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Abstract

After reviewing a universal characterization of the extended positive real numbers published
by Denis Higgs in 1978, we define a category which provides an answer to the questions:

e what is a set with half an element?

e what is a set with 7 elements?

The category of these extended positive real sets is equipped with a countable tensor product.
We develop somewhat the theory of categories with countable tensors; we call the commutative
such categories sertes monoidal and conclude by only briefly mentioning the non-commutative
possibility called w-monoidal. We include some remarks on sets having cardinalities in [—o0, co].

2010 Mathematics Subject Classification. 18D10. 18D20, 20M14, 28A20
Keywords. Commutative monoid; biproduct; direct sum; abstract addition; magnitude module; series monoidal category.

That which is in locomotion must arrive at the half-way stage before it arrives at the goal. Zeno [1]

1 Introduction

For many years the authors drafted joint notes on a general project dedicated to developing the
theory of categories with tensor products of infinitely many objects. As part of that, we were
interested in sets with infinite operations. There is already some literature in this direction: for
example, Tarski’s book [28], and the work starting with Linton and Semadeni [23] and leading to a
series of papers including Fillmore-Pumpliin-Rohrl [7].

Serendipity led us recently to Higgs’ paper [9] which provides a universal property for the set
[0, 0] of extended positive real numbers with structure involving infinite summation. The paper
acknowledges ideas of Huntingdon [11] and Tarski [28]. More importantly for the current Special
Volume is Higgs’ interesting paragraph which begins with the sentence:

In conclusion, I would like to say that the stimulus for the introduction of magnitude modules
was a question of Lawvere as to whether a direct definition of the continuum, appropriate for use
in a topos, could be given.

Also, of course, Bill Lawvere [19] used [0, o0] as a base for recognizing metric spaces as a fertile part
of category theory.
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Moreover, as the unary operation of halving is used by Higgs to pin down [0, o], surely there
are connections with the work of Peter Freyd [8] which involves the mid-point operation. Such
relationships, apart from the fact that real intervals are involved, are not yet apparent to the
authors.

Consequently, [9] was the trigger for us to focus our infinite tensor work on deciding what
might be a set with a real cardinality. The first four sections of the present paper are essentially a
reorganization of Higgs’ paper, emphasising the structures we later use to provide our categorical
version.

In Section 5, we define series monoidal categories as categories equipped with a countable
summation operation appropriately axiomatized. Many examples are explained. What we call
Zeno functors in Section 6 allow us to halve objects; these endofunctors universally lead to our
category of extended positive real sets.

The logarithm of a positive real may be negative. Section 7 mentions that and other ideas about
capturing all real numbers and sets.

One of the purposes of symmetric monoidal categories is to serve as bases for enriched categories.
In Section 8, we look at categories enriched in a series monoidal category and show that they form
a series monoidal 2-category. On the excuse that one of our constructions could lead us to a
non-symmetric example, we briefly look in the last Sections 9 and 10 at non-symmetric infinitary
operations.

We suspect the reason no one has suggested our construction of the category of positive real
sets is that the Higgs paper was looked at more for its contribution to measure theory [10] and that
categories with infinite tensor products have not had much attention.

2 Series magmas and series monoids

Let N denote the natural numbers which include 0. For sets X and A, we write AX for the set of
functions a: X — A and we often put a,: = a(z) and (ag)zex: = a. Given 0 € A, define

§: A — ANN
by
a ifm=n
5(a = ’
(@rmn {o ifm#n .
We identify ¢ with its composite with either of the canonical isomorphisms oy, 09: ANXN 22 (AN)N]
where

01(a)(m)(n) = @ = 02(a) (n)(m) |

since 01 0 § = g9 0 6. We also write &,,: A — AN for a — (6(a)m n)men-

Definition 2.1. A series magma is a set A equipped with an element 0 € A and a function
S:AY — A (a)ien — Sienas

such that the following diagram commutes for all n € N.

A d (AN)N

x % (2.1)

AN
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For any series magma A and subset S C N, we can define an operation Yg: A% — A whose
value at a € A9 is

Enesan = ZnENcn (22)

where

0 otherwise .

{an ifnesS
Cn =

Since series magmas are models of an algebraic theory, there is a corresponding notion of mor-
phism, that is, a function f: A — B such that f(0) = 0 and the following square commutes.

AN 4
/| I -
BN B

Also, the resultant category SerMg of series magmas is both complete and cocomplete, and is Barr-
Tierney exact. The forgetful functor U: SerMg — Set is monadic. The monad generated by U and
its left adjoint preserves Ni-filtered colimits.

An aspect of all this is that AY is the underlying set for the cotensor of the set N with the
series magma A; the series magma structure consists of the constant sequence 0 = 4(0)o and
YN (AN 5 AN,

Here is an easy Eckmann-Hilton-type result.

Proposition 2.2. Suppose a set A has two series magma structures ¥ and X/ with the same 0. If
¥/ AN — A is a morphism for the ¥ structure on A then ¥’ = ¥ and, for all a € AN*N,

ZmENEnENam,n = ZnENEmENam,n . (24)

Proof. The morphism condition (2.3) for ¥’ is
Z;»neNEnGNam,n - ZTLGNE/WLGNam,n .

In this, for any b € AN, take the diagonal matrix @, , = §(bym)m,n- Using (2.1) for both sums, we
obtain X/ _nby = Ynenby; that is, ¥'(b) = X(b). Q.E.D.

Definition 2.3. A series monoid is a series magma satisfying (2.4). Write SerMn for the full
subcategory of SerMg consisting of the series monoids.

Example 2.4. The natural numbers N U {oco}, extended to include oo, is a series monoid with 0
the natural number 0 and

Yoo gan if a has finite support
Ynenan = .
otherwise .
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Example 2.5. Similarly, the non-negative real numbers [0, 00], extended to include co, is a series
monoid with 0 the real number 0 and

o if the seri
> ) > m—oan if the series converges
neNln =

otherwise .

Example 2.6. For any series monoid A and any set X, there is the pointwise series monoid
structure on AX. For various choices of X and A, there can be interesting series submonoids of
AX. With X a measurable space and A = [0, 0], the measurable functions f: X — [0,00] form a
series submonoid of [0,00]X. With X = A = [0,00], the continuous non-decreasing functions form
a series submonoid of [0, 00]*>],

Example 2.7. Any partially ordered set A admitting countable suprema is a series monoid with 0
the bottom element and ¥ equal to the countable supremum operation \/.

Proposition 2.8. Suppose A is a series monoid and ¢: N — N is an injective function. If a € AN
is such that a,, = 0 for n not in the image of &, then ¥, a¢(,) = Xy ay.

Proof. We define by, ,, to be ag(,,) for n = £(m) and to be 0 otherwise. Since £ is injective, each
row and column of the matrix b has at most one non-zero entry. Applying (2.4) to b and using
(2.1), we obtain the result. Q.E.D.

Remark 2.9. Similarly, if &: N — N x N is an injective function and an, , =0 for (m,n) not in
the image of &, then Yy,a¢(n) = X(m,n)0(m,n) where, of course, the right-hand side is either side of
(2.4). We leave this as an exercise.

As a particular case of (2.2), we can define a binary operation a; +az = X,,c{1,2)@,. This makes
the series monoid A into a commutative monoid with 0 as identity for 4+. Moreover, ¥: AN — A is
a monoid morphism. The informal notation

Yty =ag+ai+as+ ...

can be suggestive.
We can also make A into a pre-ordered set by defining a < b when there exists u with a +u = b.
It is clearly reflexive, transitive, has 0 as least element, and is respected by .

Definition 2.10. A series monoid is called idempotent when, for all c € A and a € AN such that
an # 0 implies a, = c, it follows that X,a, = c holds.

Proposition 2.11. A series monoid arises from a partially ordered set as in Example 2.7 if and
only if it is idempotent.

Proof. Suppose A is an idempotent series monoid. We can prove that the order is antisymmetric.
For, take a < b and b < a; so we have a +u = band b+ v = a. Thena =a+u+v =
a+ (u+wv)+ (u+v)+ (u+wv)+... by idempotence. So

a=a+u+@Wt+u)+@W+u)+--=a+(u+v)+(u+v)+---+u=at+u="b.

To see that ¥, a,, is the supremum of {a, : n € N}, we have a,, + X,a, = E,a, by commutativity
and idempotency; so a,, < ¥,a,. Now suppose a, < c for all n. This means there exist u,
with a,, + u,, = ¢ for all n. Since ¥ is a monoid morphism and because of idempotency, we have
Ynln + Xpt, = c. So Ypa, < c. Q.E.D.
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The forgetful functor U: SerMn — Set has a left adjoint whose value at 1 can be made explicit.

Proposition 2.12. The free series monoid on a single generating element is NU {oo} as in Exam-
ple 2.4. In other words, NU {oco} is a representing object for the functor U.

Proof. Given a series monoid A, we will show that
evy: SerMn(NU {oco}, 4) —» A
taking f to f(1) is bijective. Take a € A and define f,: NU {co} — A by

—_—
fa(n)=na=a+---+a
and f,(c0) = a+a+.... Then f,(1) = a. Also, for f,: NU {oo} — A, we have fy)(n) =

O+ f(1)=f(1+---4+1) = f(n) and fay(c0) = f(1)+ f(1)---=f(1+1+...) = f(c0), s0
ff(l) =/ Q.E.D.

Countable products and sums (= coproducts) in SerMn are special: they coincide. We shall
explain this although it is much like the case of finite direct products for commutative monoids.

Consider a sequence (Ay)ren of series monoids. The cartesian product [], oy Ax becomes a
series monoid by defining 3 to be the composite

(IT 40" = T 4™ 2= TT 4

keN keN keN

The projections pry, : [[,cn Ax — Ay are all morphisms of series monoids. This gives the product
in the category SerMn.
Now, we can define morphisms ing : Ay — [],cn An by

. a for h =k,
el =0 for b &

Proposition 2.13. The family of morphisms iny : Ay — [],cn An, for k£ € N, is a coproduct in
the category SerMn. The following formulas hold:

Yrening o pry, =1, 4,

L ooin 1a, for k=m,
m,, =
Pl 0 fork+£m.

Proof. The second sentence is an immediate consequence of the definitions. To prove we have a
coproduct, take a family of morphisms fj : Ay — B into a series monoid B. Using the formulas
of the second sentence, we deduce that the only morphism f : [], .y Ax — B with foing = f
for all £k € N is f = Zkeka. Q.E.D.

For families (A;);e; with I not countable, the product is still the cartesian product with point-
wise operations. The coproduct is the subobject consisting of the families of countable support.
With this, it follows from Proposition 2.12 that we can describe all free series monoids (since free
functors preserve coproducts and every set is a coproduct of one-element sets 1).

Proposition 2.14. The free series monoid on a set X is the subobject of (N U {oo})X (as in
Example 2.4) consisting of the functions of countable support.
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3 The symmetric closed structure

For series monoids A and B, we write ser(A, B) for the set SerMn(A, B) equipped with the pointwise
series monoid structure. From Proposition 2.12, we have an isomorphism

iser(A,A) : [N U {OO}, ser(A, A)] = Ser(A7 A) )

and so a morphism
ja : NU{oo} — ser(4, A)

corresponding to the identity morphism 14 € ser(4, A).
Since X for each ser(C, D) is defined pointwise in C, we have a morphism

L4 @ ser(B, C) — ser(ser(A, B),ser(A, C))

defined by L*(g)(f) = go f.
There is also an isomorphism

sapc : ser(A,ser(B,()) = ser(B,ser(4, C))

defined by noting that both sides are isomorphic to the pointwise series monoid of functions f :
A x B — C for which all f(a,—): B — C and f(—,b) : A — C are morphisms.

See [6] and [26] for the definition of closed category and the definition of category enriched in a
closed category.

Proposition 3.1. A symmetric closed structure on the category SerMn is defined by (i,j, L,s).
The obvious inclusions 1 — N U {co} and U[A, B] — (UB)Y4 provide the forgetful functor
U : SerMn — Set with a closed structure.

Proof. To check that the axioms pass from those axioms for the cartesian closed structure on Set
we use the facts that each U[A, B] — (UB)Y4 is a monomorphism, and that N U {oo} is free on
1 (Proposition 2.12). Q.E.D.

Proposition 3.2. The forgetful functor U: SerMn — Set is monadic of rank Y;. The left adjoint
is defined on objects in Proposition 2.14. The monad on Set generated by the adjunction is closed
(= monoidal).

Proof. The theory of series monoids is commutative. Q.E.D.

By the general theory provided by Kock [18], the closed structure of Section 3 (see Proposi-
tion 3.1) is monoidal. We will write A ® B for the tensor product of series monoids. We are
interested in monoids for this tensor product; they might be called series rigs. (The term “rig” was
used by Lawvere and Schanuel; the lack of an “n” in the word was to indicate the lack of negatives
in the otherwise ring.)

Let A be a commutative series rig; that is a commutative monoid in the symmetric monoidal cat-
egory SerMn. We will write the operation of the monoid multiplicatively. This product distributes
over 3, and 0 acts as a zero. By associativity and commutativity, for each family a = (ay)nes of
elements of A indexed by a finite set S, there is an element I1,,c5a,, € A.

Write (ﬁ) for the set of subsets of N of cardinality n.
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Now for a € AN, define

Pa = Prena, = EO<nENES€(i)HmESam . (3.1)

Less formally,
Pa = Xia; + Zicjaia; + Yicjraiaiar + ... . (3.2)

In particular,
P(ap,a1,0,0,...) = ag + a1 + apa; - (3.3)

Proposition 3.3. Any commutative monoid A in the monoidal category SerMn has a series monoid
structure defined by 0 € A and P: AN — A.

Remark 3.4. Notice that each of Examples 2./ and 2.5 can be obtained using Proposition 3.3
from an example of the countable supremum type of Example 2.7. For Example 2.4, take the sup-
lattice N U {oo} with addition as monoid structure. For Example 2.5, take the sup-lattice [0, 0]
with addition as monoid structure. Indeed, Example 2.7 is obtained from itself using the monoid
structure of finite sup.

Remark 3.5. Notice that the unit for the monoid A is not needed for Proposition 3.3. The for-
mula (3.1) does not require commutativity of A but then we only obtain a “non-commutative series
monoid” in a sense to be pursued in Section 9.

Remark 3.6. As pointed out by Day [/], the ordered set [0, 00| is x-autonomous with multiplication
as tensor product and dualizing object the same as the tensor unit 1, internally homming into which
gives reciprocal as the equivalence

S: [0, 00]°P — [0, 00] .

In fact we see that S(a) = X is actually the dual of each 0 < a < 0o, while S(0) = oo and S(c0) = 0.

T«

Day further points out that the natural logarithm gives an inverse to a monoidal equivalence
exp: [—00, 00] — [0, 7]
where the tensor product in the domain is addition, and therefore is x-autonomous.

Motivated by Remark 3.6, we take our commutative monoid A in SerMn and create another
copy of the set A which we will denote by ¢A. The elements of /A will be denoted by fa where
a € A. We make /A into a commutative monoid by defining

la+¢b=~{(ab), 0=1¢1 and — oo = (0. (3.4)

By definition, if @ < 1 in A then there exists u € A with a + u = 1. We can form the geometric
series v = 1+u+u?+ud+... in 4; then av+uv = (a+u)v =v =1+u(l+u+u?+...) = 1 +uv.
If wv can be cancelled, then v = a~!. Then we have

(O (3.5)
We also have some countable sums in ¢A:
Sl 4 up) =1L,(1+u,) =14+ Pru, . (3.6)

When 1 is cancellative in the additive monoid A, then 1 < a implies 1 + u = a for a unique u; in
this case, (3.6) defines a sum for sequences of “non-negative elements” la,, = £(1 + u,) in (A.
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4 Zeno morphisms and magnitude modules
Given an endomorphism f: A — A in SerMn, define f: A — A by the geometric series

f = SnenfotV (4.1)

in the pointwise structure on A4. This f: A — A satisfies

folla+f)=f+fof=Tf (4.2)
and is a morphism in SerMn.

Definition 4.1. A Zeno morphism in SerMn is an endomorphism h: A — A such that h =14. A
magnitude module in the sense of Higgs [9] is a series monoid equipped with a Zeno morphism h.

Magnitude modules are models of an algebraic theory; they are series monoids with an extra
unary operation satisfying one extra axiom.
From (4.2), any Zeno morphism satisfies

h+h=1y4 (4.3)
and so can be regarded as the operation of halving.

Example 4.2. When A =NU{oo} as in Ezample 2./, there exists no Zeno morphism since (4.3)
gives the contradiction h(1) + h(1) = 1.

Example 4.3. When A = [0,00| as in Ezample 2.5, the unique Zeno morphism is defined by
h(a) = 1a and h(co) = oo.

Example 4.4. Refer back to Ezxample 2.6 for any set X and any magnitude module A. The
pointwise Zeno morphism makes both AX and [X, A] into magnitude modules. For X a measurable
space, Higgs [9] observed that the measurable functions f: X — [0, 00] form a magnitude submodule
of [0,00]% and that magnitude module morphisms from there into [0, 00| are the countably-additive
[0, oo]-valued integrals on X.

Example 4.5. For a partially ordered set A as in Example 2.7, the identity function h(a) = a is
Zeno.

Theorem 4.6 (Higgs). The free magnitude module on a single generating element is [0, 00| as in
Example 4.3.

Proof. The proofis given in Section 4 of [9] so we shall only give an indication. Every natural number

is a finite sum 1+1+---41 while co = 14+1+.... Every positive real is the sum of a natural number
and a real number ¢ in the interval [0, 1). However, we have the binary expansion t = X, k%™ (1),
where mg, mq,... is a sequence of strictly positive integers. Consequently, 1 € [0, c0] generates.
The fact that we have equality of binary expansions such as 1.000--- = 0.111... is no problem
since 1 = h(1). Q.E.D.

Remark 4.7. The construct of the extended reals [0,00] as a quotient of a free series monoid is
as follows. Let M = (NU {oo})N be the free series monoid on N (Proposition 2.1/). We have the
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universal morphism x: N — M taking n to the function x, which has only non-zero value at n and
that value is 1. Take the smallest series monoid congruence ~ including the relations

XnNXn+1+Xn+2+Xn+3+--- .

A consequence of these relations is xn ~ 2xn+1. Now M/ becomes a magnitude module by the
Zeno function h defined by h(xn) = Xn+1, that is, h is induced by successor on N. We have the
magnitude module isomorphism

M/~ = [0,00] ) xn = o -

Incidentally, another way of constructing the reals from endomorphisms of N is explained in [25].
The question of how to define multiplication for any construction of the real number system is
always of interest. In [25], it is simply induced by composition of functions. For decimals, it is
tricky. We now turn to the multiplication in our context.

For any series monoid A, by freeness there is a magnitude module morphism
A: [0, 00] — ser(A, A)
taking the generator 1 € [0, oo to the identity function of A; see Section 3. This gives an action
. [0,00]®A— A
of [0,00] on A defined by a.a = A(«)(a). In particular, we have a monoid structure
« 1 [0,00] ® [0, 00] —> [0, 0]

on [0, o0 in the monoidal category SerMn; the unit is the generator 1 of [0, oo]. This gives a monad
[0,00] ® — on SerMn.

Proposition 4.8 (Higgs). The Eilenberg-Moore algebras for the monad
[0,00] ® — on SerMn are precisely the magnitude modules.

The “magnitude” terminology comes from Huntingdon [11] who took magnitudes in the unex-
tended strictly positive reals (0, 00).

Remark 4.9. There is also what one might call the paradoxical positive reals where the geometric
series %+ % + % +... is not 1. It is an example of a very general simple construction of an additive
monoid structure, on the disjoint union {0} + X + S, from any semigroup morphism k: S — X in
Set. It freely adds the zero element O to the semigroup X + S whose addition pux g is the composite

(X+8) X (X+8) DX XxX+X xS+ xX 48 x g b

XXX +X XX+ XXX xgHxpomonsl v g

For our particular example, let X be the additive semigroup of positive real numbers, presented as
infinite binary expansions excluding those having only finitely many terms equal to 1. Let S be the

set of all positive rational numbers of the form 37, where n and m are integers, presented as binary
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expansions s having only finitely many terms equal to 1. Define k: S — X to replace the last 1 in

s with a 0 and all the later Os by 1s; for example, k(1.00...) =0.11....

monoid ZP[0,00) of paradoxical positive reals. In there
(0.11...)+(0.11...) = (0.11...)

and

we have, for example,

+(1.00...)=1.11...

(1.00...) 4 (1.00...) = 10.00... .

We note that ZP[0,00) is not only an ordered monoid, but, considered as an ordered set with oo
added, is the free completion of S under arbitrary joins; this is in contrast to the ordinary [0, 0o,

which is the existing-join-preserving completion.

5 Series monoidal categories

Let & be a category. Given an object 0 of <7, define the functor

5: of —» /N
by
A if
5Amn:
(A)m, {O if

m =n,

m # n.

Then {0} + X + S is our

For A € &M and a functor ¥: &N — &7, note that §(%,,A4,,) and %,,§(A,,) are not too different:

5(EnAn)r,s = {(X):nAn

while
ETLAW/

En(s(An)’l’,S = {Z(O 0

if r =s,

ifr#s

if r =s,

L) ifr#£s.

So, if we have an isomorphism Ao0: 0 — 3(0,0,...), then there is an induced isomorphism

A00: 6(2,4,) — 2,0(A,,) which is the identity on the diagonal and A0 elsewhere.

Definition 5.1. A series monoidal category is a category <7 equipped with an object 0 € 7, a

functor

YN — o, (Ag)ien — YienA;

and natural isomorphisms

o NxN 92 (‘Q{N)N

o1 >N
(e7™MN /N ,

AN =
z

of ° (™M
.!Zf! ZN
JZ{N

(5.1)
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subject to the conditions that the components of the A\, at 0 are all equal and diagrams (5.2) and
(5.3) commute.

YmEpZnAmnp
W YEnAun.
EmEnEPAmnP EpEmEnAmnp
VZ,,A..pl lEpyA,_p (5_2)
DIND I Y - Ep X Ym Amnp
En'YA-n. ’YEmAm._
Y XpEm Amnp
5(AL).p
S (A )y — 2 S S S ( A
S Ap A szo (5.3)
YA S End(ZmAm)np

Just as Proposition 2.8 used (2.4) and (2.1), we can use (5.1) to obtain a canonical isomorphism
€ % Agr) = n A, (5.4)

for any injective function ¢: N — N and any A € &/~ with A,, = 0 for n not in the image of £.
If £: N — N x N is an injective function and A,, , = 0 for (m,n) not in the image of £, then we
have a canonical isomorphism R
&: Er14§(r) = 217127114(777,,71) .

Clearly the dual @7°P of a series monoidal category . is series monoidal with the same ¥ and
0.

Example 5.2. Any category o/ with countable coproducts is series monoidal with ¥ taken to be
the coproduct. Dually, any category with countable products is series monoidal. For </ = SerMn,
these two series monoidal structures coincide (by Proposition 2.13).

Example 5.3. Of course every partially ordered set is a category with at most one morphism be-
tween one object and another. This category structure is compatible with the series monoid structure
of the countable-sup-lattice example (Example 2.7) and so gives a series monoidal category. This
is actually a special case of Example 5.2.

Example 5.4. Indeed, every series monoid A is a series monoidal category by regarding it as
a discrete category. Also A is a series monoidal category by regarding it as a category using the
pre-order defined in Section 2; Higgs [9] proves this is a partial order when A is a magnitude module.
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Example 5.5. Let R be a commutative ring and consider the category Modg of R-modules. As
usual, for A € Mod% and any R-module B, define a function f: [] A, — B to be multilinear
when each

neN

flag,ar,...,am—1,— my1,...): Am — B

is an R-module morphism. By the Representability Theorem [20], there is a universal multilinear
function q: 1], An = @, An. For R = C, Ng [21] makes some use of this tensor product, along
with some variants. Here we merely note that Modg becomes series monoidal with ¥ = @) and
0=R.

Example 5.6. Let R be a commutative monoid in the monoidal category SerMn (Section 3) and
consider the category SerMdg of R-modules; that is, the category of Filenberg-Moore algebras for
the monad R® — on SerMn. In Proposition 4.8 we referred to the fact that magnitude modules are
precisely [0, co]-modules in this sense.

As before, for A € Seer% and any R-module B, define a function f: []
multilinear when each

nen An — B to be

flag,ar,...,am—1,— @my1,...): Am — B

is an R-module morphism. By the Representability Theorem [20], there is a universal multilinear
function q: [],, An = Qg ,, An- Then SerMdg becomes series monoidal with ¥ = @Q p and 0 = R.
In particular, when R = NU {oc}, SerMdr = SerMn and the binary case of Q) is the monoidal
structure of Section 3.

Example 5.7. For a sequence A = (A, )nen of small categories and a category X, a funny functor
[+ A — X is a function assigning to each object a € [], A, an object f(a) € X, equipped with
the structure of a functor A,, — X on each object assignment a,, — f(a) with all a, € A, fized
for n £ m. There is a category LA = T, enA, such that funny functors A — X are in natural
bijection with functors A — X. There is a series monoidal structure on the category Cat of small
categories where 3 = 2,

We now make the natural definition of series monoidal functor.

Definition 5.8. Suppose o/ and X" are series monoidal categories. A functor F': of — X is series
monoidal when it is equipped with a morphism po: 0 — FO in 2 and a natural transformation
with components

pA: X, FA, — FX,A,

such that diagrams (5.5) and (5.6) commute. We call F series strong monoidal when ¢ and ¢q are
1nvertible.

A series monoidal functor M: 1 — <7 is called a series monoid in <7; that is, M is an object
of o equipped with morphisms so: 0 = M and s: N- M = X(M,M,...) = M subject to the two
conditions (5.5) and (5.6) with w9 = s and px = s for x € 1. Since series monoidal functors
compose, they take series monoids to series monoids.
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ZTYLFZTLAmn
W w
E77LEnFAm7l FZ77LE'I’LA7TLTL
wFAi vaA (5.5)
Enl,DA_n 4PZ77LAm.
Y FEmAmnp
5(A).p
FSu6(A)y — 207 50 PS(A),
FAPAT Tzn% (5.6)
FA T Snb(FA)mp

Example 5.9. For any series monoidal category <7, the hom functor
o (—.—): AP x of — Set

is series monoidal where the series monoidal structure on Set is countable product. Here pg: 1 —
27(0,0) picks out the identity morphism of 0 € & while (C, A) is the effect

[T #(Cu. 4) = M(C, A) 5 o (SpenCh, SnerAy)

neN

of the functor X on homs. It follows that, if C is a series comonoid in &7 (= series monoid in </ °P)
and A is a series monoid in </ (so that (C,A) is a series monoid in o/°P x o ), then o/ (C, A)
becomes a series monoid in Set; naturally this is called convolution.

Definition 5.10. Suppose F,G: of — 2 are series monoidal functors. A natural transformation
o: F = @G is series monoidal when the two diagrams (5.7) commute.

gA

S, FA, — 7 v GA, 0 FO

gaAl l@A k\ % (5.7)

FY, A, GYn Ay, GO

$o

g n

With the obvious compositions, this defines a 2-category SerMnCat. Write SerMngCat for
the sub-2-category obtained by restricting to the series strong monoidal functors. The 2-category
SerMnCat has products preserved by the forgetful 2-functor into Cat. It is immediate from the
definitions that:
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Proposition 5.11. For any series monoidal category 7, the functor
YN o
is series strong monoidal.

Associated with this kind of “commutativity” of the theory is the fact that any countable product
of series monoidal categories is also the bicategorical coproduct in SerMngCat; that is, SerMngCat
has countable direct sums in the bicategorical sense.

Example 5.12. The forgetful functor U: Modg — Set becomes a morphism of SerMnCat on
invoking the series monoidal structure of Example 5.5 on Modgr and countable product on Set.
Taken together with the free R-module functor, this gives an adjunction F - U in the 2-category
SerMnCat. By doctrinal adjunction (see Kelly [15]), F is strong series monoidal.

Example 5.13. The forgetful functor U: SerMdr — Set becomes a morphism of SerMnCat on
invoking the series monoidal structure of Example 5.6 on SerMdgr and countable product on Set.
Taken together with the free R-module functor, this gives another adjunction F 4 U in the 2-
category SerMnCat. By Kelly [15], F is strong series monoidal. The free R-module on N is RY
with pointwise ¥ and R-action. We make it into a monoid in SerMdgr by the usual convolution
formula using addition in N. Taking x € RN to be (0,1,0,0,...), we can write each a € R" as
a power series a = ag + a1z + asx? + .... We will denote this monoid of power series by R[x]
(although there is a good case for calling it R[x]). Then we have the free series R-module

® R[z,] & R[xo,x1, 2, .. .]

neN

on NN consisting of the functions p: NN — R of countable support (thought of as power series
Yoapla)z®aitxs? ... ). Let 0: R[x] — R]xo,x1,22,...] be the R-monoid morphism defined by

z) =ix; + Eicjmitj + Bicj<kTiTTh + ... .

This provides R[x] with the structure of a series comonoid in SerMdpg (that is, a series monoid
in SerMd}); indeed, it is a series comonoid in the series monoidal category of R-monoids (one
possibility for the term “series R-bimonoid”). For any commutative monoid A in SerMdg, transport
across the isomorphism Mon(SerMdg)(R[z], A) & A takes convolution to the series monoid struc-
ture on A as in Proposition 3.5. Alternatively, we can transport the convolution structure across
the isomorphism SerMdg(R[z], A) = AN to obtain a generalized Rota-Bazter-type series monoid
structure on AN (compare Remark 11 of [27]).

For any series monoidal category ./ and subset S C N, we can define a functor Yg: & — o/
whose value at A € &7 is

EnESAn = EnENCn (58)

where

Cn:{An ifnesS

0 otherwise.
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When A,, = B for all n € S, we also put
S B:=Ynes4n . (5.9)
Using (5.4), we obtain, for any bijection £: S — T, an isomorphism
€: DresAe(ry = SnerAn (5.10)
with the special case
§:S-B~T.B. (5.11)
This definition transports to any bijection £ between any countable sets S and T yielding a functor
——:CFx o« — o, (S,B)—S-B, (5.12)

where CF is the category of countable sets and all functions. Notice that, for S,7 C N and
A = (Am.n)(mmnyesxT, the isomorphism ~ of (5.1) restricts to an isomorphism

v EmESEnGTAm,n = EnGTEmGSAm,n .
When S is any countable set and A = (A, )mer, this transports to an isomorphism
v S YperAn 2 3erS A, (5.13)
For any countable T and A € &/, we obtain
v: S (T-A)=T-(S-A),

and this is isomorphic to (S x T) - A.
Write evg: S - AS — A for the morphism corresponding to the identity of AS. Then each
bijection £: S — T determines an isomorphism

A5 5 AT (5.14)

1. ev
which corresponds to the composite T - A° LN LN
Proposition 5.14. The tensor product defined by
A1+ Ay =30 An - (5.15)

renders &/ symmetric monoidal with 0 as tensor unit. Moreover, ¥ : &N — & is a symmetric
strong monoidal functor.

For series monoidal categories &7 and 27, the category SerMnsCat(</, £") is series monoidal
under the pointwise series monoidal structure; we write Ser(/, 2") for this series monoidal category.
For a sequence F' = (F,)nen of series strong monoidal functors F),: & — 27, the definition of ¥ F
is the composite

o Ey g N Z g (5.16)
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The forgetful 2-functor
U: SerMngCat — Cat (5.17)

is monadic in a bicategorical sense. In particular, it has a left biadjoint (see [3] for this sort of
result) whose value at the terminal category can be made explicit.

Proposition 5.15. The 2-functor (5.17) is pseudo-representable by the series monoidal category
CB with countable sets as objects, bijective functions as morphisms, and disjoint union as . To
be precise, for any series monoidal category <7, the category of series strong monoidal functors
CB — & is pseudonaturally equivalent to the category <. A series monoidal equivalence

Ser(CB, &) ~ o |
defined by evaluation at the singleton set, follows therefrom.

Proof. Given an object A € o/, we define a series strong monoidal functor F': CB — & with

F1 = A as follows. Define F— = — - A as per (5.12) with series monoidal structure supplied by
(5.13). The assignment A — F' is the object function for a functor &/ — Ser(CB, /) defined on
morphisms by universality. This provides the inverse equivalence to evaluation at 1. Q.E.D.

We also have the 2-functor
sermn: SerMngCat — Cat (5.18)
which takes each series monoidal category <7 to the category
sermng’ = SerMnCat(1, &)

of series monoids in <.

Proposition 5.16. The 2-functor (5.18) is pseudo-representable by the series monoidal category
CF with countable sets as objects, functions as morphisms, and disjoint union (coproduct) as X.
To be precise, an equivalence of categories

SerMnsCat(CF, &) ~ sermn.« |

pseudonatural in series monoidal categories o7

Proof. Given a series monoid A € o, we have the series strong monoidal functor F': CB — & with
F1 = A as in Proposition 5.15. Using the series monoid structure sg: 1 — A, s: N- A — A on A,
we can extend F to a series strong monoidal functor F’: CF — & as follows. For any S C N, let
A, =AforallneN,let C, =Aforallne S, let C, =1forall n ¢S, and let u,: C, = A, be
the identity of A for n € S and sy otherwise. We can define

(S~AS—S> ):(znchznAniA) .

For any order-preserving function «: S — T between subsets of N, we obtain

BneTSq—1(n)
—

(S A2 T A) = (Zperat(n)- A YnerA) .
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For a bijective £: S — S, we already have §A: S-A=S-Aasin (5.11). As every function a: S — T
is a composite of an automorphism a;: S — S and an order-preserving function as: S — T, we

obtain
Fa=s4=8q,001:S-A—=T-A

in «7/. The remaining details of the proof that this gives an inverse equivalence are as for finite sets,
symmetric monoidal categories, and commutative monoids. Q.E.D.

As a bicategory, SerMngCat is symmetric closed monoidal in the sense of [5]. There is a tensor
product o ® £ satisfying pseudonatural equivalences

SerMnCat (<7, Ser(#, Z")) ~ SerMnCat(«/ @ B, Z")
~ SerMnCat (%, Ser(</, Z7)) . (5.19)

A diagonal for an object A of a series monoidal category & is a morphism d: A — X(A, A4, ...)
such that, for all bijections £: N — N x N, the following square commutes.

A d S(AA,...)

dl l? (5.20)

Z(A,A,)W‘Z(Z(A,A,),E(A7A,),)

Definition 5.17. A magnitude module M in a series monoidal category </ is a series monoid
equipped with a diagonal morphism d: M — (M, M,...) and a series monoid endomorphism
h: M — M such that the composite

(h,hoh,hohoh,... )
%

he ML (M, M,...) S(M,M,...) S M (5.21)

is the identity of M.

6 Zeno functors and magnitude categories

Let F': &/ — o/ be a series monoidal endofunctor on the series monoidal category . For each
n € N, we have the n-fold composite series monoidal endofunctor

n

———
F°"=FoFo...F:o — o .
By the product property of 27" in SerMnCat, a series monoidal functor
FoUtD: of —s ™

is induced. This composes with the series strong monoidal functor 3 of Proposition 5.11 to yield a
series monoidal functor

F = EneNFo(n+1)Z A — A . (61)
There are canonical natural isomorphisms

F+FoF>~F and FoF~FoF . (6.2)
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Definition 6.1. A Zeno functor on & is a series strong monoidal functor H: o — o/ equipped
with a series monoidal isomorphism k: 1, = H such that (6.3) commutes. A magnitude category
is a series monoidal category equipped with a Zeno functor H.

Hok

H HoH

(6.3)
koH (6.2)

HoH
Example 6.2. When o/ = CB or «f = CF, there exists no Zeno functor since 1 is not isomorphic
to a disjoint union of a set with itself.

Example 6.3. Any magnitude module, either as a discrete category or with its partial order, is a
magnitude category.

Example 6.4. For any category € and magnitude category <7, the functor category [€,</] is
a magnitude category with the pointwise structure. If € is serial monoidal then Ser(€, <) is a
magnitude subcategory of [€,].

Definition 6.5. A magnitude functor F': &/ — Z is a series monoidal functor equipped with a
series monoidal natural transformation vi: H o F' = F o H compatible with the series monoidal
isomorphisms k: 1, = H in the sense that (6.4) should commute. It is strong when it is series
strong monoidal and vy is invertible.

The natural transformation v1: H o F' = F o H inductively determines natural transformations
Up: H" o F = F o H°" via

Una1: HOOHD o p ZL720 pron o o fp ooty g pro(ntl) |
and hence a natural transformation
U= Speovn: FoH = HoF .
We ask commutativity of
FoH
\ / (6.4)

HoF

Example 6.6. For a magnitude category <7, the Zeno functor H: o/ — </ is a magnitude functor
with Vv = 1HoH-

Definition 6.7. Suppose F,G: o/ — Z are magnitude functors. A magnitude natural trans-
formation o: F = G is a series monoidal natural transformation for which the following square
commutes.
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v

HOGTGOH

With the obvious compositions, this defines a 2-category MgnCat of magnitude categories,
magnitude functors and magnitude natural transformations. We write Mgn,Cat for the sub-2-
category obtained by restricting to strong magnitude functors.

If € and &/ are magnitude categories then the category Mgn (%, &) of strong magnitude functors
and magnitude natural transformations is a magnitude subcategory of Ser(%¢, ).

The countable direct sums of SerMngCat restrict to MgnsCat; that is, countable products restrict
and the appropriate coproduct injections are magnitude functors.

The forgetful 2-functor

U: MgnsCat — Cat

is monadic in the bicategorical sense. In particular, it has a left biadjoint.

Definition 6.8. The value at the terminal category of the left biadjoint to U is called the magnitude
groupoid of positive real sets and denoted by RSet,.

Since RSet, is series monoidal, by Proposition 5.15 there is a series strong monoidal functor
I: CB — RSet,

from the series monoidal category of countable sets for which I(1) is the generator of RSet,, which
generator we shall also denote by 1. Indeed, we shall put n: = I(n). We conjecture that I is
faithful.

There is also a strong magnitude functor

#: RSety — [0,00] ,
called cardinality, taking the generator 1 to the real number 1. It follows that the composite
I #
CB — RSety — [0, 0]

takes each countable set to its cardinality.
For any magnitude category <7, by freeness there is a strong magnitude functor

L: RSet, — Mgn (o, o)
taking the generator 1 € RSet, to the identity functor of <7; see (5.16). This gives an action
o : RSety @ & — &/
of RSet, on o7 defined by S e A = (LS)A. In particular, we have a monoidal structure
e : RSet, ® RSet, — RSet, (6.5)

on RSet, in the monoidal bicategory SerMnyCat; the unit is the generator 1 of RSet,.
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Proposition 6.9. The pseudoalgebras for the pseudomonad RSet, ® — on SerMnsCat are the
magnitude categories.

We define some objects of RSet, by

1 1 on 1 1 1 1 m 1
7:H(1),7:H (1),gzzn>0ﬁ,zi?,ﬁ—m.ﬁ’

and so on. For any natural number k, let ¢ be the first natural number with k¥ < 2! and can define
1 (2t — k)"
k- e g )

More typically, to obtain an object of cardinality w, express m — 3 = 0.ajas2 ... in binary form,
let a,,, =1 be the nth non-zero term in that expansion. Then

H—3 1 1
- + % + % —‘l_ o
is an object of RSet, with #II = 7. A more difficult question is whether II has interesting auto-
morphisms.
For any magnitude category 7, we can define an exponential functor

E:of — o (6.6)
by
B(X) = zneNé . X (6.7)
We also have the 2-functor
sermn: MgnsCat — Cat (6.8)

which takes each magnitude category & to the category sermn./ of series monoids in o7

Definition 6.10. The pseudo-representing object for the 2-functor (6.8) is called the magnitude
category of positive real sets and denoted by RSet. That is, there is an equivalence of categories

MgngCat(RSet, &7) = sermne/ |
pseudonatural in magnitude categories o .
There is a magnitude functor RSet, — RSet taking 1 to the generator 1 of RSet.

Remark 6.11. Here is a construction of RSet in the spirit of Remark /.7. Begin with the pointwise
series monoidal category %, = CFY of sequences of countable sets. We have a series strict monoidal
functor Hy: %1 — %1 defined as the suspension Hi(Xg, X1, Xo,...) = (0,X0,X1,...). We then
form the series strict monoidal functor Hy; the formula is

Hi (X0, X1,...) =1(0,X0, X0+ X1,...) = (EncoXn, Znc1Xn, EncaXn,...) .
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]\fote that ﬁl oH; =H;o I;Tl. Now form the isocoinserter (6.9) of the identity functor of %1 and
H, in the 2-category SerMngCat.

By —— T
12, \L % ipl (69)
%1 <%2

1

Since we have the isomorphism Py o Hy % Po ﬁl oHi=P,oH;o I;Tl, the universal property
of (6.9) yields a unique series strong monoidal functor Hy: Xo — Ko such that Hy o Py = Py o Hq
and Hy o k1 = k1 0 Hy. It follows that Hso P, = PyoH;, and Hyo k1 = k1 0 Hy. So the universal
property of (6.9) yields a unique series strong monoidal natural isomorphism ko: 1o, = Hy such
that ko o Pi = k1. Note also that I—iz oHy =Hso0 ﬁg. So we have two 2-cells Hy o k9 and ke o Hy
from Hy to H, o Hy and we can take their coequifier Py: %o — X in the 2-category SerMngCat.
From the universal property of the coequifier, we obtain a unique series strong monoidal functor
H: % — % with Pyo Hy = H o P, and then obtain a unique series monoidal natural isomorphism
k:lg = H with ko Py = Pyoky. Now (6.3) is satisfied and we have a Zeno functor (H, k) making
Z o magnitude category.

Proposition 6.12. The magnitude category Z constructed in Remark 6.11 is equivalent to RSet.

Proof. The universal properties of %> and % combine to show that strong magnitude functors
F: % — o are in bijection with series strong monoidal functors G: %1 — & equipped with a
series monoidal isomorphism

r:HoG= GoH; .

However, %, = CFY is the coproduct of countably many copies of CF. So, to give G is equivalently
to give a sequence of series strong monoidal functors G,,: CF — /. By Proposition 5.16, to give
such a sequence is equivalent to giving a sequence of series monoids A,, in «/. However, v induces a
series monoid isomorphism v, : HA, = A, +1. So the sequence of series monoids is, up to canonical
isomorphism, determined by the single series monoid A = Ay. Q.E.D.

7 Remarks on integer sets

To obtain reals from integers, Higgs taught us to introduce a halving operation. It is obvious
to all that to obtain integers from natural numbers, we need to introduce a minus operation. A
categorical version of minus might be dual. If we think of the categorical integers as forming the
free symmetric monoidal category on a single generating object, we might think of the categorical
integers as forming a compact closed category in the sense of Kelly [14]; this includes symmetry.

Let symMon denote the groupoid-enriched category of symmetric monoidal categories, sym-
metric strong monoidal functors, and monoidal natural isomorphisms. Let CmpClsd denote the
full sub-groupoid-enriched category of symMon consisting of the compact closed categories. The
inclusion

CmpClsd — symMon

has a left biadjoint. The value of this biadjoint at the category FB of finite sets and bijections
might be a candidate for a category ZSet of integer sets.
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A category IntRel of integer sets and relations was introduced in [13]. It is the free tortile
monoidal category on the symmetric traced monoidal category Rel of sets and relations. The
explicit description can be found in Section 6 of [13]: the objects are pairs (X, U) of sets and the
morphisms R: (X,U) — (Y, V) are relations from X +V to Y + U, while the composition uses the
trace. Trace categorizes the cancellation property of addition of natural numbers.

Lemma 7.1. If a morphism R: X + U — Y 4 U in Rel is the graph of an injective function
f: X4+U — Y +4+U and U is a finite set then the trace Tr)UQY(R): X — Y is the graph of an
injective function TtV (f): X — Y. Indeed, TtV (f)(z) = f°"(z) € Y where n > 0 is such that
for(z) € U for all m < n. If f: X + U — Y + U is bijective then so is TtV (f): X — Y.

Proof. This is an easy exercise for a reader who recalls the matrix formula for Tr%Y(R) in [13].
The reason there is such an n is that U is finite. Q.E.D.

Therefore, we may wish to replace symMon by the groupoid-enriched category symMon, of
symmetric monoidal categories for which the tensor unit is initial. Then the appropriate replacement
for FB is the category FI of finite sets and injective functions; by Lemma 7.1, both of these are
traced monoidal subcategories of Rel.

This produces two candidates IntFI and IntFB for categories of integer sets. The objects are
pairs (X, U) of finite sets and the morphisms f: (X,U) — (Y, V) are injective or bijective functions
f: X4V — Y+U, respectively. The composite gof of f: (X,U) — (Y,V)and g: (Y,V) — (Z,W)
is the trace Tr" (9#f) of the function g#f: X + W +V — Z + U 4 V defined as follows. For
peX+V,

g(f(p) € Z+V if f(p) €Y,
flp)eU otherwise ;

g#f(p) = {

while g#f(p) = g(p) € Z+V for p e W.

Of course, N is traced monoidal as an ordered set under addition. We have the inclusion functor
FB — FI and the cardinality functor FI — N which are both traced symmetric strong monoidal.
Since Int is a groupoid-enriched functor, we obtain symmetric strong monoidal functors

IntFB — IntFI — Z

providing cardinalities for “integer sets”.
A geometric approach, based on the idea that Euler characteristic extends cardinality, is that
of Schanuel [22].

Remark 7.2. There is a classical obstruction to having both associative infinite sums and negatives.
The only element ¢ with an inverse —c for the binary addition in a series monoid is 0. The proof
goes back to Fuler:

0=040+--=(c—c)+(c—c)+--=cH+(-c+c)+(—c+c)+ - =c

A different tack, suggested by Remark 3.6 following Day, is to note that RSet, itself with
the multiplication monoidal structure (6.5), might be considered up to equivalence to be not just
positive but all extended real sets, with addition as the monoidal structure. We do not know
whether this structure is *-autonomous.
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8 Categories enriched in a series monoidal category

Let ¥ denote a series monoidal category. It becomes symmetric monoidal under binary summation
according to Proposition 5.14. The usual notion of ¥-category <7 makes sense as per [16]. Because
of the symmetry, the opposite «7°P and tensor product, here written as a sum & + 4, of enriched
categories are already defined.

What we wish to point out now is the possibility to sum series of ¥ '-categories. By Propo-
sition 5.14, we have the symmetric strong monoidal functor ¥: N — # and so, the symmetric
strong monoidal 2-functor

Y. #N-Cat — 7-Cat

in the notation of Eilenberg-Kelly [6]. There is also the symmetric strong monoidal 2-functor
Q: (7-Cat)N — ¥N_Cat

taking a sequence ./ = (%, )nen of ¥ -categories to the ¥ N-category Q&7 whose objects are objects
of the cartesian product [, .y 4%, and whose homs are defined by Q7(A, B),, = 4,(An, Bn). Now
define ¥ by composing thus:

21 (7-Cat)¥ S #N-Cat =5 ¥-Cat . (8.1)

Explicitly, for a sequence & = (&, ),en of ¥-categories, the objects of Y./ are families A =
(A,)nen of objects A,, € o, whereas the homs are defined by .o/ (A, B) = X,,9,(A,, B,). In the
obvious sense:

Proposition 8.1. The 2-category #'-Cat is series monoidal with this choice of .

Proposition 8.2. There is a series monoidal 2-functor
SerMnCat — sMon2-Cat

taking ¥ to ¥-Cat and F': ¥ — # to F,: ¥-Cat — #-Cat.

When our base series monoidal category 7 is cocomplete in a manner allowing discussion of the
bicategory ¥-Mod of ¥'-categories and #-modules, the operation (8.1) extends to

¥: (#-Mod)N — #-Mod . (8.2)

This provides an example ¥-Mod of a series monoidal bicategory, leading on to series promonoidal
categories and convolution.

9 w-Magmas and w-monoids

It is natural to define monoidal categories before symmetric monoidal categories, yet here, with
the countable version, we have presented the commutative case without mentioning the non-
commutative possibility. The next two sections correct that omission for posterity.

Now we wish to pass to multiplicative terminology rather than additive. We call a series magma
A an w-magma when the operation ¥: AN — A is denoted by ®: A“ — A, where w = N as a linearly
ordered set, and 0 € A is denoted by 1 € A. The informal notation X,c,a, = ap®a1® ... is also
helpful.
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We recall (2.2) in the new notation. For any w-magma A and subset S C w, we can define an
operation ®g: A% — A whose value at a € A% is

®n€5an = ®n€wcn (91)

where

a, ifnesS
Cn = .
1 otherwise .

Definition 9.1. An w-monoid A is an w-magma such that, for all order-preserving functions
& w—w,

®n€w®mef—1(n)am = ®n€wan . (92)

Remark 9.2. Each fibre £~(n) of an order-preserving function &: w — w is either finite or forms

a final segment of w. The latter case occurs only if & has finite image, and then only for the last
fibre.

Remark 9.3. After submitting the present paper, it came to our notice that (9.2) is also the
“general associativity postulate” (II’) of Tarski [29]. He claimed it too restrictive for his purposes.

Example 9.4. Every series monoid is an w-monoid with @ =% and 1 = 0.

Example 9.5. If A admits an associative binary multiplication in SerMn then A becomes an w-
monoid with @ =P (see (3.1)) and 1 = 0. This was foreshadowed in Remark 3.5.

10 w-Monoidal categories
For any category <7, object I € o/, and functor

Q: @Y — A, (Ai)iew — Qicwdi
each subset S C w, determines an operation ®g: &7° — o/ whose value at A € o7/ is

®n€SAn = ®n€w0n (101)

where

o A, ifnesS
"T otherwise .

For S,T C w and any function &: S — T, define &,: o7° — /T by
f* (A)n = ®§(m):nAm
forall Ac o7® andn € T.

Definition 10.1. An w-monoidal category is a category </ equipped with an object I € </, a
functor

R: T — A, (A)icw — Ricwi
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and, for all order-preserving functions £: w — w, natural isomorphisms

&% % AA:> % (10.2)
of of

subject to the conditions that the components of the \,, at I are all equal and there are the equations
(10.3) and (10.4) of pasting diagrams.

ngﬂwgﬂw MWLM“’
g_% g £¢
_ ey 10.3
o\ © ® = ® ® (10.3)
¥4 14
Se(n
o On A Ex o of &(n) o
A «@
| 2 \
BRI 10.4
1o ® ® = 1o ® ( )
14 o

Example 10.2. FEvery series monoidal category is w-monoidal with Q@ =X and I = 0.

Example 10.3. As a categorical version of Example 9.5, if o/ is a “series rig category”, possibly
without unit, then &/ becomes w-monoidal with @ taken to be a categorical version of the P of (3.1)
and I = 0.
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