Set × Set)-category consists of a pair of
categories C and C′ such that ob(C) = ob(C′), and a (Set × Set)-functor from (C, C′) to (D,D′)
is a pair of functors F : C −→ D and F ′ : C′ −→ D′ whose behaviour agrees on objects. On the
other hand, a category in Set×Set is an arbitrary pair of categories, and an internal functor is an
arbitrary pair of functors. Hence the functor Int, which in this case is the obvious inclusion, is not
full. The functor Int also need not be faithful: putting V = 1, V-Cat is equivalent to Set, whereas
Cat(V) is equivalent to 1. So, in general, the replacement of Cat(V) by Catd(V) is not trivial.

The paper is organised as follows. In Section 2, we follow Borceux and Janelidze [4] and Centazzo
and Vitale [7] in extending Carboni et al.’s development [6] of Lawvere’s notion of extensivity from
a finitary condition to an infinitary condition, and in extending generic results about it. We also
prove that, if V is extensive, so are V-Cat and Cat(V). In Section 3, we introduce V-matrices and
spans in V and use them to characterise infinitary extensivity in the presence of cartesian closed
structure and finite limits. In Section 4, we state and prove our main results relating enriched
categories with internal categories.
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2 Extensivity

Let V be a category, I a set, and (Xi)i∈I an I-indexed family of objects of V. If V admits all
I-indexed coproducts, there is a functor∏

i∈I(V/Xi) V/(
∐
i∈I Xi)

∐
(1)

mapping a family (fi : Ai −→ Xi)i∈I to
∐
i∈I fi :

∐
i∈I Ai −→

∐
i∈I Xi.

We follow Borceux and Janelidze [4, Chap 2, 6.3] and Centazzo and Vitale [7, 4.1] in making
the following definition.

Definition 2.1. A category V is extensive if V admits all small coproducts and, for each small
family (Xi)i∈I of objects of V, the functor

∐
in (1) is an equivalence of categories.

This definition of extensivity is a strengthening of that of [6], which may be obtained by replacing
“small” by “finite”. The generic results of [6] extend routinely. Consider the functor

∐
in (1),

initially assuming only that V has all I-indexed coproducts.

Proposition 2.2. If V has all I-indexed coproducts, the functor
∐

in (1) admits a right adjoint if
and only if for every i ∈ I, the category V has all pullbacks along the i-th coprojection σi : Xi −→∐
i∈I Xi.

The right adjoint of
∐

, if it exists, has i-th component σ∗i : V/(
∐
i∈I Xi) −→ V/Xi mapping

f : A −→
∐
i∈I Xi to σ∗i f : σ∗iA −→ Xi defined by the pullback

σ∗iA A

Xi

∐
i∈I Xi

fσ∗i f

σi

in V. Thus, in the presence of such pullbacks, we have the adjunction∏
i∈I(V/Xi) V/(

∐
i∈I Xi)

∐
〈σ∗i 〉i∈I

a .

Proposition 2.3. If V has all I-indexed coproducts, the functor
∐

in (1) is an equivalence of
categories if and only if V has all pullbacks along the coprojections σi and, given a morphism
f : A −→

∐
i∈I Xi and commutative squares

Ai A

Xi

∐
i∈I Xi

τi

ffi

σi

(2)

for all i ∈ I, each square (2) is a pullback exactly when the morphisms τi : Ai −→ A define a
coproduct in V.
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Proof. By Proposition 2.2,
∐

has a right adjoint if and only if V has pullbacks along each σi. The
final clause of the proposition asserts that the adjunction is an equivalence if and only if its unit
and counit are isomorphisms. q.e.d.

Corollary 2.4 ([7, Section 4.2 Exercise 1],Cf. [6, Proposition 2.2]). A category V with small
coproducts is extensive if and only if it has all pullbacks along coprojections associated with small
coproducts, and for every small family (Xi)i∈I of objects, a morphism f : A −→

∐
i∈I Xi and

commutative squares (2), each square (2) is a pullback exactly when the morphisms τi : Ai −→ A
define a coproduct in V.

For a set I and an object X of V, we denote the I-fold copower of X by I • X. If V has a
terminal object 1, then as a special case of (1) where Xi = 1 for all i ∈ I, we obtain the functor

VI V/(I • 1)

∐
, (3)

using the isomorphism V/1 ∼= V.
By Proposition 2.2, if V admits all pullbacks along the coprojections die : 1 −→ I • 1 for all

i ∈ I, there is an adjunction

VI V/(I • 1)

∐
〈die∗〉i∈I

a . (4)

Proposition 2.5 (Cf. [6, Proposition 4.1]). Let V be a category with small coproducts and a
terminal object. If for every small set I, the functor

∐
in (3) is an equivalence, then V is extensive.

Proof. The proof follows that of [6, Proposition 4.1]. We shall use Corollary 2.4; given a small
family (Xi)i∈I of objects, a morphism f : A −→

∐
i∈I Xi and commutative squares (2), consider

the following commutative diagrams for all i ∈ I.

Ai A

Xi

∐
i∈I Xi

1 I • 1

τi

ffi

σi

∐
i∈I !!

die

As (3) is an equivalence, by Proposition 2.3 the lower squares are pullbacks. Thus, the upper
squares are pullbacks if and only if the whole rectangles are pullbacks, which in turn is true if and
only if the τi’s define a coproduct. q.e.d.

Example 2.1. Set is extensive. So, for any small category C, the presheaf category [C,Set] is also
extensive by Corollary 2.4, as pullbacks and small coproducts are given pointwise. More generally,
if V is extensive, then so is the functor category [C,V].
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Example 2.2 ([4, Chap 2, Section 6.3.2], Cf. [6, Proposition 2.4]). For any locally small category
V, the free small coproduct completion Fam(V) is extensive. To see this, let ((Xi,j)j∈Ji)i∈I be an
I-indexed family of objects in Fam(V). An object of the category Fam(V)/(

∐
i∈I(Xi,j)j∈Ji),

(Ak)k∈K −→
∐
i∈I

(Xi,j)j∈Ji = (Xi,j)(i,j)∈
∐

i∈I Ji
,

consists of a function f : K −→
∐
i∈I Ji and, for each k ∈ K, a morphism Ak −→ Xf(k) in V.

Write f−1(i) = { k ∈ K | f(k) = (i, j) for some j ∈ Ji }. Then the object

((Ak)k∈f−1(i) −→ (Xi,j)j∈Ji)i∈I

of
∏
i∈I(Fam(V)/(Xi,j)j∈Ji) maps to the object of Fam(V)/(

∐
i∈I(Xi,j)j∈Ji) above, so

∐
is es-

sentially surjective. Fully faithfulness follows from the fact that
∐

essentially just takes disjoint
unions over indexing sets.

Proposition 2.6. If V is a monoidal category with a strict initial object 0 for which X ⊗ 0 ∼=
0⊗X ∼= 0 for every X ∈ V, then V-Cat is extensive.

Proof. The coproduct
∐
i∈I Ci in V-Cat of (Ci)i∈I may be described as follows: ob(

∐
i∈I Ci) =∐

i∈I ob(Ci) and

(
∐
i∈I
Ci)((i, C), (i′, C ′)) =

{
Ci(C,C ′) if i = i′

0 otherwise.

Given a functor H : A −→
∐
i∈I Ci, for each i ∈ I define Ai to be the full subcategory of A consisting

of those objects A for which HA = (i, C) for some C ∈ Ci. Then A ∼=
∐
i∈I Ai, because for objects

A ∈ Ai ⊆ A and A′ ∈ Ai′ ⊆ A with i 6= i′, we have A(A,A′) ∼= 0 since there is a morphism
HA,A′ : A(A,A′) −→ (

∐
i∈I Ci)(HA,HA′) = 0 in V. q.e.d.

Putting I = ∅, Proposition 2.3 asserts that if V has an initial object 0, the functor
∐

: 1 −→ V/0
is an equivalence of categories if and only if given any morphism f : A −→ 0, f is necessarily an
isomorphism. So if a category is extensive, it has a strict initial object. This allows to deduce the
following.

Corollary 2.7. If V is a symmetric monoidal closed extensive category with small limits, then so
is V-Cat.

Applying Corollary 2.7 inductively, starting with Example 2.1, we may conclude that the cat-
egory n-Cat of strict n-categories for each natural number n is extensive, thus in particular, Cat
and 2-Cat are extensive.

Next we study when the category Cat(V) of categories internal to a category V with finite limits
is extensive. An internal category C consists of objects C0, C1 of V, morphisms dom, cod: C1 −→ C0,
e : C0 −→ C1 and c : C2 −→ C1, where C2 is the pullback in V of dom and cod.

Proposition 2.8. Let V be a category with finite limits and small coproducts. If, for every small
family of objects (Xi)i∈I of V, the functor

∐
in (1) preserves binary products, then Cat(V) has

small coproducts.
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Proof. Given a family (C(i))i∈I of objects of Cat(V), put Xi = C
(i)
0 for each i. Then for each i, C

(i)
2

is (the domain of) the binary product in V/C(i)
0 of dom(i) : C

(i)
1 −→ C

(i)
0 and cod(i) : C

(i)
1 −→ C

(i)
0 .

Thus (C
(i)
2 −→ C

(i)
0 )i∈I is the binary product in

∏
i∈I(V/C

(i)
0 ) of (dom(i))i∈I and (cod(i))i∈I .

Since
∐

preserves binary products, we see that
∐
i∈I C

(i)
2 is the pullback of∐

i∈I dom(i) :
∐
i∈I C

(i)
1 −→

∐
i∈I C

(i)
0 and

∐
i∈I cod(i) :

∐
i∈I C

(i)
1 −→

∐
i∈I C

(i)
0 . This ensures

that we can define
∐
i∈I C(i) simply by (

∐
i∈I C(i))0 =

∐
i∈I C

(i)
0 and (

∐
i∈I C(i))1 =

∐
i∈I C

(i)
1 , with

relevant morphisms induced from each C(i) by taking coproduct. The remainder of the proof is
routine. q.e.d.

Theorem 2.9. If V is an extensive category with finite limits, then so is Cat(V).

Proof. Let G be the category with two objects, 0 and 1, and two non-trivial morphisms s, t : 1 −→ 0,
and write Graph(V) = [G,V]. Then there is a functor U : Cat(V) −→ Graph(V) which sends a
category in V to its underlying graph in V; U reflects isomorphisms and preserves pullbacks. Since
V is extensive,

∐
preserves binary products, so by Proposition 2.8, Cat(V) has all small coproducts,

and U preserves them.
So in particular, U preserves and reflects pullbacks and small coproducts. By Corollary 2.4,

extensivity can be characterised in terms of pullbacks and small coproducts. Thus, since Graph(V)
is extensive (being a functor category; see Example 2.1), Cat(V) is also extensive. q.e.d.

For our final class of examples, we call a small family (Gi)i∈I of objects of a category V with
coproducts a connected strong generator if (i) each Gi is connected in the sense that V(Gi,−) : V −→
Set preserves small coproducts, and (ii) denoting by G the full subcategory of V determined by
the objects (Gi)i∈I , the functor U : V −→ [Gop,Set] mapping X to the functor (Gi 7→ V(Gi, X))
reflects isomorphisms.

Proposition 2.10. Let V have finite limits, small coproducts and a connected strong generator.
Then V is extensive.

Proof. U preserves finite limits and small coproducts. So, as U reflects isomorphisms, it follows that
U reflects finite limits and small coproducts. As [Gop,Set] is extensive by Example 2.1, Corollary 2.4
yields the result. q.e.d.

The conditions on V in Proposition 2.10 are similar to conditions used by Verity [15, Section
2.1] in a comparison between enriched categories and internal categories.

3 V-matrices and spans in V
Before comparing enriched categories with internal categories in Section 4, here we characterise
extensivity in terms of the relationship between bicategories of V-matrices and spans in V, cf. [14].
Readers unfamiliar with bicategories can safely skip this section.

We assume throughout that V is cartesian closed and has all finite limits and small coproducts.
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3.1 V-matrices

The bicategory V-Mat of V-matrices [2] has small sets as objects, and hom-categories given by
V-Mat(I, J) = VI×J . Explicitly, a 1-cell M : I −→ J is a family (M(i, j))i∈I,j∈J of objects of V,
i.e., an (I × J)-matrix whose components are objects of V. The identity 1-cell IdI on a set I is
given by

IdI(i, i
′) =

{
1 if i = i′

0 otherwise,

where by 1 and 0 we mean the terminal and initial objects of V respectively. Composition of 1-cells
is defined by matrix multiplication: given M = (M(i, j))i∈I,j∈J and N = (N(j, k))j∈J,k∈K , their
composite N ◦M is defined by

(N ◦M)(i, k) =
∐
j∈J

N(j, k)×M(i, j) .

A 2-cell from M to M ′ = (M ′(i, j))i∈I,j∈J consists of a family (f(i, j) : M(i, j) −→M ′(i, j))i∈I,j∈J
of morphisms of V, with the composition of 1-cells given above readily extending to define horizontal
composition of 2-cells.

The closed structure of V yields canonical unit and associativity isomorphisms. For example,
given a matrix L = (L(h, i))h∈H,i∈I together with M and N , we have

((N ◦M) ◦ L)(h, k) =
∐
i∈I

∐
j∈J

N(j, k)×M(i, j)

× L(h, i)

∼=
∐

i∈I,j∈J
N(j, k)×M(i, j)× L(h, i)

∼=
∐
j∈J

N(j, k)×

(∐
i∈I

M(i, j)× L(h, i)

)
= (N ◦ (M ◦ L))(h, k) ,

using the fact that for each object X of V, the functor −×X preserves small coproducts.

3.2 Spans in V
The bicategory Span(V) of spans in V was introduced by Bénabou [1]. We need a variant that we
denote by Spand(V).

As V has small coproducts, the representable functor V(1,−) : V −→ Set has a left adjoint given
by (−) • 1. It is routine to verify that (−) • 1 preserves finite products.

The bicategory Spand(V) has small sets as objects, with hom-categories given by
Spand(V)(I, J) = V/((I • 1) × (J • 1)) ∼= V/((I × J) • 1). We depict a 1-cell a = 〈a0, a1〉 : A −→
(I • 1)× (J • 1) from I to J as follows:

I • 1

A

J • 1 .

a0 a1
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Composition of 1-cells

I • 1

A

J • 1

a0 a1

and J • 1

B

K • 1

b0 b1

is given by the pullback

I • 1

A

J • 1

A×J•1 B

B

K • 1

a0 a1 b0 b1

π0 π1

in V. A 2-cell is a morphism f in V making the diagram

I • 1

A

A′

J • 1

a0 a1

a′0 a′1

f

commute. Composition of 1-cells routinely extends to horizontal composition of 2-cells.
Bénabou’s bicategory Span(V) has objects of V as objects, whereas Spand(V) has sets as

objects, identifying a set I with the free or “discrete” object of V on I. There is a fully faithful
pseudofunctor Spand(V) −→ Span(V) mapping I to I • 1.

3.3 Relating V-Mat and Spand(V)

We now analyse the diagram

V-Mat Spand(V)
Int

En
. (5)

Here, Int is an oplax functor and En a lax functor. Both are the identity on objects and, locally,
i.e., on the level of actions on hom-categories, they form an adjunction, with Int to the left and
En to the right, cf., the notion of local adjunction [3] and also [5, Theorem 2.39].

3.3.1 The oplax functor Int

The oplax functor Int is defined as follows. On objects, it acts as the identity. The action on
hom-categories is given by

V-Mat(I, J) = VI×J V/((I × J) • 1) ∼= Spand(V)(I, J)

∐
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using the left adjoint in (4). So Int maps a matrix (M(i, j))i∈I,j∈J to the span

I • 1

∐
i∈I,j∈JM(i, j)

J • 1

m0 m1

.

It is routine to verify that Int extends canonically to an oplax functor that preserves identities
up to coherent isomorphism. The comparison map for composition may be depicted as follows:

I • 1

∐
i∈I,j∈JM(i, j)

J • 1

(Int N) ◦ (Int M)

∐
j∈J,k∈K N(j, k)

K • 1 .

∐
i∈I,j∈J,k∈K(N(j, k)×M(i, j))

m0 m1 n0 n1

π0 π1

(6)

Proposition 3.1. The oplax functor Int is a pseudofunctor if and only if for every small set J ,
the functor

∐
: VJ −→ V/(J • 1) preserves binary products.

Proof. Binary products in VJ are given pointwise, while binary products in V/(J • 1) are given by
pullbacks. So, if

∐
: VJ −→ V/(J • 1) preserves binary products, it sends a family of J binary

product diagrams in V, seen as pullbacks over 1, to a pullback over J • 1.
By cartesian closedness of V, except for I •1 and K •1 and the maps into them, the diagram (6)

is given by the coproduct of a J-indexed family of binary product diagrams seen as pullbacks over 1,
together with the comparison map into the pullback. Thus the comparison map is an isomorphism,
making Int a pseudofunctor.

Conversely, now suppose that Int is a pseudofunctor, so the comparison map in (6) is an
isomorphism. Let (Aj)j∈J , (Bj)j∈J be objects in VJ . Since binary products in V/(J • 1) are
pullbacks,

∐
preserves binary products if the diagram

∐
j∈J Aj

J • 1

∐
j∈J(Aj ×Bj)

∐
j∈J Bj

∐
j∈J !

∐
j∈J !

∐
j∈J π0

∐
j∈J π1
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is a pullback square. Consider the matrices M : {∗} −→ J , N : J −→ {∗} given by M(∗, j) = Aj ,
N(j, ∗) = Bj . Applying Int to N ◦M gives the square above as an instance of the square in (6);
thus it is a pullback square, as required. q.e.d.

3.3.2 The lax functor En

The lax functor En : Spand(V) −→ V-Mat is the identity on objects, and its action on hom-
categories is determined by taking pullbacks. It maps a span

I • 1

A

J • 1

a0 a1

to the matrix En(A) = (En(A)(i, j))i∈I,j∈J whose (i, j)-th component is given by the pullback

En(A)(i, j) 1

A (I • 1)× (J • 1)

!

〈die, dje〉ιi,j

〈a0, a1〉

for each i ∈ I, j ∈ J , where die and dje are the i-th and j-th coprojections respectively. It is routine,
using the defining property of a pullback, to verify that En is a lax functor.

3.4 A characterisation of extensivity

We now use the constructions of Int and En to give two characterisations of the notion of exten-
sivity, in the presence of cartesian closedness, finite limits and all small coproducts.

Proposition 3.2. Let V be a cartesian closed category with finite limits and small coproducts.
The oplax functor Int : V-Mat −→ Spand(V) is a biequivalence if and only if for every set I the
adjunction (4) is an adjoint equivalence.

Proof. Int is the identity on objects. So we need only consider its local behaviour.
Suppose that, for each set I, the adjunction (4) is an adjoint equivalence. Then, by Proposi-

tion 3.1, Int is a pseudofunctor. Replacing I by I × J in the diagram (4) and using the notation
for Int above, the assertion that (4) is an equivalence makes Int locally an equivalence.

Conversely, if Int is a biequivalence, it is locally an equivalence. So, putting J = 1 yields the
result. q.e.d.

Theorem 3.3. Let V be a cartesian closed category with finite limits and small coproducts. The
following are equivalent.

1. V is extensive.

2. The oplax functor Int : V-Mat −→ Spand(V) is a biequivalence.

3. The lax functor En : Spand(V) −→ V-Mat is a biequivalence.
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Proof. The equivalence of 1 and 2 is given by Propositions 2.5 and 3.2. That between 2 and 3
follows from the fact of pullback being adjoint to coproduct. q.e.d.

A monad in the bicategory V-Mat is precisely a small V-category; a monad in the bicategory
Span(V) is precisely a category in V; and a monad in the bicategory Spand(V) is precisely a
category in V with a “discrete” object of objects. We would therefore like to use Theorem 3.3
immediately to deduce Theorem 4.4 in the next section. However, the situation is more complex
than that as maps of monads in V-Mat are not V-functors; similarly for maps of monads in Span(V).
So we would require additional two-dimensional structure, such as that of a pseudo-double category,
in order to deduce Theorem 4.4 from our analysis in this section. In this paper, we give a more
elementary account in order to spare those readers without an expert knowledge of two-dimensional
category theory.

4 Enrichment and internalization

We now establish an adjunction Int a En: Cat(V) −→ V-Cat and an equivalence of categories
between Catd(V), which is the category of categories in V with a “discrete” object of objects,
and V-Cat. We assume throughout that V is cartesian closed and has all finite limits and small
coproducts. We will later add extensivity to that.

4.1 The functor Int : V-Cat −→ Cat(V)

Let C be a small V-category. We can start to define the category Int(C) in V as follows.

• The object of objects is Int(C)0 =
∐
A∈ob(C) 1 ∼= ob(C) • 1 ∈ V.

• The object of morphisms is Int(C)1 =
∐
A,B∈ob(C) C(A,B) ∈ V, with evident maps dom, cod

and e, denoting domain, codomain and identity.

Then we run into difficulty in defining composition, which must be a map of the form c : Int(C)2 −→
Int(C)1. In order to define it, we need the comparison map m in the diagram

Int(C)2
∐
B,C∈ob(C) C(B,C)

∐
A,B∈ob(C) C(A,B)

∐
B∈ob(C) 1

∐
A,B,C∈ob(C)(C(B,C)× C(A,B))

dom

cod

p1

p2

m

(7)

to be invertible. In order to make m invertible, we mimic Proposition 3.1 as follows.

Lemma 4.1. The map m in diagram (7) is invertible if for every set I, the functor
∐

: VI −→
V/(I • 1) preserves binary products.

Proof. Binary products in VI are given pointwise, while binary products in V/(I • 1) are given by
pullbacks. So, if

∐
: VI −→ V/(I • 1) preserves binary products, it sends a family of I binary

product diagrams in V, seen as pullbacks over 1, to a pullback over I • 1.
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By cartesian closedness of V, putting I = ob(C), diagram (7) is given by the coproduct of an
I-indexed family of product diagrams seen as pullbacks over 1, together with the comparison map
m into the pullback. So m is an isomorphism. q.e.d.

By Lemma 4.1, if
∐

: VI −→ V/(I • 1) preserves binary products, we can identify Int(C)2 with∐
A,B,C∈ob(C)(C(B,C)× C(A,B)), upon which composition in Int(C) is defined as follows:

C(B,C)× C(A,B) C(A,C)

∐
A,B,C∈ob(C)(C(B,C)× C(A,B))

∐
A,C∈ob(C) C(A,C)

MA,B,C

σA,CσA,B,C

c

It is routine to check that this defines an internal category Int(C) and that Int extends canonically
to a functor Int : V-Cat −→ Cat(V).

4.2 The functor En: Cat(V) −→ V-Cat

Let D be a category in V. It consists of objects D0, D1 of V, morphisms dom, cod: D1 −→ D0,
e : D0 −→ D1 and c : D2 −→ D1, where D2 is a pullback in V. The V-category En(D) is defined as
follows.

• ob(En(D)) = V(1, D0).

• For each A,B : 1 −→ D0, the hom-object En(D)(A,B) is defined by the pullback

En(D)(A,B) 1

D1 D0 ×D0

!

〈A,B〉ιA,B

〈dom, cod〉

in V.

• For each A : 1 −→ D0, the morphism jA is the unique morphism making the diagram

En(D)(A,A) 1

D1 D0 ×D0

1

D0

!

〈A,A〉ιA,A

〈dom, cod〉

A

e

id1
jA

commute.
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• For each A,B,C : 1 −→ D0, first define ιA,B,C by the diagram

D2 D1

D1 D0 .

En(D)(B,C)× En(D)(A,B)

En(D)(A,B)

En(D)(B,C)

dom

cod

π2

ιA,B

π1

ιB,CιA,B,C

Then the morphism MA,B,C is the unique morphism making the diagram

En(D)(A,C) 1

D1 D0 ×D0

En(D)(B,C)× En(D)(A,B)

D2 〈A,C〉ιA,C

〈dom, cod〉

ιA,B,C

c

!

MA,B,C

commute.

The resulting data defines a V-category. It is routine to check that En extends canonically to a
functor En: Cat(V) −→ V-Cat.

Proposition 4.2. If
∐

: VI −→ V/(I • 1) preserves binary products for every set I, the functors
Int and En form an adjunction Int a En: Cat(V) −→ V-Cat.

Proof. Given a V-category C, the component of the unit of the adjunction ηC : C −→ En ◦ Int(C) is
defined as follows:

• ob(ηC) : ob(C) −→ V-Cat(1, ob(C) • 1) is given by ob(ηC)(C) = dCe.

• On hom-objects, given A, B in ob(C), ηC(A,B) is the unique morphism making the diagram

En ◦ Int(C)(dAe, dBe) 1

∐
A,B∈ob(C) C(A,B) (ob(C) • 1)× (ob(C) • 1)

C(A,B)

〈dAe, dBe〉

〈dom, cod〉

!

σA,B

ηC(A,B)

commute.
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For universality of ηC to Int from C, let D be in Cat(V) and f : C −→ En(D). Define f ′ : Int(C) −→
D as follows.

• On objects: for each C ∈ ob(C), let f ′C = f(C) : 1 −→ D0, and define f ′0 = [f ′C ]C∈ob(C) : ob(C)•
1 −→ D0.

• On morphisms: for each A, B ∈ ob(C), let f ′(A,B) = ιf(A),f(B) ◦ f(A,B) : C(A,B) −→ D1 and

define f ′1 = [f ′(A,B)]A,B∈ob(C) :
∐
A,B∈ob(C) C(A,B) −→ D1.

That f ′ is a morphism in Cat(V) follows from the fact that f is a morphism in V-Cat and from
the definition of En(D). Furthermore, f ′ is the unique map such that En(f ′) ◦ ηC = f , so ηC is
universal to Int from C. Hence Int a En, as required. q.e.d.

4.3 The category Catd(V): characterising enriched categories

As mentioned in the Introduction, even in the case of V = Set× Set, the functor Int : V-Cat −→
Cat(V) is not fully faithful. So, if we are to characterise V-Cat in terms of categories in V, we
need to replace Cat(V) by a variant. We accordingly define the category Catd(V) of categories in
V with discrete object of objects to be the pullback

Catd(V) Cat(V)

Set V

(−)0

− • 1

of categories. So an object of Catd(V) is a pair (D, I) consisting of a category D in V together
with a small set I such that D0, the object of objects of D, is I • 1. A morphism in Catd(V) from
(D, I) to (D′, I ′) consists of a functor in V from D to D′ together with a function from I to I ′ that
provides the action of the functor on objects.

One can make evident modifications to Int and En to form functors of the form Int′ : V-Cat −→
Catd(V) and En′ : Catd(V) −→ V-Cat. Note that En′ is not simply the restriction of En, since
we define ob(En′(D, I)) = I. Making the corresponding evident modifications of the proof of
Proposition 4.2 allows us to conclude the following.

Proposition 4.3. If
∐

: VI −→ V/(I • 1) preserves finite products for every set I, the functors
Int′ and En′ form an adjunction Int′ a En′ : Catd(V) −→ V-Cat.

Theorem 4.4. Let V be an extensive cartesian closed category with finite limits. Then Int′ a
En′ : Catd(V) −→ V-Cat is an adjoint equivalence.

Proof. For any V-category C, the assertion that the C-component of the unit of the adjunction
is an isomorphism follows from extensivity of V where I = ob(C) × ob(C) as in (4), noting that
(ob(C)× ob(C)) • 1 is canonically isomorphic to (ob(C) • 1)× (ob(C) • 1).

Given an object (D, I) of Catd(V), the assertion that the (D, I)-component of the counit of the
adjunction is an isomorphism follows from extensivity of V where I is replaced by I × I in (4), here
noting that (I × I) • 1 is canonically isomorphic to (I • 1)× (I • 1). q.e.d.
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Theorem 4.4 allows us to describe V-Cat in terms of Cat(V) as follows.

Corollary 4.5. Let V be an extensive cartesian closed category with finite limits. The following
commutative square of categories is a bipullback in CAT , the 2-category of locally small categories.

V-Cat Cat(V)

Set V

Int

(−)0ob(−)

− • 1

We conclude by extending our leading examples of extensive categories in Section 2 to include
cartesian closedness and small limits.

Example 4.1. A presheaf category is an extensive cartesian closed category with small limits.

Example 4.2. Let V be a cartesian closed category with all small limits. Then the free small
coproduct completion Fam(V) of V is an extensive cartesian closed category with small limits.

Example 4.3. Let V be an extensive cartesian closed category with all small limits. Then the
category V-Cat of V-categories is again an extensive cartesian closed category with small limits.

Example 4.4. Let V be an extensive cartesian closed category with all small limits. Then the
category Cat(V) of categories internal to V is again an extensive cartesian closed category with
small limits. (For cartesian closedness, see [9, Section B.2.3].)
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