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Abstract

The purpose of this work is to develop two new iterative methods for solving nonlinear equations
which does not require any derivative evaluations. These composed formulae have seventh and
eighth order convergence and desire only four function evaluations per iteration which support
the Kung-Traub conjecture on optimal order for without memory schemes. Finally, numerical
comparison is provided to show its effectiveness and performances over other similar iterative
algorithms in high precision computation.
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1 Introduction

The problem of finding the real roots of the nonlinear equation

f(x) = 0, (1.1)

is the most fascinating computational problems in numerical analysis. The solution of nonlinear
equations is required for many practical situations occurs in Physics, Chemistry, Mathematics and
Engineering. In most of the cases, the exact solution of nonlinear equations are rarely obtainable.
In such cases, we can produce the approximate solution by iterative methods. Iterative methods can
be divided into single-point and multi-point schemes. These schemes are further sub-classified into
with and without derivative category. The multi-point methods have gain more importance over
single point methods because they have high order of convergence and efficiency index. Some times
f(x) does not have a derivative or computation of the derivative of f(x) is very cumbersome. Kung
and Traub [1] conjectured that an optimal iterative methods consuming n+ 1 function evaluations
per iteration could achieve convergence order of 2n. So the methods which does not use derivative
of f(x) is generally more desirable as it reduces the number of function evaluations per iteration.
A few of the derivative-free algorithms were discussed in the research articles [2]- [7].

Choosing a good initial approximation of iterative methods for solving nonlinear equations
is also interesting problem. If, it is ensure that the initial approximation is close enough to the
solution, which gives guarantee to converge the solution. There are many strategies used for finding
good initial approximation. In the beginning, the well-known bisection method is mostly used to
find the good initial approximation but it is not sufficiently efficient technique. So, after that
Yun [8], present a non-iterative method based on numerical integration method briefly referred as
NIM, which involved signm, tanh and arctan functions. These three functions are used to find a
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good initial approximation for nonlinear equations. The considered three kinds of so-called sigmoid
transformations of f are S-transformations, T -transformation and A- transformation. These NIM
does not required any derivative and no iterative process. Using numerical integration, we can
obtain relatively good approximation to the sought zero in one step. Furthermore, we present some
basic definitions and their references such as [9]-[12].
Definition 1: Let α, xn ∈ R, n = 0, 1, 2, ... then the sequence {xn} is said to converge to α if

limn→∞|xn − α| = 0.

If in addition, there exist a constant C > 0, an integer n0 > 0, and p > 0, such that for all n > n0

|xn+1 − α| ≤ C|xn − α|p,

then {xn} is said to be converges to the root α with order at least p. If p = 2 or 3, the convergence
is said to be quadratic or cubic, respectively. Here en is the error at the nth iteration and the
relation

en+1 ≤ Cepn +O(ep+1
n ), (1.2)

is called the error equation. The value of p is called the order of convergence.
Definition 2: The efficiency index of an iterative method of order p requiring n function evaluations
per iteration is most frequently calculated in Traub sense [12], which is defined by

E = p1/n. (1.3)

Definition 3: Suppose that xn−1, xn and xn+1 are three successive iterations closer to the root α.
Then computational order of convergence (COC) of methods are approximated by [9]

COC ≈ ln|f(xn+1)/f(xn)|
ln|f(xn)/f(xn−1)|

, (1.4)

In this paper our main goal is to developed two derivative free without memory methods of order
seven and eight, respectively using four function evaluations at each iteration, which is an extended
version of the derived method by Mirzaee and Hamzeh[13]. The efficiency index of seventh and
eighth order derivative free method are 1.565 and 1.6817, respectively. The article is organized as
follows. In section 2, we mention the sub-steps and gives theoretical result for new seventh order
derivative free three-step without memory scheme. In section 3, we shows the analytical proof
for optimal eighth order derivative free scheme. Moreover, In Section 4, we presented a thorough
numerical comparison between the existing derivative free methods and new proposed methods. In
section 5, some concluding remarks are given.

2 Seventh Order Iterative Method

We acknowledge the single variate version of the scheme presented by Mirzaee and Hamzeh [13]

yn = xn −
f(xn)

f ′(xn)
,

zn = xn −
f(xn)

f ′(xn)

f(yn)− f(xn)

(2f(yn)− f(xn))
,

xn+1 = zn −
f(zn)f(xn)(2f(yn)− f(xn))

f ′(xn)[4f(yn)f(xn)− 2f(yn)2 − f(xn)2]
. (2.1)
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It’s convergence rate is six, which includes three function and one derivative evaluations per itera-
tion. So, we can increase the order of convergence of this scheme upto optimal eighth order on the
basis of Kung and Traub conjecture. Using the equation (1.3), the efficiency index of above scheme
is 1.565. In [14], we accelerated the rate of convergence from six to seven and eight. Sometimes
derivative evaluations are more complicated during computation, so to overcome this complication,
we present derivative free version of the method. During this approach, we eliminate the derivative
evaluation of functions as follows Method 1:

yn = xn −
f(xn)

f [xn, wn]
,

zn = xn −
f(xn)

f [xn, wn]
A(tn),

xn+1 = zn −
f(zn)

f [xn, wn]
{B(tn) ∗H(un)}, n = 0, 1, 2, ... (2.2)

where A(tn), B(tn) and H(un) are weight function and tn = f(yn)
f(xn) , un = f(zn)

f(yn) . Here we use

forward difference to approximate the value of the derivative f ′(xn) ≈ f [xn, wn] = f(wn)−f(xn)
(wn−xn) ,

where f(wn) = xn + f(xn)2. The first result statement is as follows

Theorem 2.1. Assume α ∈ D be simple zero of a sufficiently differentiable function f : D ⊆ R→ R
for an open interval D which contains x0 as an initial approximation of α. Then the order of
convergence of method defined in (2.2) is seven if
A(0) = 1, A′(0) = 1, A′′(0) = 4, A(3)(0) = 30, B(0) = 1, H(0) = 1, B′(0) = 2, H ′(0) = 1,
B′′(0) = 12
and the error equation is given by

en+1 =
1

24
c22((f ′(α))2c2 + c3)(24(f ′(α))2c2 + 48c3 + c22(−144 + 4B(3)(0)

−A(4)(0)))e7
n +O(e8

n). (2.3)

Proof. Suppose α be the simple zero of f(x) and f ′(α) 6= 0. We introduced the error equation at
nth iteration as en = xn − α. Using Taylor series in each term involved in (2.2) about the simple
zero α , we get

f(xn) = f ′(α)[en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + ...+O(e8

n)], (2.4)

where ci = f(i)(α)
i!f ′(α) , i = 2, 3..., Moreover, we obtained

wn = xn + f(xn)2

= en + f ′(α)2[en + e2
nc2 + e3

nc4 + e4
nc4 + e5

nc5 + ...+O(e8
n)]2,

(2.5)

And then

f(wn) = (en + f ′(α)2(en + e2c2 + e4
nc4 + e5

nc5 + ...)2

+c2(en + f ′(α)2(en + e2c2 + e4
nc4 + e5

nc5 + ...)2)2 +

...+O(e8
n)).
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So, we find the value

f [xn, wn] =
f(wn)− f(xn)

(wn − xn)
= (−f ′(α)(en + e2

nc2 + e3
nc3 + ...)

+f ′(α)(en + f ′(α)2(en + e2
nc2 + e3

nc3 + ...)2

+c2(en + f ′(α)2((en + e2
nc2 + e3

nc3 + ...)2)2...+O(e8
n).

(2.6)

From (2.4) and (2.6), we have

yn = c2e
2
n + (f ′(α)2c2 − 2c22 + 2c3)e3

n

+(−f ′(α)2c22 + 4c32 + 4c32 + 3f ′(α)2c3 − 7c2c3 + 3c4)e4
n

+(−f ′(α)4c22 + 3f ′(α)2c32 − 8c42 + f ′(α)4c3 − 6f ′(α)2c2c3

+20c22c3 − 6c23 + 6f ′(α)2c4 − 10c2c4 + c5)e5
n + ...+O(e8

n).

As well as

f(yn) = [f ′(α)c2e
2
n + f ′(α)(f ′(α)2c2 − 2c22 + 2c3)e3

n

+f ′(α)(−f ′(α)2c22 + 5c32 + 3f ′(α)2c3 − 7c2c3 + 3c4)e4
n

+f ′(α)(−f ′(α)4c22 + 3f ′(α)2c32 − 8c42 + f ′(α)4c3

−6f ′(α)2c2c3 + 20c22c3 − 6c23 + 2c22(f ′(α)2c2 − 2c22 + 2c3)

+6f ′(α)2c4 − 10c2c4 + 4c5)e5
n + ...+O(e8

n)]. (2.7)

Then, from (2.4) and (2.7), we get

f(yn)

f(xn)
= f ′(α)c2e

2
n + f ′(α)(f ′(α)2c2 − 2c22 + 2c3)e3

n

+f ′(α)(−f ′(α)2c22 + 5c32 + 3f ′(α)2c3 − 7c2c3 + 3c4)e4
n + f ′(α)

(−f ′(α)4c22 + 3f ′(α)2c32 − 8c42 + f ′(α)4c3 − 6f ′(α)2c2c3

+20c22c3 − 6c23 + 2c22(f ′(α)2c2 − 2c22 + 2c3)

+6f ′(α)2c4 − 10c2c4 + 4c5)e5
n...+O(e8

n). (2.8)

Substituting the values of (2.8) in the second sub-step of method (2.2), we obtain

zn − α = (1−A(0))en + c2(A(0)−A′(0))e2
n

+(f ′(α)2c2(A(0)−A′(0)) + 2c3(A(0)−A′(0))

−1

2
c22(4A(0)− 8A′(0) +A”(0)))e3

n + ...+O(e8
n).

Now, by imposing these conditions A(0) = 1, A′(0) = 1 and A′′(0) = 4 in the above equation, we
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get possible order of convergence is four and by using it, we can get

f(zn) = −1

6
{f ′(α)c2(6f ′(α)2c2 + 6c3 + c22(−30 +A(3)(0)))}e4

n

+{f ′(α)(−c32 − 2c2(3f ′(α)2c3 + c4)− c22(f ′(α)4 + c3(−32

+A(3)(0)))− 1

2
f ′(α)2c32(−28 +A(3)(0)) + c42(−36 +

5

3
A(3)(0)

− 1

24
A(4)(0)}e5 + {f ′(α)(−c3(9f ′(α)2c3 + 7c4)− c2(7f ′(α)4c3

+11f ′(α)2c4 + 3c5 + 2c23(−33 +A(3)(0))) +
1

2
c22(3c4(−32

+A(3)(0)) + 7f ′(α)2c3(−28 +A(3)(0))) +
1

6
f ′(α)2c32(66

−3A(3)(0) + 2c3(−786 + 37A(3)(0)−A(4)(0))) +
1

6
f ′(α)c42

(−504 + 28A(3)(0)−A(4)(0))− 1

120
c52(−20400 + 1240A(3)(0)

−65A(4)(0) +A(5)(0)))}e6
n + ...+O(e8

n). (2.9)

Considering (2.7) and (2.9), we have

f(zn)

f(yn)
= {1

6
(−6c3 − c2(6f ′(α)2 + c2(−30 +A(3)(0))))}e2

n

+{−3f ′(α)2c3 − 2c4 + c22(7− 1

3
f ′(α)2A(3)(0))− 2

3
c2c3

(−30 +A(3)(0)) + c32(−26 +
4

3
A(3)(0)− 1

24
A(4)(0))}e3

n

+{−f ′(α)4c3 − 3(2f ′(α)2c4 + c5)− 1

3
c2(3c4(−29 +A(3)(0))

+5f ′(α)2c3(−21 +A(3)(0))) + c23(19− 2

3
A(3)(0))

+
1

8
f ′(α)2c32(−272 + 20A(3)(0)−A(4)(0)) +

1

12
c22(2f ′(α)4

(−18 +A(3)(0)) + c3(−86A(3)(0) + 3(520 +A(4)(0))))

− 1

120
c42(−111160 + 820A(3)(0)− 55A(4)(0) +A(5)(0))}e4

n

+...+O(e8
n). (2.10)

Now using Taylor series for the simple root in the last sub-step of the method (2.2) and substitute
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the values of functions from equations (2.6), (2.9) and (2.10) in the scheme (2.2), we get

(zn − α)− f(zn)

f [x,w]
B(tn)H(un)

= {1

6
(−1 +B(0)H(0))c2(6f ′(α)2c2 + 6c3 + c22(−30 +A(3)(0))}e4

n

+{(2(−1 +B(0)H(0))c23 + 2(−1 +B(0)H(0))c2(3f ′(α)2c3 + c4)

+c22(f ′(α)(−1 +B(0)H(0) + c3(32 +H(0)(2 +B(0)(−34 +A(3)(0)))

−A(3)(0))) +
1

2
f ′(α)2c32(28 +H(0)(4 +B(0)(−32 +A(3)(0)))−A(3)(0))

− 1

24
c42(864− 40A(3)(0) +H(0)(−8(−30 +A(3)(0)) +B(0)(−1104

+48A(3)(0)−A(4)(0))) +A(4)(0)))e5
n

1

360
{360(−1 +B(0)H(0))c3(9f ′(α)2c3 + 7c4) + 360c2(7f ′(α)4(−1

+B(0)H(0))(11f ′(α)2c4 + 3c5) + c23(66 + 8H(0)− 2A(3)(0) +B(0)

(−1 + (−73 + 2A(0)(0)H(0))))) + 180c22(c4(96− 3A(3)(0) +H(0)(8

+B(0)(−104 + 3A(3)(0)))f ′(α)2c3 + c3(196 + 36H(0)− 7A(3)(0)

+B(0)(−4 +H(0)(−228 + 7A(3)(0))))) + 60f ′(α)2c42(504 +H(0)

(252− 8A(3)(0))− 28A(3)(0) +B(0)(2(−30 +A(3)(0)) +H(0)(−726

+35A(3)(0)−A(4)(0))) +A(4)(0))− 60c32(3f ′(α)4(−22− 8H(0)

+B(0)(2−H(0)(−28 +A(3)(0))) +A(3)(0)) + c3(B(0)(2(−30

+A(3)(0)) +H(0)(−2070 + 89A(3)(0)− 2A(4)(0))) + 2(786

−8H(0)(−33 +A(3)(0))− 37A(3)(0) +A(4)(0)))) + c52(−3(−20400

+1240A(3)(0) + 10H(0)(−1104 + 48A(3)(0)−A(4)(0))− 65A(4)(0)

+A(5)(0)) +B(0)(−10(−30 +A(3)(0))2 + 3H(0)(−31440

+1720A(3)(0)− 75A(4)(0) +A(5)(0))))}e6
n + ...+O(e8

n). (2.11)

For achieving the maximum possible convergence rate of the method (2.2), we put the values of
A(3)(0) = 30, B(0) = 1, H(0) = 1, B′(0) = 2, H ′(0) = 1, B′′(0) = 12 in the above equation and
obtain the error equation for the method (2.2) as

en+1 =
1

24
c22(f ′(α)2c2 + c3)(24f ′(α)2c2 + 48c3 + c22(−144 + 4B(3)(0)

−A(4)(0)))e7
n) +O(e8

n).

This proves the result. q.e.d.

3 Optimal order of convergence

In this ensuing section, we will improve the order of convergence from seven to optimal order
eight. To serve this purpose, we consider f(wn) = xn + f(xn)3 for obtaining the optimal order of
convergence. Here if we increase the degree of f(xn) more than three, it was observed that the



New seventh and eighth order... 109

order will not increase. Now, we formulate the algorithms as follows
Method 2:

yn = xn −
f(xn)

f [xn, wn]
,

zn = xn −
f(xn)

f [xn, wn]
A(tn),

xn+1 = zn −
f(zn)

f [xn, wn]
{B(tn) ∗H(un) ∗G(sn)}, n = 0, 1, 2, ... (3.1)

where G(sn) is a weight function and sn = f(zn)
f(xn) . Here we give the proof of the following theorem:

Theorem 3.1. Suppose that the function f : D ⊆ R → R for an open interval D has a simple
root α ∈ D. Let f(x) be sufficiently smooth in the interval D and the initial guess x0 is sufficiently
close to α. Then the order of convergence of the derivative free iterative scheme defined by (3.1) is
eight if A(0) = 1, A′(0) = 1, A′′(0) = 4, A(3)(0) = 30, A(4)(0) = 0, B(0) = 1, H(0) = 1, B′(0) = 2,
H ′(0) = 1, B′′(0) = 12, B(3)(0) = 36, G(0) = 1, G′(0) = 2, and its error equation is give by

en+1 =
1

120
c2c3(−120c22(f ′(α)3 − 4c3)− 120c2c4 + 60c23(−2 +H(2)(0))

+c42(5B(4)(0)−A(5)(0)))e8
n +O(e9

n). (3.2)

Proof. The proof of this theorem is similar to the previous one. So, we only find the required
expressions, the first one is

f(zn)

f(xn)
= {−c2c3}e3

n + { 1

24
(−24f ′(α)3c22 + 336c42 + 72c22c3

−48c23 − 48c2c4 − c42A(4)(0)}e4
n +

1

120
{−120f ′(α)3

c23 − 18480c52 − 720f ′(α)3c2c3 + 12600c32c3 + 1080c2c
2
3

+600c22c4 − 840c3c4 − 360c2c5 + 70c52A
(4)(0)

−40c32c3A
(4)(0)− c52A(5)(0))}e5

n

+
1

720
{−720f ′(α)6c22 + 40320f ′(α)3c42 + 730080c62

−5040f ′(α)3c22c3 − 1007280c42c3 − 6480f ′(α)3c23

+218880c22c
2
3 + 4320c33 − 7920f ′(α)3c2c4 + 114480c32c4

+18720c2c3c4 − 4320c24 + 5040c22c5 − 7200c3c5

−2880c2c6 − 120c42A
(4)(0)− 3420c62A

(4)(0)

+3930c42c3A
(4)(0)− 720c22c

2
3A

(4)(0)− 360c32c4A
(4)(0)

+102c62A
(5)(0)− 60c42c3A

(5)(0)− c62A(6)(0)}e6
n

+...+O(e9
n), (3.3)
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Together with (2.9), (3.3), in the last sub-step of iterative scheme (3.1), we obtain the error equation

en+1 = (zn − α)− f(zn)

f [xn, zn]
(B(tn) ∗H(un) ∗G(sn))

= {(−1 +G(0))c2c3}e4
n

+
1

24
{(−1 +G(0))(24c22(f ′(α)3 − 2c3) + 48c23 + 48c2c4

+c42(−336 +A(4)(0))}e5
n

+
1

120
{(−1 +G(0))(360c22c4 + 840c3c4 + 360c2(2f ′(α)3c3

+2c23 − c5)− 40c32(6f ′(α)3 + c3(−324 +A(4)(0))) + c52

(−16800− 65A(4)(0)−A(5)(0))}e6
n

+{−(−1 +G(0))(−9f ′(α)3c23 + 4c33 − 6c24 − 10c3c5)

−(−1 +G(0))c2((−11f ′(α)3 + 16c3)c4 − 4c6) +
1

2
(−1

+G(0))c32c4(−328 +A(4)(0)) + c22(14f ′(α)3(−1 +G(0))c3

+(−1 +G(0))(−f ′(α)6 + 4c5)− c23(−316 +G′(0)−G(0)(−314

+A(4)(0)) +
1

24
c42(4f ′(α)3(−1 +G(0))(−330 +A(4)(0))

c3(−30720 + 122A(4)(0)− 2A(5)(0) +G(0)(30576 + 4B(3)(0)

−123A(4)(0) + 2A(5)(0)))) +
1

720
(−1 +G(0))c62(−619200

+3000A(4)(0)− 96A(5)(0) +A(6)(0))}e7
n

+...+O(e9
n). (3.4)

This is clearly shows that the weight function in (3.1) must be chosen as stated in the theorem to
make it optimal and have the following error equation

en+1 =
1

120
c2c3(−120c22(f ′(α)3 − 4c3)− 120c2c4 + 60c23(−2 +H(2)(0))

+c42(5B(4)(0)−A(5)(0)))e8
n +O(e9

n). (3.5)

q.e.d.

Remark: By using the value of wn = xn + βf(xn)m, where β ∈ R − {0} and m ∈ N . If we
choose the value of m = 2, the error expression of the method (2.2) is obtained as

en+1 =
1

24
c22((f ′(α))2c2β + c3)(24(f ′(α))2c2β + 48c3 + c22(−144 + 4B(3)(0)

−A(4)(0)))e7
n +O(e8

n). (3.6)

Furthermore, we choose the of value m = 3 and find the error equation of the method (3.1) as

en+1 =
1

120
c2c3(−120c22(f ′(α)3β − 4c3)− 120c2c4 + 60c23(−2 +H(2)(0))

+c42(5B(4)(0)−A(5)(0)))e8
n +O(e9

n). (3.7)
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So, the varying parameter β does not affect the order of convergence of the scheme.

4 Numerical comparison

In order to demonstrate the accuracy of a method, it is necessary to compare the numerical results
of the presented method along with the methods available in the literature. The performances of
the proposed methods are compared with some of the existing algorithms. Here we denote the
seventh order derivative free method(eq:12) given in [3] by SKSM and eighth order derivative free
method (eq:19) presented in [3] by SKEM. Thereafter, we also compare our eighth order derivative
free method with the similar nature scheme given by Thukral in [2], which is denoted by TEM. The
sub-steps of of these schemes are follows
Soleymani and Khattri seventh order derivative free method (SKSM):

yn = xn −
f(xn)

f [xn, wn]
,

zn = yn −
f(yn)

f [xn, wn]

(
1 +

f(yn)

f(xn)
+
f(yn)

f(wn)

)
,

xn+1 = zn −
f(zn)

f [xn, wn][
1 + (2− f [xn, wn])

f(yn)

f(wn)
+

[
1

1− f [xn, wn]

]
(
f(yn)

f(xn)

)2

+
f(zn)

f(yn)

]
, (4.1)

Soleymani and Khattri eight order derivative free method (SKEM):

yn = xn −
f(xn)

f [xn, wn]
,

zn = yn −
f(yn)

f [xn, wn]

(
1 +

f(yn)

f(xn)
+
f(yn)

f(wn)

)
,

xn+1 = zn −
f(zn)

f [xn, wn]
[A1], (4.2)

where

A1 = 1 + (2− f [xn, wn])
f(yn)

f(wn)
+ (1− f [xn, wn])

(
f(yn)

f(wn)

)2

+(−4 + f [xn, wn](6 + f [xn, wn](−4 + f [xn, wn])))

(
f(yn)

f(wn)

)3

+
f(zn)

f(yn)
+ (4− 2f [xn, wn])

f(zn)

f(wn)
. (4.3)
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Thukral eight order derivative free method(TEM):

yn = xn −
f(xn)2

f(wn)− f(xn)
,

zn = yn −
f [wn, xn]f(yn)

f [xn, yn]f [wn, yn]
,

xn+1 = zn −
(

1− f(zn)

f(wn)

)−1 (
1 + 2

f(yn)3

f(wn)2f(xn)

)
(

f(zn)

f [xn, wn]− f [xn, yn] + f [xn, zn]

)
, (4.4)

where wn = xn + βf(xn) , n ∈ N , β ∈ R+. The test functions and their simple roots are
listed in Table 1. All computations were performed in Mathematica 9.0 using variable precision
arithmetic (VPA) to increase the number of significant digits. Here, we consider an approximate
solution rather than the exact root, depending on the precision of the computer. Thus, we have
the following stopping criterion |f(xn)| < 10−150. The computer specifications during numerical
performance are Microsoft Windows 8 Intel Core i5-3210M CPU@ 2.50 GHz with 4.00 GB of
RAM, 64-bit Operating System throughout this paper. In Table 3, we have observed that our
contributed methods perform better in comparison with other existing seventh and eighth order
methods and also obtain their COC using formula (1.4). The illustrative numerical results show
that they agree with the theoretical results obtained in Theorems 1 and 2.

Table 1. Functions and their roots
Function Root
f1(x) = sin3x+ x cosx α1 ≈ 1.19776...
f2(x) = (cosx2)1/2 − logx.x1/2 α2 ≈ 1.21789...
f3(x) = logx− x1/2 + 5 α3 ≈ 8.30943...
f4(x) = esinx − x+ 1 α4 ≈ 2.63066...
f5(x) = e−x − 1 + x/5 α5 ≈ 4.96511...
f6(x) = 2− 3x+ sinx2 α6 ≈ 0.91375...

Table 2. Weight functions
Method 1 A(tn) B(tn) H(un)

forms t3 +
1−tn
1−2tn

1−tn
1−3tn

eun

Method 2 A(tn) B(tn) H(un) G(sn)

forms t3n +
1−tn
1−2tn

− 8t4n
1−tn
1−3tn

− 12t3n eun 1
1−2sn
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Table 3. Comparison of numerical results for different derivative free methods
n TNFE |f(xn)| COC

f1(x) = sin3x + xcosx, x0 = 1

Method 1 3 12 10−257 7

SKSM 3 12 10−20 7

Method 2 3 12 10−496 8
SKEM - - - div

TEM 3 12 10−288 8

f2(x) = (cosx2)1/2 − logx.x1/2, x0 = 1.2

Method 1 3 12 10−284 7

SKSM 3 12 10−124 7

Method 2 3 12 10−396 8

SKEM 3 12 10−187 8

TEM 3 12 10−300 8

f3(x) = logx − x1/2 + 5, x0 = 8

Method 1 3 12 10−234 7

SKSM 3 12 10−54 7

Method 2 3 12 10−309 8

SKEM 3 12 10−49 8

TEM 3 12 10−296 8

f4(x) = esinx − x + 1, x0 = 2.3

Method 1 3 12 10−344 7

SKSM 3 12 10−104 7

Method 2 3 12 10−525 8

SKEM 3 12 10−138 8

TEM 3 12 10−490 8

f5(x) = e−x − 1 + x/5, x0 = 4.5

Method 1 3 12 10−539 7

SKSM 3 12 10−515 7

Method 2 3 12 10−745 8

SKEM 3 12 10−736 8

TEM 3 12 10−730 8

f6(x) = 2 − 3x + sinx2, x0 = 0.6

Method 1 3 12 10−535 7

SKSM 3 12 10−205 7

Method 2 3 12 10−462 8

SKEM 3 12 10−277 8

TEM 3 12 10−438 8
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5 Conclusion

In this article, we have demonstrated the performance of a new seventh and eighth-order derivative-
free methods. Convergence analysis proves that the new methods preserve their order of convergence
and efficiency index. There are two major advantages of these three step seventh and eighth-order
derivative free methods. First, we do not have to evaluate the derivatives of the functions. Therefore
they are especially efficient where the computational cost of the derivative is expensive. Second the
seventh and eighth order derivative free method gives better approximation of root compared to
some other methods.
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