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Abstract

In the paper, by virtue of the Faá di Bruno formula and two identities for the Bell polynomial
of the second kind, the authors find a closed form for the Stirling polynomials in terms of the
Stirling numbers of the first and second kinds.
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1 Notation and main result

It is common knowledge [1, p. 48] that the Bernoulli numbers Bj are defined by
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j=0

Bj
zj

j!
= 1− z

2
+
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j=1

B2j
z2j

(2j)!
, |z| < 2π.

For some new developments in recent years about this topic, please refer to [2, 3, 5, 9, 12] and the
closely related references therein.

The Stirling numbers of the first and second kinds s(n, k) and S(n, k) are important in combi-
natorial analysis, theory of special functions, and number theory. They can be generated by the
rising factorial
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k=0
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and the exponential function
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n!
,

see [1, p. 213, Theorem A] and [1, p. 206, Theorem A], and can be computed by explicit formulas

s(n, k) = (−1)n+k(n− 1)!
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for 1 ≤ k ≤ n and
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see [11, Corollary 2.3] and [1, p. 206]. For recent investigations on the Stirling numbers of the first
and second kinds s(n, k) and S(n, k), please refer to [5, 9, 10, 11] and plenty of references cited
therein.

The Stirling polynomials Sk(x) are a family of polynomials that generalize the Bernoulli num-
bers Bk and the Stirling numbers of the second kind S(n, k). The Stirling polynomials Sk(x) for
nonnegative integers k are defined by the generating function(

t

1− e−t

)x+1

=

∞∑
k=0

Sk(x)
tk

k!
.

The first six Stirling polynomials Sk(x) for 0 ≤ k ≤ 5 are

1,
x+ 1

2
,

3x2 + 5x+ 2

12
,

x3 + 2x2 + x

8
,

15x4 + 30x3 + 5x2 − 18x− 8

240
,

3x5 + 5x4 − 5x3 − 13x2 − 6x

96
.

The Stirling polynomials Sk(x) for k ≥ 0 are special cases of the Nölund polynomials B
(x)
k (z)

defined by (
t

et − 1

)x

ezt =

∞∑
k=0

B
(x)
k (z)

tk

k!
,

namely, Sk(x) = B
(x+1)
k (x+ 1). See [8, Chapter 6].

By the way, the polynomials ψk(x) defined by(
t

1− e−t

)x+1

= 1 + (x+ 1)

∞∑
k=0

ψk(x)tk+1

are also called the Stirling polynomials in [6] and [7, p. 71].
We can easily check

Sk(0) = (−1)kBk and Sk(−m) =
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k

)S(k +m− 1,m− 1)

for m ≥ 1. Moreover, the explicit formulas
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which come from Lagrange’s interpolation formula, are known. For more information on Sk(x), see
the papers [15, 16] and the closely related references therein.
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A closed form is a mathematical expression that can be evaluated in a finite number of oper-
ations. It may contain constants, variables, four arithmetic operations, and elementary functions,
but usually no limit.

In this paper, we find a closed form for the Stirling polynomials Sk(x) in terms of the Stirling
numbers of the first and second kinds s(n, k) and S(n, k).

Our main result can be stated as the following theorem.

Theorem 1. For k ≥ 0, the Stirling polynomials Sk(x) can be computed by the closed form

Sk(x) = (−1)kk!

k∑
m=0

[
k∑

`=m

s(`+ 1,m+ 1)

(k + `)!

∑̀
i=0
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)
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]
xm. (2)

2 Proof of Theorem 1

The Bell polynomials of the second kind, or say, partial Bell polynomials, denoted by
Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0, are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑
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.

See [1, p. 134, Theorem A]. They satisfy
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)
= akbnBn,k(x1, x2, . . . , xn−k+1) (3)

for complex numbers a and b, see [1, p. 135], and
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1
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1

3
, . . . ,
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)
S(n+ i, i), (4)

see [3, Theorem 1 and Remark 1], [4, p. 30], [10, p. 315], [12, Lemma 2.3], [14, Remark 2.1], and [17,
Example 4.2].

The Faà di Bruno formula can be described in terms of the Bell polynomials of the second kind
Bn,k(x1, x2, . . . , xn−k+1) by

dn

d tn
f ◦ h(t) =

n∑
k=0

f (k)(h(t))Bn,k

(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
. (5)

See [1, p. 139, Theorem C].

Taking f(u) = u−(x+1) and u = h(t) = 1−e−t

t in the formula (5) and using the limit

lim
t→0

u = lim
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1− e−t

t
= 1
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yield
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is the falling factorial of x ∈ R for n ∈ {0} ∪ N. It is not difficult to see that
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where (x)n is defined by (1). Hence, it follows that
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by virtue of (3) and (4), we have
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Accordingly, we obtain
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The explicit formula (2) is thus proved. The proof of Theorem 1 is complete.

Remark 1. This paper is a slightly revised version of the preprint [13].
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