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Abstract

Lawvere’s fixed point theorem captures the essence of diagonalization arguments. Cantor’s
theorem, Gödel’s incompleteness theorem, and Tarski’s undefinability of truth are all instances
of the contrapositive form of the theorem. It is harder to apply the theorem directly because
non-trivial examples are not easily found, in fact, none exist if excluded middle holds.

We study Lawvere’s fixed-point theorem in synthetic computability, which is higher-order in-
tuitionistic logic augmented with the Axiom of Countable Choice, Markov’s principle, and the
Enumeration axiom, which states that there are countably many countable subsets of N. These
extra-logical principles are valid in the effective topos, as well as in any realizability topos built
over Turing machines with an oracle, and suffice for an abstract axiomatic development of a
computability theory.

We show that every countably generated ω-chain complete pointed partial order (ωcppo) is
countable, and that countably generated ωcppos are closed under countable products. There-
fore, Lawvere’s fixed-point theorem applies and we obtain fixed points of all endomaps on
countably generated ωcppos. Similarly, the Knaster–Tarski theorem guarantees existence of
least fixed points of continuous endomaps. To get the best of both theorems, namely that
all endomaps on domains (ωcppos generated by a countable set of compact elements) have
least fixed points, we prove a synthetic version of the Myhill–Shepherdson theorem: every map
from an ωcpo to a domain is continuous. The proof relies on a new fixed-point theorem, the
synthetic Recursion Theorem, so called because it subsumes the classic Kleene-Rogers Recur-
sion Theorem. The Recursion Theorem takes the form of Lawvere’s fixed point theorem for
multi-valued endomaps.
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1 Introduction

Lawvere’s fixed point theorem [13, Theorem 1.1] is the quintessential diagonal argument. The
following version uses a stronger notion of surjectivity than the original theorem, but its statement
and proof may be interpreted in the internal language of a topos.

Theorem 1.1 (Lawvere). If there is a surjection e : A → BA then every map f : B → B has a
fixed point.

Proof. There is a ∈ A such that e(a) = λx :A . f(e(x)(x)), thus e(a)(a) = f(e(a)(a)). q.e.d.

∗This material is based upon work supported by the Air Force Office of Scientific Research, Air Force Materiel
Command, USAF under Award No. FA9550-14-1-0096

Tbilisi Mathematical Journal 10(3) (2017), pp. 167–181.
Tbilisi Centre for Mathematical Sciences.

Received by the editors: 30 September 2017.
Accepted for publication: 29 October 2017.

DOI  10.1515/tmj-2017-0107



168 A. Bauer

Among the consequences of Lawvere’s original theorem are Cantor’s theorem [13, Corollary 1.2],
Gödel’s incompleteness theorem [13, Theorem 3.3], and Tarski’s undefinability of truth [13, The-
orem 3.2]. These all take the contrapositive form: because some object has an endomap without
fixed points, some surjection does not exist. For instance, the contrapositive form of Theorem 1.1
implies that there is no surjection from A to its power ΩA, because negation has no fixed points as
an endomap on the object of truth values Ω.

How about direct applications of the theorem? None are given by Lawvere [13], and there are
none in the presence of excluded middle, where a surjection A → BA is possible only if B is a
singleton. We shall heed Lawvere’s advice and look for them in computability theory.

Rather than crafting Turing machines and Gödel codes, we prefer to work in Hyland’s effective
topos [7]. In fact, we shall avoid chasing diagrams, too, and instead use exclusively the internal
language of the topos. To be precise, our settings is higher-order intuitionistic logic with a natural
numbers object [12], augmented with just three extra-logical principles: the Axiom of Countable
Choice, Markov’s Principle, and the Enumeration Axiom; see §2 for their formulation and expla-
nation. The principles are valid in the effective topos, as well as in any realizability topos arising
from a partial combinatory algebra of (codes of) Turing machines with an oracle. In other words,
all results relativize with respect to an arbitrary oracle. I call this setup synthetic computability [1]
because it is grounded in a ‘synthetic’ mathematical universe with computability theory built in,
but it approaches the subject in an axiomatic and abstract way that eschews talking about compu-
tation explicitly. It is similar in techniques and ideas to synthetic domain theory [20, 8, 17, 22] and
synthetic topology [6, 14, 23, 2], with an emphasis on topics that pertain to computability theory.

We shall seek examples of Lawvere’s theorem in domain theory. For this purpose we review in §3
the basic definitions and facts about ω-complete partial orders (ωcpos) and their pointed versions,
ωcppos, and make sure that everything works in intuitionistic logic with the Axiom of Countable
Choice (but we do not use Markov’s principle or the Enumeration Axiom). Of special interest are
the countably generated ωcppos and domains, which are ωcppos that are countably generated by
their compact elements. Precise definitions of the domain-theoretic notions are given in §3.

In §4 we fulfill our initial task by proving with the help of the Enumeration Axiom that all
countably generated ωcppos satisfy Lawvere’s fixed-point theorem and therefore:

All endomaps on countably generated ωcppos have fixed points.

On the other hand the Knaster-Tarski theorem says that:

All continuous endomaps on ωcppos have least fixed points.

We reconcile these two fixed-point theorems by proving that:

All endomaps on domains have least fixed points.

For this purpose we develop more synthetic computability in §5. We formulate and prove a new
version of Lawvere’s fixed point theorem (Theorem 5.2) that states the existence of fixed points of
multi-valued maps. We call it the Recursion Theorem because it implies the classic Kleene-Rogers
Recursion Theorem, and allows us to construct various recursive objects.

The Recursion Theorem applies to all countably generated ωcppos. We use it to prove a con-
tinuity principle (Theorem 6.4) stating that all maps from ωcpos to domains are continuous. The
principle subsumes other continuity principles, such as the classic Myhill-Shepherdson theorem



On fixed-point theorems in synthetic computability 169

and Scott’s principle from synthetic domain theory. It also implies that all endomaps on domains
have least fixed points, and so at least for domains the reconciliation of fixed-point theorems is
accomplished.

2 Synthetic computability

We shall work in higher-order intuitionistic logic with a natural numbers object [12], enriched with
three extra-logical principles. The first one is the Axiom of Countable Choice:

Axiom 2.1. A total relation whose domain is N contains the graph of a function.

Written in intuitionistic higher-order logic, the axiom states that for every relation ψ : N×A→ Ω,

(∀n ∈ N .∃x ∈ A .ψ(x, a))⇒ ∃f ∈ AN .∀n ∈ N . ψ(n, f(n)).

The second axiom is Markov’s principle [15]:

Axiom 2.2. If a binary sequence is not constantly 0 then it contains a 1.

Written as a formula, Markov’s principles states

∀α ∈ 2N .¬(∀n . αn)⇒ ∃n . αn.

where 2 = {p ∈ Ω | p ∨ ¬p} is the set of decidable truth values. In Proposition 3.4 we shall see
another formulation of Markov’s principle.

The Axiom of Countable Choice and Markov’s principle are both valid in the effective topos, as
was noted already in [7]. The third tenet is the Enumeration Axiom:

Axiom 2.3. There are countably many countable subsets of the natural numbers.

Let us be more precise. A set A is countable, or enumerable, if there is a surjection e : N→ 1 +A,
where summing the codomain with the singleton 1 = {?} allows an enumeration to ‘skip’ by
outputting ?. Thus the empty set is enumerated by a sequence that always skips. When A is
inhabited there is a surjection 1 + A→ A that provides an enumeration N→ A without skipping.
The countable subsets of a set A are the restrictions of images of maps N→ 1 +A to A, and they
again form a set

E(A) = {S ∈ ΩA | ∃e ∈ (1 +A)N .∀x ∈ A . x ∈ S ⇔ ∃n . e(n) = x}.

If we let E abbreviate E(N) then the Enumeration Axiom states that there is a surjection

W : N→ E .

We are using standard notation for computability theory because it suggests how the effective
topos validates the Enumeration axiom: E is just the object of computably enumerable sets. In
Ershov’s theory of numbered sets [5] it is the numbered set (E ,W), where E is the set of computably
enumerable sets and W : N → E a standard numbering of E . The Enumeration axiom is valid
simply because W is total, and so the realizer for surjectivity of W is just the identity map. After
we have developed some theory, in §4.1 we shall compare the Enumeration axiom to other axiomatic
formulations of computability theory.
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We use the Axiom of Countable Choice frequently, Markov’s principle only in Proposition 6.1,
and the Enumeration axiom only in Theorem 4.2.

Higher-order intuitionistic logic can be put to work immediately, even without the extra axioms.
The contrapositive form of Lawvere’s theorem tells us that there are no surjections

N→ NN and N→ 2N

because the natural numbers and the decidable truth values have endomaps without fixed points,
namely the successor and the negation, respectively. The realizability interpretations of these
statements are the familiar facts that there are no computable enumerations of total computable
functions and of computable subsets of N, respectively.

A slightly more interesting observation is the following proposition, which will serve to prove a
synthetic variant of Rice’s theorem, see Corollary 4.4. Say that a set has the fixed-point property if
every endomap on it has a fixed point.

Proposition 2.4. If A has the fixed point property then every map A→ 2 is constant.

Proof. Given f : A→ 2 and any x, y ∈ A we show that f(x) = f(y). Define g : A→ A by

g(z) =

{
x if f(z) = f(y),

y otherwise.

There is z ∈ A such that z = f(z). If f(z) = f(y) then z = g(z) = x and f(x) = f(z) = f(y). If
f(z) 6= f(y) then z = g(z) = y and so f(z) = f(y), a contradiction, hence again f(x) = f(y). q.e.d.

3 Chain-complete pointed partial orders

We shall look for sets that satisfy the precondition of Lawvere’s theorem in domain theory. We
review the relevant concepts, and make sure that they work intuitionistically.

A partially ordered set, or poset, (P,≤) is a set P with a reflexive, transitive and asymmetric
relation ≤. A chain in (P,≤) is a a monotone sequence c : N → P : for all i ∈ N, ci ≤ ci+1. A
chain-complete poset (ωcpo) is a poset (P,≤) in which every chain c : N → P has a supremum∨

ncn. If an ωcpo has a least element ⊥, called the bottom, then it is a pointed ωcpo (ωcppo). A
map between ωcpos is continuous when it is monotone and it preserves suprema of chains.

A countable base, or just a base, for an ωcppo (P,≤) is a countable subset B ⊆ P , whose
elements are called basic, such that:

1. every element in P is the supremum of a chain of basic elements, and

2. the induced order on B is decidable.

A countably generated ωcppo is one that has a base. Note that our terminology differs from the
established one, as a base often involves the way below relation. The bottom ⊥ is always basic
because it is the supremum of a chain of basic elements, but those must all be ⊥.

We must thread still slightly deeper into domain theory. In an ωcppo (P,≤) an element x ∈ P
is compact if, for every countable chain c : N → P , x ≤

∨
ncn implies x ≤ cn for some n ∈ N. A

domain is a countably generated ωcppo whose basic elements are compact. If all basic elements
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are compact then all compact elements are basic, for each compact element is the supremum of a
chain of basic elements, and therefore equal to one of them by compactness.

Domains are generally constructed as completions. Let (B,≤) be a countable poset with a least
element ⊥ and a decidable order. An ideal in B is a subset I ⊆ B which is

1. inhabited : ⊥ ∈ I,

2. downward closed : if x ≤ y and y ∈ I then x ∈ I, and

3. directed : for all x, y ∈ I there is z ∈ I such that x ≤ z and y ≤ z.

The poset ωIdl(B) of countable ideals in B ordered by inclusion ⊆, is a domain. The least element
is the trivial ideal {⊥}, and the supremum of a countable chain of countable ideals is again a
countable ideal, thanks to the Axiom of Countable Choice. For each x ∈ B the principal ideal
↓x = {y ∈ B | y ≤ x} is countable because the order on B is decidable, and it is compact in
ωIdl(B). Thus principal ideals form a countable base of compact elements. The construction is a
completion because it has the following universal property.

Proposition 3.1. For any countable poset (B,≤B) with a least element and decidable order, and
a monotone map f : B → P into an ωcpo (P,≤P ), there exists a unique continuous extension
f : ωIdl(B)→ P such that the following diagram commutes:

B
↓ //

f
##

ωIdl(B)

f

��
P

Proof. Let us first show that every countable ideal I ⊆ B contains a countable chain which is cofinal
in I. Starting from an enumeration e : N → I, by the Axiom of Countable Choice there is a map
s : N×N→ N which chooses for any m,n ∈ N an element s(m,n) ∈ N such that em ≤B es(m,n) and
en ≤B es(m,n). Let r : N→ N be defined by r(0) = 0 and r(n+ 1) = s(r(n), n+ 1). Then c = e ◦ r
is the cofinal chain we are looking for. Therefore, I is the supremum of the chain of principal ideals
↓cn, and so it must be the case that

f(I) = f(
∨

n↓cn) =
∨

nf(↓cn) =
∨

nf(cn).

The right-hand side does not depend on the cofinal chain c : N→ I, because any two cofinal chains
in I dominate each other, and so do their images by f . Thus the equation may be taken as the
definition of f . Uniqueness now follows by a standard argument. q.e.d.

We really do have to take only the countable ideals, because arbitrary ideals may not contain
cofinal chains. For example, the ideal completion of the finite decidable subsets of N is the powerset
ΩN. If every subset of N were the union of a chain of finite sets, then every subset of N would be
countable, ΩN = E , but this cannot be because Cantor’s theorem states uncountability of ΩN and
the Enumeration axiom countability of E .

Countably generated ωcppos are closed for several construction, but of special interest to us is
closure for countable products.
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Theorem 3.2. Countably generated ωcppos are closed under countable products, and so are do-
mains.

Proof. Let (Pi,≤i)i∈N be a sequence of countably generated ωcppos and Q =
∏

i∈N Pi their product,
ordered coordinate-wise. We need to exhibit a base for Q. By the Axiom of Countable Choice, for
every i ∈ N there is an enumeration bi : N→ Pi of a base for Pi. Let List(N) be the set of finite lists
of numbers, let |s| be the length of the list s, and si its i-th element, counting from zero. There is
an enumeration ` : N→ List(N). Define c : N→ Q by

cn(i) =

{
bi(`(n)i) if i < |`(n)|,
⊥i otherwise.

One readily verifies that c is a base for Q.
To prove the statement for domains, one just has to additionally verify that c enumerates

compact elements in Q if the bi’s do the same in Pi’s. q.e.d.

Below we give examples of domains, but counter-examples are equally instructive. The closed
interval [0, 1] with the usual ordering ≤ is not closed under suprema of chains, because such closure
would imply the Limited Principle of Omniscience, which is false, see Corollary 4.3 and the subse-
quent paragraph. However, the related closed interval [0, 1]` of lower reals is a ωcppo. (Recall that
the lower reals are constructed as the set of lower Dedekind cuts, whereas the construction of reals
uses two-sided cuts.) The rational numbers between 0 and 1 form a countable base for [0, 1]`, but
[0, 1]` is not a domain, since its only compact element is 0.

3.1 Lifting and partial maps

Given a countable set A with decidable equality, take as the base the poset A+{⊥} in which x ≤ y
if, and only if, x = ⊥ or x = y. Its completion ωIdl(A+ {⊥}) is a domain known as the lifting A⊥.
It may also be described as the poset of countable subsets in A with at most one element,

A⊥ = {S ∈ E(A) | ∀x, y ∈ S . x = y},

ordered by inclusion. A countable base for A⊥ consists of those elements of A⊥ which are either
empty or inhabited.

Let Ã be the set of subsets of A with at most one element,

Ã = {S ∈ ΩA | ∀x, y ∈ S . x = y}.

A partial map f : A ⇀ B is a map f : A → B̃, where f(x) = ∅ signifies that f is undefined at x
and f(x) = {y} that it takes the value y. The support of f is

‖f‖ = {x ∈ A | ∃y ∈ B . f(x) = {y}},

and its graph the set
Γf = {(x, y) ∈ A×B | f(x) = {y}}.

Because B⊥ ⊆ B̃, every map f : A→ B⊥ is a partial map.

Proposition 3.3. The following are equivalent for a partial map f : N⇀ N:
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1. the support of f is countable,

2. the graph of f is countable,

3. the values of f are countable.

Proof. Note that the last claim states that f may be seen as a map N→ N⊥.
If e : N→ 1 + ‖f‖ enumerates the support then the graph is enumerated by

k 7→

{
(i, j) if e(k) = i and f(i) = {j},
? otherwise.

If e : N→ 1 + Γf enumerates the graph then, for every m ∈ N, the value f(m) is enumerated by

k 7→

{
n if e(k) = (m,n),

? otherwise.

Suppose f(m) is countable for every m ∈ N. By the Axiom of Countable Choice there is
e : N× N→ 1 + N such that e(m,−) enumerates f(m) for every m ∈ N. Then the support of f is
enumerated by

〈m, k〉 7→

{
? if e(m, k) = ?,

m otherwise.

where 〈−,−〉 : N× N→ N is any bijection. q.e.d.

The proposition tells us that N⊥N may be identified with partial maps whose graphs are count-
able. In the effective topos it is the object of partial computable maps, i.e., the numbered set of
partial computable maps with a standard numbering. In § 4.1 we shall return to N⊥N in relation to
other axiomatizations of computability theory.

3.2 The Rosolini dominance

Of special interest is the Rosolini dominance [20], which can be described as the completion ωIdl(2)
of the Boolean lattice 2, or as the set of semidecidable truth values,

Σ = {p ∈ Ω | ∃q ∈ 2N . (p⇔ ∃n ∈ N . qn)},

with the order induced by that of Ω. It has arbitrary countable suprema, not just those of chains,
a fact whose proof relies on the Axiom of Countable Choice. The decidable truth values 2 = {p ∈
Ω | p ∨ ¬p} form a countable base for Σ.

Several logical principles may be expressed as relationships between sublattices of Ω. Let Ω¬¬ =
{p ∈ Ω | ¬¬p⇒ p} be the set of ¬¬-stable truth values.

Proposition 3.4. Excluded middle states that 2 = Ω, the Limited Principle of Omniscience that
2 = Σ, and Markov’s principle that Σ ⊆ Ω¬¬.
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Proof. Excluded middle states that, for all p ∈ Ω, p or ¬p, which is equivalent to saying that Ω ⊆ 2,
while the reverse inclusion holds by definition of 2.

The Limited Principle of Omniscience [3] states that, for all q : N → 2, either ∃n ∈ N . qn
or ∀n ∈ N .¬qn. The latter is equivalent to ¬∃n ∈ N . qn, and so the principle is equivalent to
∀p ∈ Σ . p ∨ ¬p, which may be expressed as 2 = Σ.

Finally, Markov’s principle is equivalent to the statement that, for all q : N→ 2, if ¬¬∃n ∈ N . qn
then ∃n ∈ N . qn. This in turn is equivalent to ∀p ∈ Σ .¬¬p ⇒ p, which may be expressed as
Σ ⊆ Ω¬¬. q.e.d.

The Rosolini dominance classifies the countable subsets of N so that

E ∼= ΣN. (1.1)

The isomorphism f : E → ΣN is given by

f(S) = (∃n ∈ N . n ∈ S).

The value f(S) is in Σ because n ∈ S is equivalent to the truth value (∃k ∈ N . e(k) = n) where e is
any enumeration of S. The inverse map g : ΣN → E is defined as follows. Given any p ∈ ΣN, by the
Axiom of Countable Choice there is q : N× N→ 2 such that p(n) is equivalent to ∃k ∈ N . q(n, k).
We define g(p) to be the countable set enumerated by the map N× N→ 1 + N, defined by

〈n, k〉 7→

{
n if q(n, k),

? otherwise.

The verification that f and g are inverses of each other is not terribly interesting. The upshot of (1.1)
is that the Enumeration Axiom is just an instance of the precondition of Lawvere’s theorem.

4 Applications of Lawvere’s fixed-point theorem

So far we have not appealed to the Enumeration axiom, but now we will use it to transfer count-
ability of E to countability of countably generated ωcppos, which will provide us with examples of
Lawvere’s fixed-point theorem. We need just one more lemma.

Lemma 4.1. A countable inhabited poset (P,≤) with a decidable order contains a chain c : N→ P
such that if P is linearly ordered then c is cofinal in P .

Proof. Let e : N→ P be an enumeration of P . Define c : N→ P by

c0 = e0 and cn+1 =

{
en+1 if cn ≤ en+1

cn otherwise

We need to show that c is cofinal in P when P is linearly ordered. Clearly, c dominates e0 because
e0 = c0. Given any n ∈ N, cn ≤ en+1 or en+1 ≤ cn since P is a linear order. In the former case we
have en+1 = cn+1, and in the latter en+1 ≤ cn. q.e.d.

Theorem 4.2. A countably generated ωcppo is countable.
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Proof. Let (P,≤) be an ωcppo and b : N → P an enumeration of the basic elements. For n ∈ N,
the sub-poset

Pn = {⊥} ∪ {bi | i ∈Wn} ⊆ P

is countable and inhabited, and it has decidable order because b enumerates a base. We may
apply Lemma 4.1 and the Axiom of countable Choice to obtain for each n ∈ N a countable chain
c(n) : N→ Pn such that c(n) is cofinal in Pn if Pn is a linear order. We claim that the map e : N→ P

defined by e(n) =
∨

kc
(n)
k is a surjection. Given any x ∈ P there is a countable chain d : N→ P of

basic elements whose supremum is x. Without loss of generality we may assume d0 = ⊥. By the
Axiom of Countable Choice there is r : N → N such that d = b ◦ r. By the Enumeration axiom
there is m ∈ N such that Wm = {ri | i ∈ N}. Notice that Pm is the image of d:

Pm = {⊥} ∪ {bj | j ∈Wm} = {⊥} ∪ {br(i) | i ∈ N} = {dj | j ∈ N}.

Therefore, Pm is linearly ordered, c(m) is a cofinal chain in Pm, and so

e(m) =
∨

kc
(n)
k =

∨
jdj = x. q.e.d.

If (P,≤) is a countably generated ωcppo then by Theorem 3.2 so is PN. Theorem 4.2 applied
to PN provides a surjection N→ PN, after which we may apply Lawvere’s theorem to obtain:

Corollary 4.3. Every endomap on a countably generated ωcppo has a fixed point.

Because Σ has the fixed point property but 2 and Ω do not (consider negation), there is a chain
of proper inclusions

2 ( Σ ( Ω.

Consequently Excluded middle and the Limited Principle of Omniscience are both false because
they respectively state 2 = Ω and 2 = Σ.

The fixed point property implies a general version of Rice’s theorem:

Corollary 4.4. A decidable predicate on a countably generated ωcppo is trivial.

Proof. A decidable predicate on a countably generated ωcppo (P,≤) is classified by a map P → 2,
which is constant by Proposition 2.4. q.e.d.

4.1 Richman’s Axiom and Church’s Thesis

By Theorem 4.2 there is an enumeration

ϕ : N→ N⊥N

of partial maps with countable graphs. Richman [18] showed how one may develop basic com-
putability theory axiomatically from the existence of ϕ in the context of Bishop’s constructive
mathematics [3]. The work was taken further by Bridges and Richman [4].

Richman’s axiom and the Enumeration axiom imply each other. We have already established
one direction, while for the other all one has to notice is that there is a retraction r : N⊥N → E and
a section s : E → N⊥N, namely

r(f) = {n ∈ N | 0 ∈ f(n)} and s(S)(n) = {0 | n ∈ S}.
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Computability theory in logical form may also be developed from the formal Church’s thesis [24,
§1.11.7]

∀f ∈ NN .∃k ∈ N .∀n ∈ N .∃m ∈ N . T (k, n,m) ∧ U(m) = f(n).

Here T (k, n,m) is Kleene’s predicate expressing the fact that m encodes the computation of the
Turing machine encoded by k with input n, and U extracts the output from the code of a com-
putation. Thus the above statement says that every total function f is computed by some Turing
machine.

Proposition 4.5. The formal Church’s thesis implies the Enumeration axiom.

Proof. Define W : N→ E by

W (k) = {n ∈ N | ∃`,m ∈ N . T (k, 〈n, `〉,m) ∧ U(m) = 1}.

We claim that W is a surjection if formal Church’s thesis holds. For this purpose, consider an
enumeration e : N→ 1 + S of some S ∈ E . Define f : N→ N by

f(〈n, `〉) =

{
1 if ∃i < ` . e(i) = n,

0 otherwise.

and observe that S = {n ∈ N | ∃` ∈ N . f(〈n, `〉) = 1}. By formal Church’s thesis there is a code k
for f , and so

W (k) = {n ∈ N | ∃`,m ∈ N . T (k, 〈n, `〉,m) ∧ Um) = 1} = {n ∈ N | f(〈n, `〉) = 1} = S. q.e.d.

We cannot reverse Proposition 4.5, because the Enumeration axiom is valid in a realizability
topos over Turing machines with a (fixed) oracle, and in such a topos not every map is Turing
computable. The Enumeration axiom still implies a kind of ‘synthetic’ formal Church’s thesis
stating that every map N → N has a synthetic code, in the sense that ∀f ∈ N .∃k ∈ N . ϕk = f .
However, this says little beyond the fact that NN is subcountable because it is a subset of the
countable set N⊥N.

Richman [18] notes that “the main results of Church-Markov-Turing theory of computable func-
tions may quickly be derived and understood without recourse to the largely irrelevant theories of
recursive functions, Markov algorithms, or Turing machines.” While I hesitate to call central no-
tions of computability theory irrelevant, the present paper does reinforce Richman’s observation by
developing an even larger portion of basic computability theory in an abstract way and without
reference to any notion of computation.

5 The recursion theorem

There is another fixed point theorem that applies to countably generated ωcppos, and in fact to all
ωcppos, namely the Knaster–Tarski theorem [11, 21].

Theorem 5.1. Every continuous endomap on an ωcppo has the least fixed point.

Proof. The usual proof applies in our setup. The least fixed point of a continuous endomap f :
P → P on an ωcppo (P,≤) is computed as the supremum of the chain

⊥ ≤ f(⊥) ≤ f(f(⊥)) ≤ f(f(f(⊥))) ≤ · · ·

of iterates of f applied to ⊥. q.e.d.
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Theorem 5.1 applies only to continuous endomaps but gives canonical fixed points, whereas
Corollary 4.3 applies to all maps but gives arbitrary fixed points. To get the best of both theorems,
we will prove Theorem 6.4 stating that all functions from ωcpos to domains are continuous, and
thus all endomaps on domains have least fixed points. The proof relies on a synthetic Recursion
Theorem, which is the topic of the present section. The theorem takes the form of Lawvere’s
fixed-point theorem for multi-valued maps.

Let P∗(A) be the set of inhabited subsets of A,

P∗(A) = {S ∈ ΩA | ∃x ∈ A . x ∈ S}.

A multi-valued map f : A⇒ B is a map f : A→ P∗(B).x

Theorem 5.2 (Recursion Theorem). If there is a surjection e : N → AN then every multi-valued
map f : A⇒ A has a fixed point, which is an x ∈ A such that x ∈ f(x).

Proof. For every n ∈ N there is x ∈ f(e(n)(n)), hence by the Axiom of Countable Choice there is
a map g : N → A such that g(n) ∈ f(e(n)(n)) for all n ∈ N. There is k ∈ N such that e(k) = g,
and so e(k)(k) = g(k) ∈ f(e(k)(k)). q.e.d.

Note that the Recursion Theorem applies to countably generated ωcppos by Theorems 4.2
and 3.2. We shall use it only once in Proposition 6.1, where it is applied to Σ. (If one looked for
shortcuts, one would point out that the Enumeration Axiom directly validates the application of
the Recursion Theorem to Σ.)

The usual Kleene-Rogers Recursion Theorem [9, 10, 19] is a consequence of the synthetic one.
Recall from §3.1 the enumeration ϕ : N→ N⊥N.

Corollary 5.3. Given any map f : N→ N, there is n ∈ N such that ϕn = ϕf(n).

Proof. Recursion Theorem applies to the domain N⊥N because (N⊥N)N is countable by a double
application of Theorem 3.2. The multi-valued map F : N⊥N ⇒ N⊥N defined by

F (g) = {h ∈ N⊥N | ∃n ∈ N . ϕn = g ∧ h = ϕf(n)}

has a fixed point g ∈ F (g). Thus there is n ∈ N such that ϕn = g = ϕf(n). q.e.d.

The technique used to prove the corollary may be generalized as follows.

Proposition 5.4. Suppose e : A→ B is a surjection and every multi-valued map on B has a fixed
point. Then for every h : A⇒ B there exists x ∈ A such that e(x) ∈ h(x).

Proof. Consider the multi-valued map F : B ⇒ B defined by

F (y) = {z ∈ B | ∃x ∈ A . e(x) = y ∧ z ∈ h(x)}.

There is y ∈ B such that y ∈ F (y), hence for some x ∈ A we have e(x) = y ∈ h(x). q.e.d.

To recover Corollary 5.3 from the Proposition 5.4, take the surjection ϕ : N → N⊥N and the
map h = ϕ ◦ f : N → N⊥N. Various self-referential objects can be constructed with the help of
Proposition 5.4, too. For example, to obtain n ∈ N such that Wn = {n}, take the surjection
W : N → E and the map h : N → E defined by h(k) = {k}. To obtain a quine (a function that
outputs its own code) take the surjection ϕ : N → N⊥N and the map h : N → N⊥N defined be
h(n) = (λk ∈ N . n).
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6 A continuity principle

In the present section we prove a continuity principle for maps from ωcpos to domains. We first
show that the Enumeration axiom and Markov’s principle together imply that maps into Σ satisfy
a weak form of sequential continuity stating that the limit point of a sequence cannot be detached
from the sequence. For maps from ωcpos to Σ the weak principle may be amplified to proper
continuity, from which the general theorem then follows.

The set of non-increasing binary sequences

N+ = {α ∈ 2N | ∀n ∈ N . αn+1 ⇒ αn}.

can be thought of as a generic sequence with a limit point, where the n-th term is

n = >,>, . . . ,>︸ ︷︷ ︸
n

,⊥,⊥, . . .

and the limit point is
∞ = >,>,>,>, . . .

Recall from [2] the principle of Weak Sequential Openness (WSO):

∀U : N+ → Σ . U(∞)⇒ ∃n ∈ N . U(n).

The principle is motivated by considerations from synthetic topology [6, 23, 2, 14], where ΣA is seen
as the topology of intrinsically open subsets in A. From a topological perspective the principle
claims that the limit point ∞ cannot be isolated from the sequence 0, 1, 2, . . .

Proposition 6.1. Weak Sequential Openness holds.

Proof. Suppose U : N+ → Σ is such that U(∞). Define g : Σ ⇒ Σ by

g(p) = {q ∈ Σ | ∃α ∈ N+ . (∃k ∈ N .¬αk) = p ∧ q = U(α)}.

By Recursion Theorem there is p ∈ Σ such that p ∈ g(p), and by definition of g there is α ∈ N+

such that (∃k ∈ N .¬αk) = p = U(α). If it were the case that p = ⊥ then it would follow that
α =∞, but this would lead to the contradiction ⊥ = U(∞) = >. Therefore ¬p and so p holds by
Markov’s principle, expressed in the form given in Proposition 3.4. Because ∃k ∈ N .¬αk there is
n ∈ N such that α = n, hence U(n). q.e.d.

We can use the principle to show that maps from ωcpos into Σ are well behaved.

Lemma 6.2. Every map f : P → Σ on an ωcpo (P,≤) is monotone.

Proof. Consider any u, v ∈ P such that u ≤ v. We need to show that f(u) implies f(v), so assume
f(u). Define r : N+ × N→ P and s : N+ → P by

r(α, n) =

{
u if αn,

v if ¬αn,
and s(α) =

∨
nr(α, n).

Observe that s(∞) = u and s(n) = v for n ∈ N. Because f(s(∞)) = f(u) = >, by Weak Sequential
Openness there is n ∈ N such that f(s(n)), hence f(v) = f(s(n)) = >. q.e.d.
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Lemma 6.3. Every map f : P → Σ on an ωcpo (P,≤) is continuous.

Proof. Let c : N → P be any chain. By the previous lemma f is monotone, therefore
∨

nf(cn) ≤
f(
∨

ncn) holds. To establish the opposite inequality it suffices to show that f(
∨

ncn) implies f(cn)
for some n ∈ N, so assume f(

∨
ncn). Define r : N+ × N→ P and s : N+ → P by

r(α, n) =

{
cn if αn,

ck if α = k and k < n.
and s(α) =

∨
nr(α, n).

Observe that s(∞) =
∨

ncn and that s(n) = cn for n ∈ N. Because f(s(∞)) = f(
∨

ncn) = >,
by Weak Sequential Openness there is n ∈ N such that f(s(n)), hence f(cn) = f(s(n)) = >, as
desired. q.e.d.

Everything is set in place for a continuity principle.

Theorem 6.4. Every map f : P → Q from an ωcpo (P,≤P ) to a domain (Q,≤Q) is continuous.

Proof. If x ∈ Q is a basic element and y ∈ Q then (x ≤Q y) ∈ Σ. Indeed, y =
∨

ndn for a chain of
basic elements d : N→ Q, so by compactness of x

x ≤Q y ⇐⇒ ∃n ∈ N . x ≤Q dn.

The right-hand side is a truth value in Σ because the order ≤Q is decidable on basic elements.
Therefore, for a compact x ∈ Q we may define a map ux : Q→ Σ by

ux(y) = (x ≤Q y).

Let c : N→ P be a chain. In order to prove f(
∨

ncn) =
∨

nf(cn) it suffices to show that, for every
basic element x ∈ Q,

x ≤ f(
∨

ncn) ⇐⇒ x ≤
∨

nf(cn).

Another way of saying the same thing is

ux(f(
∨

ncn)) = ux(
∨

nf(cn)),

which holds because by Lemma 6.3 both ux ◦ f and ux are continuous, therefore

ux(f(
∨

ncn)) = (ux ◦ f)(
∨

ncn) =
∨

nux(f(cn)) = ux(
∨

nf(cn)). q.e.d.

Theorem 6.4 subsumes several other continuity principles. When we instantiate it to endomaps
N⊥N → N⊥N we obtain a synthetic version of the Myhill–Shepherdson theorem [16], while the instance
ΣN → Σ corresponds to Scott’s principle from synthetic domain theory [22].

At last, let us reconcile Lawvere’s and Tarski-Knaster fixed point theorems.

Corollary 6.5. Every endomap on a domain has a least fixed point.

Proof. The Knaster–Tarski Theorem 5.1 applies because such an endomap is continuous. q.e.d.
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