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Abstract

In this paper, by using the variational principle of Ekeland, we prove the existence of at least
one solution to the fractional advection dispersion equation in RN .
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1 Introduction

The aim of this paper is to establish the existence of nontrivial solutions to the following
fractional advection dispersion equation


h
(
− cos(πα)

2

∫
|θ|=1

‖Dα
θ u‖2L2M1(dθ) + 1

2

∫
RN b(x)u2(x)dx

)
×
(
−
∫
|θ|=1

DθD
β
θ uM1(dθ) + b(x)u(x)

)
−
∫
|θ|=1

DθD
β
θ uM2(dθ) = f(x, u(x)) + |u|2∗−2u, x ∈ RN ,

u ∈ Hα(RN ),

(1)
where N > 1, infx∈RN b(x) > 0, β ∈ (0, 1), α = β+1

2 , M1(dθ) and M2(dθ) are two Borel probability

measures on the unit sphere in RN , Dβ
θ denotes directional fractional derivative of order β in the

direction of the unit vector θ, 2∗ = 2N
N−2α and the functions f : RN × R → R and h : (0,+∞) →

(0,+∞) are continuous.
If M2 ≡ 0, then the problem (1) is related to the stationary analogue of the equation

utt + h

(
−cos(πα)

2

∫
|θ|=1

‖Dα
θ u‖2L2M1(dθ) +

1

2

∫
RN

b(x)u2(x)dx

)

×

(
−
∫
|θ|=1

DθD
β
θ uM1(dθ) + b(x)u(x)

)
= f(x, t),

proposed by Kirchhoff [1] as an extension of the classical D’Alembert’s wave equation for free
vibrations of elastic strings. Kirchhoff’s model takes into account the changes in length of the
string during the vibration. The reader is referred to [1, 2, 3, 4, 5, 6] and the references therein for
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previous work on this subject. In particular, these papers discuss the historical development of the
problem as well as describe situations that can be realistically modeled by (1) with a nonconstant
h.

The existence of solutions to the problem (1) on bounded domain has been studied by several
authors (see e.g. [7, 8, 9, 10, 11, 12]). For example, Ervin and Roop [7], investigated the variational
solution to the steady state advection dispersion equation on bounded domain in RN , defined by

−
∫
|θ|=1

DθaD
−β
θ DθuM(dθ) + b · ∇u+ cu = f

where 0 ≤ β < 1, b(x, y) is the velocity of the fluid, c(x, y)u represents a reaction-absorption term,
f is a source term, a is the diffusivity coefficient, M(dθ) is a probability density function on the

unit sphere in Rd, Dθ is the directional derivative in the direction of the unit vector θ, and D−βθ
is the β order fractional integral. When N = 1, b(x) = 0, M is atomic with M(−1) = M(1) = 1

2 ,

h ≡ 1, M2 ≡ 0 without the term |u|2∗−2u, for the problem (1), the authors in [8, 10, 11], studied
the existence of solutions to the problem on bounded domain [0, T ], by applying the Mountain Pass
theorem.

Also, in [13], the authors considered the existence of solution of (1) on RN when N > 1, h ≡ 1
and without the term |u|2∗−2u, the main tools are Mountain Pass theorem and iterative technique

Inspired by the above articles, in this paper, by using the Ekeland variational principle ([14]),
we would like to investigate the existence of solution to problem (1).

The paper is organized as follows. In Section 2, we give preliminary facts and provide some
basic properties which are needed to prove our main result. In Section 3, we give our main result.

2 Preliminaries

In this section, we present some preliminaries and lemmas that are useful to the proof to the
main results. For the convenience of the reader, we also present here the necessary definitions.

Let (X, ‖ · ‖X) be a Banach space, (X∗, ‖ · ‖X∗) be its topological dual, and ϕ : X → R be a
functional. First, we recall the definition of the Palais-Smale condition which plays an important
role in our paper.

Definition 1. We say that ϕ satisfies the Palais-Smale condition if any sequence (un) ∈ X for
which ϕ(un) is bounded and ϕ′(un)→ 0 as n→∞ possesses a convergent subsequence.

Also, for the convenience of the reader, we also present here the necessary definitions from
fractional calculus theory. We refer the reader to [15].

Definition 2. Let u : RN → R, α > 0, θ be a unit vector in RN . The α-th order fractional integral
in direction of θ of u is given by

D−αθ u(x) =
1

Γ(α)

∫ +∞

0

ξα−1u(x− ξθ)dξ,

and the α-th order directional derivative in the direction of θ is defined by

Dα
θ u(x) = (∇ · θ)nD−(n−α)

θ u(x),

where n denotes the smallest integer greater than α.
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Definition 3. Let u : RN → R, α < 0(α > 0) be given. Then the α-th order fractional integral
(derivative) with respect to the measure M is defined as

Dα
Mu(x) =

∫
|θ|=1

Dα
θ u(x)M(dθ),

where M(dθ) is a probability measure on the unit sphere in RN .

Lemma 1. ([13, Lemma 2.3]) If α > 0, then for u ∈ C∞0 (RN ), we have the following Fourier
transform property

F(D−αθ u)(ξ) = (iξ · θ)−αF(u)(ξ),

F(Dα
θ u)(ξ) = (iξ · θ)αF(u)(ξ),

where

F(u)(ξ) =
1

(2π)
N
2

∫
RN

e−iξ·xu(x)dx. (2)

Let us recall that for any α > 0, u ∈ C∞0 (RN ) the semi-norm

|u|M =

(∫
|θ|=1

‖Dα
θ u‖2L2M(dθ)

) 1
2

,

and the norm

‖u‖M =
(
‖u‖2L2 + |u|2M

) 1
2

, (3)

and let the space JαM (RN ) denote the completion of C∞0 (RN ) with respect to the norm ‖ · ‖M .
Note that for u ∈ JαM (RN ), there exist {un} ⊂ C∞0 (RN ) such that un → u in JαM (RN ). So

un → u in L2(RN ) and

∫
|θ|=1

‖Dα
θ un −Dα

θ um‖2L2M(dθ)→ 0 as n→∞.

Thus, ‖Dα
θ un − Dα

θ um‖L2 → 0 for any θ ∈ SN−1 = {θ ∈ RN : |θ| = 1} for θ M -a.e. in SN−1.
Therefor, we can denote Dα

θ u = ωθ and then

∫
|θ|=1

‖Dα
θ un −Dα

θ u‖2L2M(dθ)→ 0 as n→∞.

Hence, if u ∈ JαM (RN ), then Dα
θ u exists for θ M -a.e. in SN−1.

Next, for 0 < α < 1, we give the relationship between classical fractional Sobolev space Hα(RN )
and JαM (RN ), where Hα(RN ) is defined by

Hα(RN ) =
{
u ∈ L2(RN ) : |ξ|αF(u) ∈ L2(RN )

}
.
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Now, we assume that M1 and M2 satisfy that:
(H) Suppose that M1 and M2 are positive Borel measure, M1(dθ) = M1(d(−θ)) and there exists

constant cM1
> 0 such that

∫
|θ|=1

|ξ · θ|2αM1(dθ) ≥ cM1 for every ξ ∈ SN−1. (4)

Furthermore, there is CM2
> 0 such that for ξ ∈ SN−1,

∫
|θ|=1

|ξ · θ|2αM2(dθ) ≤ CM2

∫
|θ|=1

|ξ · θ|2αM1(dθ) for every ξ ∈ SN−1. (5)

We need the following Lemmas:

Lemma 2. ([13, Lemma 2.6]) If the measure M1 satisfies (H), then the spaces Hα(RN ) and
JαM1

(RN ) are equal and have equivalent norms.

Lemma 3. ([13, Lemma 2.7]) Assume that the measure M1 satisfies M1(dθ) = M1(d(−θ)), for
θ ∈ SN−1. Let α > 0, u, v ∈ JαM1

(RN ). Then, for M1-a.e. θ ∈ SN−1,

(Dα
θ u,D

α
−θu) = cos(πα)(Dα

θ u,D
α
θ u) = cos(πα)‖Dα

θ u‖2L2 , (6)

(Dα
θ u,D

α
−θv) + (Dα

θ v,D
α
−θu) = 2 cos(πα)(Dα

θ u,D
α
θ v). (7)

where (·, ·) denote the inner product in L2(RN ).

Now, for α = β+1
2 , let

X = {u ∈ JαM1
(RN ) : ‖u‖ = (|u|2M1

+ ‖b1/2u‖2L2)
1
2 <∞},

then E is a reflexive and separable Hilbert apace with the inner product

〈u, v〉X = −
∫
|θ|=1

(Dα
θ u,D

α
−θv)M1(dθ) +

∫
RN

b(x)uvdx. (8)

Also, from Lemma 2, we know that if the measure M1 satisfies (4), then X ⊂ Hα(RN ) ↪→ Lp(RN ),
2 ≤ p ≤ 2∗. We will denote by S > 0 the best Sobolev constant of the embedding X ⊂ L2∗

(RN ),
that is:

S = inf
u∈JαM1

(RN )\{0}

∫
|θ|=1

‖Dα
θ u‖2L2M1(dθ) +

∫
RN b(x)u2(x)dx(∫

RN |u|2
∗dx
) 2

2∗
. (9)

Note that by assumption (5), we know if u ∈ X, then ‖Dα
θ u‖L2 , ‖Dα

−θu‖L2 ∈ L2(SN−1,M2(θ)).
For a given r > 0, we define
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fr(x, t) =

{
f(x, t), if |x| ≤ r,
0, if |x| > r.

Let

Fr(x, u) =

∫ u

0

fr(x, t)dt =

{
F (x, u), if |x| ≤ r,
0, if |x| > r.

3 Main result

In this Section we will state our main result and the proof of it relies on the variational principle
of Ekeland.

For given r > 0 and w ∈ X, the functional Jw,r : X → R corresponding to problem (1) is
defined by

Jw,r(u) = H

(
−cos(πα)

2

∫
|θ|=1

‖Dα
θ u‖2L2M1(dθ) +

1

2

∫
RN

b(x)u2(x)dx

)

−
∫
RN

Fr(x, u(x))dx−
∫
|θ|=1

(Dα
−θu,D

α
θ w)M2(dθ)− 1

2∗

∫
RN
|u|2

∗
dx. (10)

By assumptions, we know Jw,r ∈ C1(X,R) and using Lemma 3, we have

J ′w,r(u)v = h

(
−cos(πα)

2

∫
|θ|=1

‖Dα
θ u‖2L2M1(dθ) +

1

2

∫
RN

b(x)u2(x)dx

)

×

(
−
∫
|θ|=1

(Dα
θ u,D

α
−θv)M1(dθ) +

∫
RN

b(x)uvdx

)

−
∫
|θ|=1

(Dα
θ w,D

α
−θv)M2(dθ)−

∫
RN

fr(x, u)vdx−
∫
RN
|u|2

∗−2uvdx

= h

(
−cos(πα)

2

∫
|θ|=1

‖Dα
θ u‖2L2M1(dθ) +

1

2

∫
RN

b(x)u2(x)dx

)

×

(
− cos(πα)

∫
|θ|=1

(Dα
θ u,D

α
θ v)M1(dθ) +

∫
RN

b(x)uvdx

)

−
∫
|θ|=1

(Dα
θ w,D

α
−θv)M2(dθ)−

∫
RN

fr(x, u)vdx−
∫
RN
|u|2

∗−2uvdx. (11)

Thus the critical points of Jw,r on X are solutions of the problem (1).
Before starting our result, we need the following assumptions:
(B) b ∈ C(RN ,R), infRN b(x) = b0 > 0 and lim|x|→∞ b(x) =∞.
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(H1) h ∈ L1(0, r), r > 0;

(H2) lim supt→0+
H(t)
tα0

<∞ with 0 < α0 <
2∗

2 , where H(t) =
∫ t

0
h(s)ds;

(H3) there exist 0 < β0 <
1
2 and a positive constant C0 such that

H(t) ≥ C0t
β0 for all t > 0;

(F1) f ∈ C(RN×R,R) and it is a function verifying the following growth condition: there exists
a positive constant c1 > 0 such that

|f(x, ξ)| ≤ c1(1 + |ξ|q−1), a.e. x ∈ RN , ξ ∈ R,

where 2 < q < 2∗;
(F2) there exist A > 0 and σ > 2α0 such that

F (x, ξ) ≥ A|ξ|σ, as ξ → 0, (12)

with F (t, x) =
∫ x

0
f(t, s)ds.

Therefore by (F1) and (F2), we know, there exist a positive constant c1 > 0, A > 0 and
0 < σ < 2α0 such that

|fr(x, ξ)| ≤ c1(1 + |ξ|q−1), for all |x| ≤ r, 2 < q < 2∗,

Fr(x, ξ) ≥ A|ξ|σ, for all |x| ≤ r, as ξ → 0.

Now, we can state our main result.

Theorem 1. Assume that M1 and M2 satisfy the condition (H). Moreover we assume that (B),
(H1), (H2), (F1) and (F2) hold, then the problem (1) has a nontrivial solution.

Here, we need some auxiliary lemmas.

Lemma 4. There exist %, ρ such that Jw,r ≥ % for ‖u‖ = ρ.

Proof. Let R be a positive constant and fix w ∈ X with ‖w‖ ≤ R. Now, for given r > 0 and
w ∈ X with ‖w‖ ≤ R, from Lemmas 1, 2 and similar method in [13], one can get

∫
|θ|=1

(Dα
−θu,D

α
θ v)M2(dθ) ≤

∫
|θ|=1

‖Dα
−θu‖L2‖Dα

θ v‖L2M2(dθ)

≤ M2(SN−1)

cM1

‖u‖‖v‖, (13)

for all u, v ∈ X.
Set Ω := {x ∈ RN : |x| ≤ r}, hence, by (H3), Hölder’s inequality, (9) and (13), for ‖u‖ is

sufficiently small we have,
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Jw,r(u) ≥ C0

(
−cos(πα)

2

∫
|θ|=1

‖Dα
θ u‖2L2M1(dθ) +

1

2

∫
RN

b(x)u2(x)dx

)β0

−
∫
RN

Fr(x, u(x))dx−
∫
|θ|=1

‖Dα
−θu‖L2‖Dα

θ w‖L2M2(dθ)− 1

2∗

∫
RN
|u|2

∗
dx

≥ C0

(
−cos(πα)

2

)β0

‖u‖2β0 −
∫

Ω

Fr(x, u(x))dx

−
∫
|θ|=1

‖Dα
−θu‖L2‖Dα

θ w‖L2M2(dθ)− 1

2∗

∫
RN
|u|2

∗
dx

≥ C0

(
−cos(πα)

2

)β0

‖u‖2β0 − |Ω|
2∗−q
2∗

(∫
Ω

|u|2
∗
dx

) q
2∗

−RM2(SN−1)

cM1

‖u‖ − 1

2∗
S−

2∗
2 ‖u‖2

∗
+ c

≥ C0

(
−cos(πα)

2

)β0

‖u‖2β0 − |Ω|
2∗−q
2∗ S−

2∗
2 ‖u‖q − RM2(SN−1)

cM1

‖u‖ − 1

2∗
S−

2∗
2 ‖u‖2

∗
+ c,

since 2β0 < 1 < q < 2∗, then there exist %, ρ such that Jw,r ≥ % for ‖u‖ = ρ. �
Set Br0(0) = {u ∈ X; ‖u‖ ≤ r0}, then we have the following lemma:

Lemma 5. The functional Jw,r is bounded from below in Br0(0); moreover J = infBr0 (0) Jw,r < 0.

Proof. From the definition of Jw,r, it is clear that the functional Jw,r is bounded from below
in Br0(0). Now, let ϕ ∈ C∞0 (RN ) \ {0} with ‖ϕ‖ ≤ r0, by (H2) and (F2), for t > 1, it follows that

Jw,r(tϕ) = H

(
− t

2 cos(πα)

2

∫
|θ|=1

‖Dα
θ ϕ‖2L2M1(dθ) +

t2

2

∫
RN

b(x)ϕ2(x)dx

)

−
∫
RN

Fr(x, tϕ)dx− t
∫
|θ|=1

(Dα
−θϕ,D

α
θ w)M2(dθ)− t2

∗

2∗

∫
RN
|ϕ|2

∗
dx

≤ t2α0

2α0
‖ϕ‖α0 −Atσ

∫
RN
|ϕ|σdx+ t

RM2(SN−1)

cM1

‖ϕ‖ − t2
∗

2∗

∫
RN
|ϕ|2

∗
dx

≤ t2α0

2α0
rα0
0 −Atσ

∫
RN
|ϕ|σdx+ t

RM2(SN−1)

cM1

r0 −
t2

∗

2∗

∫
RN
|ϕ|2

∗
dx

→ −∞, as t→ +∞.

Thus there exist t0 > 1 such that Jw,r(t0ϕ) < 0 �
Now, using the Ekeland variational principle to Jw,r on Br0(0) endowed with distance τ(u, ϑ) =

‖u− ϑ‖, so there exists a sequence {un,w,r} ⊂ Br such that:

Jw,r(un,w,r)→ inf
Br

Jw,r = J,
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we infer that

Jw,r(un,w,r)− Jw,r(ϑ) ≤ ‖un,w,r − ϑ‖
n

,

for all ϑ 6= un,w,r. Since Jw,r is of class C1 then

J ′w,r(un,w,r)→ 0

and thus we have

Jw,r(un,w,r)→ J and J ′w,r(un,w,r)→ 0,

which yields that {un,w,r} is a (P.S)J sequence to Jw,r. Since {un,w,r} is a (P.S)J sequence and
using the definition of Jw,r, there exists a constant C4 > 0 such that

‖un,w,r‖ ≤ C4, ∀n ∈ N. (14)

So passing to a subsequence it necessary, it can be assumed that {un,w,r} converges weakly to uw,r
in X and thus {un,w,r} converges strongly to uw,r in Lrloc(RN ), 2 ≤ r < 2∗ and |un,w,r|2

∗−2un,w,r →
|uw,r|2

∗−2uw,r in L
2∗

2∗−q (RN ). As Jw,r is of class C1 then

(J ′w,r(un,w,r)− J ′w,r(uw,r))v → 0, as n→ +∞,

for any v ∈ X.
Hence it remains to prove that uw,r 6= 0. It is well known that Jw,r(un,w,r) → J then by (9)

and (13), one can get

J + o(1) = Jn,w,r(un,w,r)

≥ C0

(
−cos(πα)

2

)β0

‖un,w,r‖2β0 − |Ω|
2∗−q
2∗ S−

2∗
2 ‖un,w,r‖q

−RM2(SN−1)

cM1

‖un,w,r‖ −
1

2∗
S−

2∗
2 ‖un,w,r‖2

∗
.

It follows that

|Ω|
2∗−q
2∗ S−

2∗
2 ‖uw,r‖q +

RM2(SN−1)

cM1

‖uw,r‖+
1

2∗
S−

2∗
2 ‖uw,r‖2

∗
> −J + o(1),

which implies that

|Ω|
2∗−q
2∗ S−

2∗
2 ‖uw,r‖q +

RM2(SN−1)

cM1

‖uw,r‖+
1

2∗
S−

2∗
2 ‖uw,r‖2

∗
> −J > 0,

consequently uw,r 6= 0.
From the previous lemmas and by applying the Ekeland principle, the problem (1) has a non-

trivial solution.
�
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