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Abstract

Distributive laws between two monads in a 2-category K , as defined by Jon Beck in the case

K = Cat, were pointed out by the author to be monads in a 2-category MndK of monads.

Steve Lack and the author defined wreaths to be monads in a 2-category EMK of monads

with different 2-cells from MndK .

Mixed distributive laws were also considered by Jon Beck, Mike Barr and, later, various

others; they are comonads in MndK . Actually, as pointed out by John Power and Hiroshi

Watanabe, there are a number of dual possibilities for mixed distributive laws.

It is natural then to consider mixed wreaths as we do in this article; they are comonads in

EMK . There are also mixed opwreaths: comonads in the Kleisli construction completion KlK

of K . The main example studied here arises from a twisted coaction of a bimonoid on a monoid.

A wreath determines a monad structure on the composite of the two endomorphisms involved;

this monad is called the wreath product. For mixed wreaths, corresponding to this wreath

product, is a convolution operation analogous to the convolution monoid structure on the set

of morphisms from a comonoid to a monoid. In fact, wreath convolution is composition in a

Kleisli-like construction. Walter Moreira’s Heisenberg product of linear endomorphisms on a

Hopf algebra, is an example of such convolution, actually involving merely a mixed distributive

law. Monoidality of the Kleisli-like construction is also discussed.
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1 Introduction

While trying to expose the categorical mechanism behind the Heisenberg product of endomorphisms,
as defined and studied in [1, 16], we noticed that it has to do with distributive laws in the sense
of Beck [2]; also see [18, 21] for the general setting and monad terminology. A distributive law
ξ : TS ⇒ ST of a monad T over a monad S on a category A gives rise to a monad structure on
the composite ST . For a mixed distributive law ζ : SG ⇒ GS of a comonad G over a monad S,
we do not expect GS to be a monad or comonad, so what takes its place? It is the (internalized)
ζ-parametrized convolution of 2-cells G ⇒ S. To understand this to some extent (externally),
consider the case where T ⊣ G, and ξ and ζ are mates [12] under that adjunction. The adjunction
gives an isomorphism

[A ,A ](1A , ST ) ∼= [A ,A ](G,S)

The monoid structure on the left-hand side, arising pointwise from the monad structure on ST de-
termined by ξ, transports to a convolution-like monoid structure on the right-hand side, expressible
in terms of ζ.
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Rather than remain at the level of distributive law, since there are articles [7, 17, 6] which study
that, we decided to generalize to the wreaths of [14].

This article begins with a review of wreaths as defined in [14]. We spend some time extending
Example 3.2 of [14] to a wreath between monoids rather than groups: the use of fibrations is to
bring out the cohomological aspects which permeate the paper.

As for mixed distributive laws [17], there are several possibilities for mixed wreaths. We look
at those which are comonads in either the (limit) completion of the ambient 2-category under
Eilenberg-Moore construction or the (colimit) completion under the Kleisli construction. The first
are called mixed wreaths, the second mixed opwreaths. Mixed Eilenberg-Moore and mixed Kleisli
constructions are described and their universal properties presented. Composition in a mixed Kleisli
category is convolution parametrized by the mixed wreath.

Section 4 provides the construction of a mixed opwreath is a dual of the wreath construction
appearing as Example 3.3 in [14] based on Sweedler’s crossed product of Hopf algebras. We also
generalize to bialgebras (bimonoids). The ingredient is a twisted coaction of a bimonoid on a
monoid. Natural connections to cohomological structures are pursued.

Section 5 sets out when a mixed opwreath is opmonoidal. This is about a monoidal structure
on the mixed Kleisli construction. The final section gives structure on a twisted coaction so that
the associated mixed opwreath becomes opmonoidal.

We will use the string diagrams for monoidal categories as explained in [8]. However, we read
the diagrams from top to bottom rather than the reverse. For example, if A is a monoid in any
monoidal category V , the multiplication µ = µA and unit η = ηA are respectively depicted as
follows.

If we are dealing with a braided monoidal category, the braiding cX,Y : X ⊗ Y → Y ⊗ X will be
depicted as a crossing as follows.

X Y

XY

2 Review of wreaths

The free completion EM(K) of a 2-category K (such as Cat) under the Eilenberg-Moore construction
was identified in [14]. The objects of EM(K) are monads (A , T ) in K. That is, T is a monoid in
the endomorphism category K(A ,A ), monoidal under composition as tensor product, so we can
draw planar diagrams. A morphism (F, ϕ) : (A , T ) → (B, S) consists of a morphism F : A → B

and a 2-cell ϕ : SF ⇒ FT in K compatible with the monad structures on T and S. A 2-cell
ρ : (F, ϕ) ⇒ (G,ψ) is a 2-cell ρ : F ⇒ GS such that the following equation holds.
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ϕ

ρ

ρ

=

ψ

T F

G S

F

F

T

S G

G

Also in [14], wreaths were introduced and defined concisely as monads in the 2-category EM(K).
The wreath product is the monad obtained as the Eilenberg-Moore construction in EM(K) on the
wreath. As explained in [19], the Eilenberg-Moore construction is a weighted (or “indexed”) limit.
The completion of a 2-category K under that specific limit is EM(K); see [14]. So 2-categories
admitting the Eilenberg-Moore construction are the algebras for the 2-monad (“doctrine” in Law-
vere’s terminology [15]) EM on the 2-category of 2-categories; the action 2-functor EM(K) → K

takes each monad in K to its Eilenberg-Moore object. The action for a free algebra is of course
given by the multiplication of the monad. The wreath product

wr = wrK : EM(EM(K)) −→ EM(K)

gives the multiplication for our 2-monad EM; the unit

id = idK : K −→ EM(K)

simply takes each object A to the identity monad on A . As always with a completion under limits,
EM is a (dual) Kock-Zöberlein monad [13, 20]: the action is adjoint to unit. Therefore, when it
exists, the Eilenberg-Moore construction for a 2-category K is a right adjoint

em = emK : EM(K) −→ K

to id; we put A T = emA T = em(A , T ).
We will now describe wreaths explicitly using string diagrams. The reader wishing to compare

the commutative diagrams will find them in [14].
Let T = (T, µ, η) be a monad on an object A of K .
A wreath around T consists of an endomorphism S on A , and 2-cells ν : SS =⇒ ST , σ : 1A =⇒

ST and λ : TS =⇒ ST satisfying seven axioms.

=

λ

λ

λ

T

S T

T T

T

TT

T

T

S

S

SS

1

λ
=

SS

S

T

T T
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=

3

σ

λ

σ

λ

λ

λ

TS

T T

T

S

S T

T

T =

4

ν

ν

T S

T

T

T

T T

S

S

S

S
S

S

SS

T

T

T

=

σ

σν

ν

ν

ν

λ

5

ν

λ

=
ν

=

6 7

S

T

S

S

S

T

T

T

T

T

T

T

S S S S

S

S

S

S

S

S

S

S

T

T

T

T

T TS

The product of the wreath S around T , or the wreath product, is the monad consisting of the
endomorphism ST on A with the multiplication and unit as displayed in the diagram:

T

S

T

T

T

T

S

S

S

S

T T

T

λ

ν

σ

where the unlabelled nodes are the ternary and binary multiplications of T .
A distributive law [2] of a monad T over a monad S is a special case of a wreath around T

consisting of the endofunctor S while the natural transformations ν and σ of the special form

ν =
(

SS
µ

−→ S
Sη
−→ ST

)

and σ =
(

1A

ηη
−→ ST

)

, (2.1)

and λ remains arbitrary.

Example 2.1. We now generalise Example 3.2 of [14] from groups to monoids. We call a monoid
morphism p : E →M (in the category Set of sets) a normal cloven lax fibration when it is equipped
with a function j : M → E such that p ◦ j = 1M , j(1) = 1 and, for

A = {a ∈ E : p(a) = 1} = p−1(1) ,
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the function h : M ×A→ E, defined by h(x, a) = j(x)a, is invertible. This gives, for each x ∈M ,
a pullback square.

A
h(x,−)

//

!

��

E

p

��

1
x

// M

(2.2)

Generally, the kernel of a monoid morphism is a rather strange thing to consider, yet, because we
have a fibration, all the fibres p−1(x) of p are isomorphic as sets. Unlike arbitrary fibres, the kernel
has the advantage of being a submonoid of E.

We use the pullback (2.2) to obtain a function α : A ×M → A of M on A; indeed, α(a, x) =
a · x ∈ A is characterized by the property

j(x)(a · x) = aj(x) . (2.3)

In other words, this α measures the failure of the kernel to commute with the image of j. Using the
pullback uniqueness clause, we see that each − · x : A→ A is a monoid morphism.

We also use the pullback (2.2) with x replaced by xy to obtain a function ρ : M × M → A

characterized by the property

j(xy)ρ(x, y) = j(x)j(y) . (2.4)

In other words, ρ measures the failure of j to be a monoid morphism. Indeed, for each x, y ∈ M ,
we have a 2-cell

A

−·(xy)
��
❅❅

❅❅
❅❅

❅❅
−·x

// A

−·y
��⑦⑦
⑦⑦
⑦⑦
⑦⑦ks

ρ(x,y)

A

(2.5)

in the 2-category Mon = MonSet of monoids; the “naturality” amounts to the equation

(a · (xy))ρ(x, y) = ρ(x, y)((a · x) · y) (2.6)

which shows that ρ also measures the failure of α to be an action of the monoid M on A. To prove
(2.6), it suffices to prove we have equality after applying h(xy,−), which we do thus:

j(xy)(a · (xy))ρ(x, y) = aj(xy)ρ(x, y)

= aj(x)j(y)

= j(x)(a · x)j(y)

= j(x)j(y)((a · x) · y)

= j(xy)ρ(x, y)((a · x) · y) .

Let ΣM denote the category with one object 0 and hom ΣM(0, 0) = M ; composition is multi-
plication in M . What we are producing is a normal lax functor

P : ΣMop −→ Mon (2.7)
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with P0 = A and Px = − · x : A → A. The composition constraints are given by (2.5). Clearly
ρ(1, x) = 1 = ρ(x, 1) so all that remains to prove is the coherence condition (2.8).

A
−·y

//

ρ(x,y)
��

A

−·z

��

A
−·(xyz)

//

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

−·x

OO

A

ρ(xy,z)
��

= A

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄

−·y
// A

−·z

��

ρ(y,z)
��

A

ρ(x,yz)
��

−·(xyz)
//

−·x

OO

A

(2.8)

This amounts to the Schreier factor set or 2-cocycle condition (2.9).

ρ(xy, z)(ρ(x, y) · z) = ρ(x, yz)ρ(y, z) (2.9)

To prove this, it suffices to check after left multiplication by j(xyz), which we do thus:

j(xyz)ρ(xy, z)(ρ(x, y) · z) = j(xy)j(z)(ρ(x, y) · z)

= j(xy)ρ(x, y)j(z)

= j(x)j(y)j(z)

= j(x)j(yz)ρ(y, z)

= j(xyz)ρ(x, yz)ρ(y, z) .

We are now in a position to transport the multiplication of E to M ×A across the isomorphism
h.

M ×A

pr1
##●

●●
●●

●●
●●

h // E

p
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

M

The resultant multiplication on M × A is

(x, a)(y, b) = (xy, ρ(x, y)(a · y)b) . (2.10)

This gives an equivalence of categories between normal cloven lax fibrations over any monoid M
and normal lax functors P : ΣMop −→ Mon. This is essentially classical and is an interpretation
theorem for the second cohomology of the monoid M : 2-cocycles equate to certain extensions E →
M .

Now we give the wreath. The category is Set. The remaining data all arise from data in Set
by applying the strong monoidal functor Set → [Set, Set] which takes K to K × −. The monad T
arises from the monoid A. The endofunctor S arises from the set M . The natural transformation
ν arises from the function M ×M → M × A, (x, y) 7→ (xy, ρ(x, y)). The natural transformation
λ arises from the function A ×M → M × A, (a, x) 7→ (x, α(a, x)). The natural transformation σ

arises from the function 1 →M ×A which picks out (1, 1).
The wreath product of course arises from the monoidM×A with product (2.10) and so recaptures

E up to isomorphism.
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Remark 2.2. 1. Here is the string diagram for (2.6).

α

ρ

MA M

=
α

α

ρ

A A

A M M

(2.11)

2. Here is the string diagram for (2.9).

ρ

ρ

ρ

ρ

α

=

M

A

M M M MM

A

(2.12)

3. The structure on p : E →M of normal cloven (strict) fibration consists of a function j : M →
E such that p ◦ j = 1M , j(1) = 1 and the square

M × E
µ◦(j×1E)

//

1M×p

��

E

p

��

M ×M
µ

// M

is a pullback. Notice that we have the condition M × A ∼= E for a lax fibration since we can
paste two pullback squares as follows:

M ×A
1M×incl

//

pr1

��

M × E
µ◦(j×1E)

//

1M×p

��

E

p

��

M
(1M ,1)

//

1M

77M ×M
µ

// M .
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4. Similarly to Example 2.1, Example 3.3 of [14] can be generalised from Hopf algebras H to
bimonoids M in a braided monoidal category. Moreover, there is no need for the convolution
invertibility of ρ: however, the one axiom required for A to be a twisted M -module, which
is stated in [14] in terms of that inverse of ρ, should be replaced by the naturality condition
(2.11). We will discuss a dual of this in Section 4.

3 Mixed wreaths

There are several possibilities for mixed wreaths just as for mixed distributive laws; compare [17].
We will use the notation

EMdu(K) = EM(Kdu)du

for any of the dualities du ∈ {op, co, coop} (in the notation of [12]). We also put

KL(K) = EMop(K)

since it is the cocompletion of K with respect to the Kleisli construction. This then leads to

KLco(K) = EMcoop(K) .

Definition 3.1. Let T be a monad on A in the 2-category K. A mixed wreath around the monad
T is a comonad on (A , T ) in the 2-category EM(K).

More explicitly, a mixed wreath structure around T on an endomorphism G of A consists
of 2-cells δ : G ⇒ GGT , ε : G ⇒ T and ξ : TG ⇒ GT satisfying four axioms which say that
(G, ξ) : (A , T ) → (A , T ) is a morphism, and δ : (G, ξ) ⇒ (G, ξ)(G, ξ) and ε : 1 ⇒ (G, ξ) are 2-cells,
in EM(K), and three axioms which say δ is coassociative with counit ε.

Suppose K admits the Eilenberg-Moore construction for both monads and comonads. Simply
because em: EM(K) −→ K is a 2-functor, each mixed wreath (G, ξ) : (A , T ) → (A , T ) yields a
comonad Gξ = em(G, ξ) on A T in K. Define

mem(G, ξ, T ) = (A T )G
ξ

,

the Eilenberg-Moore construction for the comonad Gξ. This gives the object function for a mixed
Eilenberg-Moore construction

mem: EMco(EM(K))
EMco(em)
−→ EMco(K)

emco

−→ K (3.13)

with an obvious left adjoint.
We have the following description of mem(G, ξ, T ) when K = Cat. The objects (A, a, c) of

the category consist of an Eilenberg-Moore T -algebra a : TA → A and a morphism c : A → GA

satisfying the following three conditions.

TA
a //

Tc

��

A

c

��

TGA

ξA

��

GTA
Ga

// GA

A
c //

c

��

GA

Gc

��

GA

δA

��

GGTA
GGa

// GGA

A

1

��
✸
✸
✸
✸
✸
✸
✸
✸
✸
✸
✸
✸
✸
✸
✸

c

��

GA

εA

��

GTA
a

// A
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To reinforce the limit nature of the mem(G, ξ, T ) construction we next record its characterization
as a representing object. This can be taken as the definition when K lacks the Eilenberg-Moore
construction for monads or comonads in general.

Proposition 3.2. K(X ,mem(G, ξ, T )) ∼= mem(K(X , G),K(X , ξ),K(X , T ))

Definition 3.3. Let T be a monoid on A in the 2-category K. A mixed opwreath around the monad
T is a comonad on (A , T ) in the 2-category KL(K). This consists of an endomorphism G of A

made into a morphism of KL(K) by a 2-cell ζ : GT ⇒ TG and into a comonad by comultiplication
δ : G⇒ TGG and counit ε : G⇒ T . The seven axioms are shown below in string form.

ζ

ζ

ζ

ζ
= =

1 2

G T G

G

G

G GGG

T

T T

T

T

T

TT

T T

T

ζ
ζ

ζ

ζ

= =

G G

G

G

G

G

G

T

T

T

T

T

T

T T

T

T

ε

ε

3 4

δ

δ

T

T

T

G

GG
G

G T

T

T

ζ
ζ

==

G G G

G G G

G

T

T

T T

T

T

T

T

T

ε

δ

T

T

T

G

G

G

G G

T

T

T

G G G

G

G

δ

δ

δ

G
5

=

δ δ

ε

G

6 7

At the 2-category level Definition 3.3 really is just an example: a mixed opwreath in K is a
mixed wreath in K

op. Indeed, in the presence of right adjoints, we will now point out how a mixed
opwreath amounts to a wreath.

Recall from [12] the terminology and concept of mates under adjunction. Here is an exercise on
mates using the string calculus.

Proposition 3.4. Suppose T is a monad on A ∈ K. Suppose G ⊣ S are adjoint endomorphisms
of A . Mixed opwreath structures on G around T correspond under adjoint mateship to wreath
structures on S around T .
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In the situation of Proposition 3.4, the Eilenberg-Moore construction for the wreath product ST
does not easily reinterpret in terms of G and T , rather, as you would expect, the Kleisli construction
does. We shall now define this in general.

By applying Proposition 3.2 to K
op, and by defining the mixed Kleisli construction as the

composite

mkl : KLco(KL(K))
KLco(kl)
−→ KLco(K)

klco

−→ K , (3.14)

we obtain:

Proposition 3.5. K(mkl(G, ζ, T ),X ) ∼= mem(K(G,X ),K(ζ,X ),K(T,X ))

For K = Cat, the category mkl(G, ζ, T ) has the same objects as A and has homsets defined by

mkl(G, ζ, T )(A,B) = A (GA, TB) .

Composition is defined by wreath convolution: the composite of f : GA→ TB and g : GB → TC is
g ◦ f = f ∗ζ g as in the commutative diagram (3.15).

GA
δA //

f∗ζg

��

TGGA
TGf

// TGTB

TζB

��

TC TTTC
µ3C

oo TTGB
TTg
oo

(3.15)

f ∗ζ g =

f

g

ζ

A

B

C

δ

T

G

T

T

T

G

G

T

G

Remark 3.6. 1. For any monoidal category V , the functor V → [V ,V ], taking X to X ⊗ −,
is strong monoidal. So each monoid A = (A,m, j) in V is taken to a monad T = (T, µ, η) on
V . We will speak of a mixed opwreath around A to mean a quadruple (C, d, w, z) consisting
of an object C and morphisms d : C → A ⊗ C ⊗ C, w : C → A and z : C ⊗ A → A ⊗ C

satisfying the string diagram conditions of Definition 3.3 with T, µ, η,G, δ, ε, ζ replaced by
A,m, j, C, d, w, z, respectively. Moreover, since mixed opwreaths are defined purely in terms
of the monoidal structure, each mixed opwreath (C, d, w, z) around A in V defines gives rise to
a mixed opwreath (G, δ, ε, ζ) around the monad T = A⊗−. Furthermore, we write mkl(C, z,A)
for the category mkl(G, ζ, T ).
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2. For any monoidal category V , the functor V rev → [V ,V ], taking X to −⊗X, is also strong
monoidal. Thus the mixed opwreath around A as in Item 1 is taken to a mixed wreath around
the monad −⊗A on V . We write mem(C, z,A) for the mixed Eilenberg-Moore construction
(3.13) applied to this mixed wreath.

Definition 3.7. The set mkl(C, z,A)(I, I) ∼= V (C,A) of endomorphisms of I in the category
mkl(C, z,A) is, of course, a monoid under composition. The multiplication might be called z-
parametrized convolution on V (C,A).

Example 3.8 (The Heisenberg category). Suppose A = (A,m, j, c, e) is a bimonoid in the braided
monoidal category V . Denote the braiding by σ. We obtain a mixed opwreath on the monoid
A = (A,m, j) (indeed it is a mixed opdistributive law) in V by taking the comonoid C to be
A = (A, c, e), z to be

zh =

(

A⊗A
1A⊗σ−1

A,A
c

−→ A⊗A⊗A
σ−1
A,A

⊗1A
−→ A⊗A⊗A

1A⊗m
−→ A⊗A

)

=

(

A⊗A
1A⊗c
−→ A⊗A⊗A

σ−1
A,A⊗A

−→ A⊗A⊗A
1A⊗m
−→ A⊗A

)

,

d to be j ⊗ c : A→ A⊗A⊗A, and w to be j ◦ e : A→ A.

We put Hb(A) = mkl(A, zh, A) and call it the Heisenberg category of the bimonoid A in V . Here
is the reason.

Proposition 3.9. Suppose V = Vect is the symmetric monoidal category of vector spaces over a
fixed field and H is a Hopf algebra, then the zh-parametrized convolution of linear endomorphisms
of H is the Heisenberg product as defined in [16, 1].

4 Twisted coactions

The construction of a mixed opwreath explained in this section is a dual of the wreath construction
appearing as Example 3.3 in [14] based on Sweedler’s crossed product of Hopf algebras.

We begin by pointing out that, given a monoid A in any monoidal category V , the representable
functor V (−, A) : V op → Set becomes monoidal when equipped with the natural family of functions

V (X,A)× V (Y,A) −→ V (X ⊗ Y,A) , (4.16)

defined by (u, v) 7→ u • v as depicted below, and ηA ∈ V (I, A). The reason is that the Yoneda
embedding V → [V op, Set] is monoidal, where monoids in the codomain are precisely monoidal
functors.
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u v

X Y

A A

A

Here are the properties of the dot product:

ηA • u = u = u • ηA (unitality)

(u • v) • w = u • (v • w) (associativity)

(u • v) ◦ (f ⊗ g) = (u ◦ f) • (v ◦ g) (naturality)

We also recall that, if V is (lax) braided then the tensor product A⊗B of monoids A and B is
again a monoid: the (lax) braiding gives a distributive law of A over B used in defining µA⊗B in
terms of the multiplications µA and µB.

Definition 4.1. Let A be a monoid and B be a bimonoid in a (lax) braided monoidal category
V . A twisted (right) coaction of B on A consists of a monoid morphism γ : A → A ⊗ B and a
morphism τ : I → A⊗B⊗2 such that

(1A ⊗ εB) ◦ γ = 1A (counitality)

τ • ((γ ⊗ 1B) ◦ γ) = ((1A ⊗ δB) ◦ γ) • τ (τ-coassociativity)

((1A ⊗ δB ⊗ 1B) ◦ τ) • (τ ⊗ ηB) = ((1A⊗B ⊗ δB) ◦ τ) • ((γ ⊗ 1B⊗B) ◦ τ)) (2-cocyclicity)

(1A⊗B ⊗ εB) ◦ τ = ηA ⊗ ηB = (1A ⊗ εB ⊗ 1B) ◦ τ (normality) .

Note that we do not require τ to be •-invertible.

Here in string form are the conditions on a twisted coaction.

=
γ

A

B

γ

γ

A A A

AA

A

B

B

B

B

A

A

B

γ

A

=

A A

=
γ

A

B

γ

AA

A

B

B

B

A

A
B

γ

A

=

A A

τ τ γ

B



Wreaths, mixed wreaths and twisted coactions 13

=

BA A

B

=

A A

τ

τ

B

τ

γ

τ

BBBB

τ

=B

A

τ

B B

B

Proposition 4.2. Given a twisted coaction of a monoid A on a bimonoid B in a braided monoidal
category V , using the notation of Definition 4.1, a mixed opwreath around A is defined by the
comonoid B equipped with the morphisms

ζ = (ηA ⊗ 1B) • γ : B ⊗A −→ A⊗B

δ = (ηA ⊗ δB) • τ : B −→ A⊗B ⊗B

ε = ηA ◦ εB : B −→ A

as required by Definition 3.3.

Here are the string diagrams for these ζ, δ and ε.

ζ : δ : ε :
γ

τ

A

BA A A

B B

B B

B

In proving Proposition 4.2, a lemma will be useful.

Lemma 4.3. The following equations hold:

(i) δB • δB = δB ◦ µB

(ii) (1⊗ δB) • τ = (1A ⊗ ηB ⊗ ηB) • δ

(iii) (ηA ⊗ δB) • ((1⊗ δB) ◦ γ) = (1⊗ δB) ◦ ζ

Proof. Item (i) is a restatement of the bimonoid axiom for B asserting that µB preserves comulti-
plication. Item (ii) is immediate on drawing the string diagrams. Item (iii) is immediate from the
string diagrams and using the bimonoid axiom. q.e.d.

Here now are some clues on proving Proposition 4.2. There are seven conditions satisfied by
the twisted coaction. There are seven axioms to verify for the mixed opwreath. For condition
1, we can express the fact that γ preserves multiplication in the form γ ◦ µA = γ • γ, then dot
both sides on the left with ηA ⊗ 1B. Condition 2 follows by dotting on both sides by ηA ⊗ 1B the
equation expessing the fact that γ preserves unit. Condition 3 follows from counitality of γ and
the bimonoid condition that µB preserves counit. Condition 4 is obtained by dotting both sides
of the τ -coassociativity equation on the left by ηA ⊗ δB and employing Lemma 4.3. Condition 5
follows by dotting both sides of the cocyclicity condition by ηA ⊗ µB3, where µB3 is the ternary
multiplication µB ◦ (µB ⊗ 1B) = µB ◦ (1B ⊗ µB), and employing Lemma 4.3. Unsurprisingly by
now, conditions 6 and 7 follow from the two equations of normality and that µB preserves counit.
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Remark 4.4. If the 2-cocycle τ has the form ηA ⊗ τ ′ for some τ ′ : I → B ⊗ B then the mixed
opwreath of Proposition 4.2 is a mixed opdistributive law.

There is a 2-categorical viewpoint on twisted coactions. Recall (see [10] or Chapter 15 of [22],
for example) that the category MonV of monoids in the braided monoidal category V is a monoidal
2-category. If f, g : M → N are monoid morphisms then a 2-cell ξ : f ⇒ g : M → N is a morphism
ξ : I → N in V satisfying the naturality condition ξ • f = g • ξ. The vertical composite of ξ with a
2-cell ζ : g ⇒ h : M → N is ζ • ξ. The horizontal composite of ξ with a 2-cell ξ′ : f ′ ⇒ g′ : N → L

is ξ′ • (f ′ ◦ ξ) = (g′ ◦ ξ) • ξ′. The tensor product in MonV is the tensor product of monoids that we
have been dealing with already (it uses the braiding of V yet is not itself a braided tensor product
unless V is symmetric).

Now we can think of our bimonoid B as a comonoid in the 2-category MonV .

Proposition 4.5. A twisted right coaction of the bimonoid B on the monoid A in V is precisely
a normal lax right coaction of the comonoid B on the object A in the 2-category MonV .

Proof. We need to see what is involved in a normal lax right coaction. Indeed we have a morphism
γ : A→ A⊗B in MonV , as required. We have a 2-cell

A

γ

��

γ
// A⊗B

1⊗δB
��

τ +3

A⊗B
γ⊗1

// A⊗B ⊗B

(4.17)

in MonV ; the 2-cell condition is precisely τ -coassociativity. A lax coaction also involves a 2-cell
τ0 : 1A ⇒ (1A ⊗ ε) ◦ γ however the normality condition is that this should be an identity; this
precisely amounts to counitality. The axioms on τ for a lax coaction are precisely cocyclicity and
normality. q.e.d.

We now remind the reader of the role that variants of the (algebraist’s) simplicial category ∆
play as host to generic monoids, comonoids, actions and coactions (see [15]). We write ∆⊥,⊤ for the
strict monoidal category whose objects are the strictly positive finite ordinals, whose morphisms
are order and first-and-last-element preserving functions; the tensor product is m⊕ n = m+ n− 1
thought of, for the purposes of the value at morphisms, as identifying the last element of m with
the first element of n. Similarly, ∆⊤ denotes the category whose objects are the strictly positive
finite ordinals, whose morphisms are order and last-element preserving functions. There is a strict
right action

⊕ : ∆⊤ ⊗∆⊥,⊤ −→ ∆⊤ (4.18)

of∆⊥,⊤ on ∆⊤ defined bym⊕n = m+n−1 as before except that on morphisms, the left morphism
in the operation need not preserve the first element, so the result may not either.

Here is a picture of some generating morphisms of ∆⊤.

∆⊤ : 1
∂0 //

2

∂0 //

∂1 //
σ0oo 3

σ0oo

σ1oo

∂0
//

∂1 //

∂2 //

. . . .

σ0oo

σ1oo

σ2oo

(4.19)
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The corresponding picture for∆⊥,⊤ is obtained by deleting all the morphisms labelled ∂0. There
is a canonical inclusion ∆⊥,⊤  ∆⊤ which respects the right actions by ∆⊥,⊤. The corresponding
picture for ∆ is obtained by adjoining the object 0 and morphisms ∂n : n → (n + 1). There is a
canonical inclusion ∆⊤  ∆. Moreover, ∆op ∼= ∆⊥,⊤.

A comonoid B = (B, δB, εB) in a monoidal category W defines a strong monoidal functor
B̄ : ∆⊥,⊤ −→ W whose value at n is B⊗(n−1), whose value at σr : (n+ 1) → n is

σr = 1B⊗r ⊗ εB ⊗ 1B⊗(n−r−1) : B⊗n → B⊗(n−1) , (4.20)

and whose value at ∂r : n→ (n+ 1) is

∂r = 1B⊗r ⊗ δB ⊗ 1B⊗(n−r−2) : B⊗(n−1) → B⊗n . (4.21)

In fact this gives an equivalence of categories implying that, up to isomorphism, the comonoid B
can be recaptured from the strong monoidal functor.

Suppose W acts on a category A via a functor ⋆ : A ×W → A . The comonoid B in W defines
a comonad − ⋆ B on A . We define a right action of B on an object A ∈ A to be the structure
γ : A → A ⋆ B of an Eilenberg-Moore (− ⋆ B)-coalgebra on A. There is a functor Ā : ∆⊤ −→ A

whose value at the object n is A ⋆ B⊗(n−1), whose value at ∂0 : n→ (n+ 1) is

γ ⊗ 1B⊗(n−1) : A ⋆ B⊗(n−1) −→ A ⋆ B⊗n ,

and whose value at the other morphisms ∂r+1 in (4.19) is ∂r+1 = 1A ⋆ ∂r where ∂r comes from B̄.
Then Ā and B̄ comprise an action morphism.

∆⊤ ×∆⊥,⊤
⊕

//

Ā×B̄

��

∆⊤

Ā

��

A × W
⋆

// A

(4.22)

Again, this is part of an equivalence of categories between action morphisms and pairs (A,B).
This is all standard material, albeit maybe not explicitly in the above dual version.
Now suppose A is a 2-category and the action ⋆ : A × W → A corresponds to a functor

W → [A ,A ] into the 2-functor 2-category. Suppose A ∈ A has merely a morphism γ : A→ A⋆B.
We can define Ā on objects and generating morphisms as before but it is not quite a functor.

Proposition 4.6. A normal lax (−⋆B)-coalgebra structure on γ : A→ A⋆B amounts to a normal
lax functor structure on Ā : ∆⊤ → A which has its constraints Ā(ζ) ◦ Ā(ξ) → Ā(ζ ◦ ξ) identities
unless neither ξ nor ζ is in ∆⊥,⊤. In particular, Ā restricts along the inclusion ∆⊥,⊤  ∆⊤ to a
strict functor, that is, a simplicial object of A .

Proposition 4.7. In the situation of Proposition 4.6, suppose A is pointed by a morphism ηA : I →
A in A , the comonoid B is pointed by a comonoid morphism ηB : I → B in W , and γ : A→ A ⋆B

respects the pointings, then each lax functor Ā : ∆⊤ → A extends along the inclusion ∆⊤  ∆
to a lax functor Â : ∆ → A by defining Â(0) = I, ∂0 = ηA : I → A, and

∂n : = 1A⊗B⊗(n−1) ⊗ ηB : A⊗B⊗(n−1) → A⊗B⊗n .
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In particular, for braided monoidal V and W = A = MonV (with the action on itself by its
own tensor product), each twisted coaction of a bimonoid B on a monoid A determines a slightly
lax (augmented) cosimplicial monoid Â in V with Â(n) = A⊗B⊗(n−1). Our terminology that τ is
a normalized 2-cocycle is justified by the formulas

(∂1τ) • (∂3τ) = (∂2τ) • (∂0τ) , σ1τ = 1 = σ0τ .

5 Monoidality

The basis of this section is the pioneering work of Day [3, 4].
Suppose T = (T, µ, η) is a monoidal monad on the monoidal category A . Then the Kleisli

category AT is canonically monoidal: on objects, which are the same as for A , the tensor product
is that of A ; on homs it is equal to

AT (X,Y )× AT (X
′, Y ′) = A (X,TY )× A (X ′, TY ′)

⊗
−→ A (X ⊗X ′, TY ⊗ TY ′)

A (1X⊗X′ ,ϕY,Y ′ )
−→ A (X ⊗X ′, T (Y ⊗ Y ′)) = AT (X ⊗X ′, Y ⊗ Y ′) .

The canonical functor A → AT is strict monoidal.

Definition 5.1. A mixed opwreath (G, ζ, δ, ε) around the monoidal monad T on A (see Defini-
tion 3.3) is opmonoidal when the lifted comonad Ḡ = (Ḡ, δ̄, ε̄) on AT is equipped with opmonoidal
structure.

By the dual of the fact that Kleisli categories of monoidal monads are canonically monoidal, for
an opmonoidal opwreath, the category mkl(G, ζ, T ) is canonically monoidal since it is the Kleisli
category for the opmonoidal comonoid Ḡ on AT .

Let us spell out the data and axioms involved in Definition 5.1, and the monoidal structure on
mkl(G, ζ, T ).

The data are morphisms

ψX,X′ : G(X ⊗X ′) −→ T (GX ⊗GX ′) (5.23)

indexed by pairs of objects X,X ′ ∈ A . There are six axioms.

G(X ⊗X ′)
ψX,X′

//

G(f⊗f ′)

��

T (GX ⊗GX ′)
T (Gf⊗Gf ′)

// T (GTY ⊗GTY ′)

T (ζY ⊗ζY ′)

��

G(TY ⊗ TY ′)

GϕY,Y ′

��

T (TGY ⊗ TGY ′)

TϕGY,GY ′

��

GT (Y ⊗ Y ′)

ζY ⊗Y ′

��

TT (GY ⊗GY ′)

µGY ⊗GY ′

��

TG(Y ⊗ Y ′)
TψY,Y ′

// TT (GY ⊗GY ′)
µGY ⊗GY ′

// T (GY ⊗GY ′)

(5.24)
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G(X ⊗X ′ ⊗X ′′)
ψX⊗X′,X′′

//

ψX,X′⊗X′′

��

T (G(X ⊗X ′)⊗GX ′′)

T (ψX,X′⊗ηGX′′ )

��

T (GX ⊗G(X ′ ⊗X ′′))

T (ηGX⊗ψX′,X′′ )

��

T (T (GX ⊗GX ′)⊗ TGX ′′)

TϕGX⊗GX′,GX′′

��

T (TGX ⊗ T (GX ′ ⊗GX ′′))

TϕGX,GX′⊗GX′′

��

TT (GX ⊗GX ′ ⊗GX ′′)

µGX⊗GX′⊗GX′′

��

TT (GX ⊗GX ′ ⊗GX ′′)
µGX⊗GX′⊗GX′′

// T (GX ⊗GX ′ ⊗GX ′′)

(5.25)

T (TGX ⊗ TI)

TϕGX,I

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

T (GX ⊗GI)

T (ηGX⊗εI )
66♠♠♠♠♠♠♠♠♠♠♠♠

TTGX

µGX

��

GX
ηGX

//

ψX,I

OO

TGX

(5.26)

T (TI ⊗ TGX)

TϕI,GX

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

T (GI ⊗GX)

T (εI⊗ηGX )
66♠♠♠♠♠♠♠♠♠♠♠♠

TTGX

µGX

��

GX
ηGX

//

ψI,X

OO

TGX

(5.27)
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TGG(X ⊗X ′)
TGψX,X′

**❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

G(X ⊗X ′)

δX⊗X′

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

ψX,X′

��

TGT (GX ⊗GX ′)

TζGX⊗GX′

��

T (GX ⊗GX ′)

T (δX⊗δ′X )

��

TTG(GX ⊗GX ′)

TTψGX,GX′

��

T (TGGX ⊗ TGGX ′)

TϕGGX,GGX′

��

TTT (GGX ⊗GGX ′)

TµGGX⊗GGX′

��

TT (GGX ⊗GGX ′)

µGGX⊗GGX′

**❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

TT (GGX ⊗GGX ′)

µGGX⊗GGX′

tt❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥

T (GGX ⊗GGX ′)

(5.28)

T (TX ⊗ TX ′)
TϕX,X′

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

T (GX ⊗GX ′)

T (εX⊗εX′ )
66♠♠♠♠♠♠♠♠♠♠♠♠♠

TT (X ⊗X ′)

µX⊗X′

��

G(X ⊗X ′)
εX⊗X′

//

ψX,X′

OO

T (X ⊗X ′)

(5.29)

Diagram (5.24) expresses the naturality of ψ. Diagrams (5.25), (5.26), (5.27) express the op-
monoidality of Ḡ when equipped with ψ. Diagrams (5.28), (5.29) express the opmonoidality of δ̄,
ε̄, respectively. One of the other conditions is that the nullary piece ψ0 of opmonoidal structure on
Ḡ must be εI . This means that the nullary conditions for δ̄, ε̄ to be opmonoidal are automatically
satisfied; the less trivial of these is the former, which amounts to the Diagram (5.30), yet that
follows using 3 and 6 for a mixed opwreath.

TGTI
TζI

// TTGI
TTεI // TTTI

µTI

��

TGGI

TGεI

OO

TTI

µI

��

GI
εI

//

δI

OO

TI

(5.30)
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Now we come to the monoidal structure on mkl(G, ζ, T ). The tensor product of two objects
X,X ′ is the tensor product X⊗X ′ of the objects as objects of A . The tensor product of morphisms
f : X → Y and f ′ : X ′ → Y ′ in mkl(G, ζ, T ), which are morphisms f : GX → TY and f ′ : GX ′ →
TY ′ in A , is the composite

G(X ⊗X ′)
ψX,X′

−→ T (GX ⊗GX ′)
T (f⊗f ′)
−→ T (TY ⊗ TY ′)

TϕY.Y ′

−→ TT (Y ⊗ Y ′)
µY ⊗Y ′

−→ T (Y ⊗ Y ′).

The unit of this monoidal structure is the unit I of A . The Eckmann-Hilton argument [5] yields:

Corollary 5.2. If (G, ζ, δ, ε) is an opmonoidal mixed opwreath around the monoidal monad T on
A then the monoid mkl(G, ζ, T )(I, I) of endomorphisms of I is commutative.

6 Monoidal twisted coactions

In this section we will show what structure on a twisted coaction leads to opmonoidality of the
generated mixed opwreath of Proposition 4.2.

We work in a braided monoidal category V .

Definition 6.1. A twisted coaction (γ, τ) of a bimonoid B on a monoid A (see Definition 4.1) is
monoidal when it is equipped with a morphism d : B → A⊗B⊗B which satisfies the five conditions
(6.31) to (6.34).

d

γ

γ

=

γ

d

A BA

A A

A A

BBBB

B

(6.31)
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d

A

B

d

BBB

=

d

B

d

A B B B

(6.32)

d

A

B

BB

=

d

B

A B

B
B

=

B

A

(6.33)

=

d

ττ

τ

d

d

γ

BBBBBB

B B

B BAA

(6.34)

Proposition 6.2. Let V be a braided monoidal category. Given a monoidal twisted coaction (γ, τ)
of a bimonoid B on a commutative monoid A (see Definition 4.1), the mixed opwreath described
in Proposition 4.2, equipped with the morphisms

ψX,X′ = (1A ⊗ 1B ⊗ c−1
X,B ⊗ 1X′) ◦ (d⊗ 1X ⊗ 1X′) ,

is opmonoidal.

Proof. Since A is commutative, the arising monad T = A ⊗ − is monoidal with ϕ0 = η ⊗ 1I and
ϕX,X′ = µ ◦ (1A ⊗ cX,A ⊗ 1X′). Here are the string diagrams for ψ and ϕ.
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ψX,X′ =
d

ϕX,X′ =

B

A

X X ′

BB

X X ′

AA

(6.35)

With these data, and that of Proposition 4.2, draw the string diagrams for Diagrams (5.24) to
(5.29). The remarkable fact is that the variables f and f ′ can be moved out of the top of Dia-
grams (5.24), while X and X ′ can be disconnected from all the diagrams. Diagram (5.29) follows
from Diagram (6.33). Then Diagrams (6.31) to (6.34) are what remains. So indeed we obtain an
opmonoidal mixed opwreath. q.e.d.
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[10] André Joyal and Ross Street, Braided tensor categories, Advances in Mathematics 102 (1993)
20–78.



22 R. Street

[11] G. Max Kelly, Basic concepts of enriched category theory, London Mathematical Society
Lecture Note Series 64 (Cambridge University Press, Cambridge, 1982).

[12] G. Max Kelly and Ross Street, Review of the elements of 2-categories, Lecture Notes in
Mathematics 420 (Springer-Verlag, 1974) 75–103.

[13] Anders Kock, Monads for which structures are adjoint to units, Journal of Pure and Applied
Algebra 104 (1995) 41–59.

[14] Stephen Lack and Ross Street, The formal theory of monads II, J. Pure Appl. Algebra 175(1-
3) (2002) 243–265.

[15] F. William Lawvere, Ordinal sums and equational doctrines, in: Sem. on Triples and Cate-
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