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Abstract

A survey for studies on boundary value problems of higher order ordinary differential equations
is given firstly. Secondly a simple review for studies on solvability of boundary value problems
for impulsive fractional differential equations is presented. Thirdly by using a general method
for converting an impulsive fractional differential equation with the Riemann-Liouville frac-
tional derivatives to an equivalent integral equation and employing fixed point theorems in
Banach space, we establish existence results of solutions for three classes of boundary value
problems ((n,n — k) type BVPs) of impulsive higher order fractional differential equations.
Some examples are presented to illustrate the efficiency of the results obtained and some mis-
takes are also corrected at the end of the paper finally. A conclusion section is given at the
end of the paper.
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1 Introduction

Fractional differential equation is a generalization of ordinary differential equation to arbitrary non-
integer orders. The origin of fractional calculus goes back to Newton and Leibniz in the seventeenth
century. Recent investigations have shown that many physical systems can be represented more
accurately through fractional derivative formulation [41]. Fractional differential equations therefore
find numerous applications in different branches of physics, chemistry and biological sciences such
as visco-elasticity, feed back amplifiers, electrical circuits, electro analytical chemistry, fractional
multipoles and neuron modelling [43]. The reader may refer to the books and monographs [20,
28, 42] for fractional calculus and developments on fractional differential and fractional integro-
differential equations with applications.

On the other hand, the theory of impulsive differential equations describes processes which ex-
perience a sudden change of their state at certain moments. Processes with such characteristics
arise naturally and often, for example, phenomena studied in physics, chemical technology, popula-
tion dynamics, biotechnology and economics. For an introduction of the basic theory of impulsive
differential equation, we refer the readers to [32].

The first purpose of this paper is to present a survey for studies on BVPs for higher order or-
dinary differential equations and BVPs for impulsive fractional differential equations. The second
purpose of this paper is to establish a general method for converting an impulsive fractional differ-
ential equation with the Riemann-Liouville fractional derivatives to an equivalent integral equation.
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The third purpose of this paper is to establish existence results for three classes of (n,n — k) type
boundary value problems for higher order fractional differential equations with impulse effects. Our
results are new since the methods are different from known ones.

1.1 BVPs for higher order ordinary differential equations

Solvability of boundary value problems for higher order ordinary differential equations were inves-
tigated by many authors. These boundary value problems mainly contain 2m-th order Lidstone
BVPs, (n,n — p) type BVPs, anti-periodic BVPs, periodic BVPs and Neumann BVPs.

For examples, in [11, 12, 13, 45, 57], solvability of the following problems were investigated:

yCm () = fly(t), -,y (t), -+ ,yEm=D)(1),0 <t <1,
(1.1)

and .
y(2m) (t) = f(y(t)7 e 7y(2j)(t)a e 7y(2(m71))(t))7 0 S t S 17
(1.2)
y@9(0) = 0 =y@HD(1),i e Ny~

Solvability of boundary value problems for higher order ordinary differential equations were inves-
tigated by many authors. For examples, in [4, 6, 14, 16, 24, 25, 26, 35, 40, 48, 50], the following
(n,n — k) type problems were studied:

(=1)" Yy = f(t,y),t € (0,1),
y(0) =0,i e Ny, (1.3)
y (1) =0, € Ny * 1.
In [23, 27|, the following more general boundary value problems were studied:
(=1)"Fy) = f(t,y),t € (0,1),
y@D(0)=0,ie Ny, (1.4)
y(j)(l) =0,j€ ]N:]H—q—k—l
where k € ]N;“l, q € INE. In [6, 15], authors studied existence of solutions of the following problems:
(=1 Py = fty,y,- @)t e (0,1),
y(0) =0,i e N§~ ', (1.5)
yU) (1) =0,j € No—1,

Solvability of (n, 1) type boundary value problems for higher order ordinary differential equations
were investigated by many authors. For examples, the following boundary value problems were
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studied in [17, 18, 52]:
(_1)n—py(n) = f(t7 Y, y/7 e 7y(p_1))7t € (07 1)a
y(0) =0,i € INp~2, (1.6)

In [46], authors studied existence and uniqueness of solutions of anti-periodic boundary value prob-
lems for two classes of special second order impulsive differential equations. The methods used are
based upon the monotone iterative technique coupled with lower and upper solutions.

In [19], authors investigated existence of positive solutions for Neumann boundary value problem
and periodic boundary value problem for second order nonlinear equation u” + a(t)g(u(t)) = 0.
Necessary and sufficient conditions for the existence of nontrivial solutions are obtained. The
method is based on Mawhin’s coincidence degree.

As we know that the general anti-periodic, periodic and Neumann boundary value problems are
as follows respectively:

y(n) = f(ta y)7t € (07 1)3 y(l) (0) = 7y(l)(1)’7' € H\Ig_l’ <17)
y(n) = f(t7y)7t € (07 1)3 y(z)(o) = y(l)(1)72 € INg_l’ (18)

and
Y@ = f(ty),t € (0,1), y®HD(0) = y* (1) = 0,0 € NG~ (1.9)

Readers may see [1] in which (1.7) was studied with n = 5. In [34], the solvability of (1.8) was

investigated. Some special cases of (1.9) were studied in [59] and [38].

1.2 BVPs for impulsive fractional differential equations

Impulsive fractional differential equations is an important area of study [5]. Recently, many authors
in [2,3,7,8, 21, 29, 47, 55| studied existence of solutions for different kinds of initial value problems
or boundary value problems involving impulsive fractional differential equations. The first kind of
problems is concerned with impulsive fractional differential equations with multiple starting points
t = t;(i € INj"). The second kind of problems is concerned with impulsive fractional differential
equations with single starting points t = 0.

(A) Existence and uniqueness of solutions of boundary value problems of impulsive fractional
differential equations with multiple starting points t = ¢;(i € INj").

Recently, Wang [51] consider the second case in which D has multiple start points, i.e., D* =
D;ﬁ. They studied the existence and uniqueness of solutions of the following initial value problem

of the impulsive fractional differential equation
CD%U(t) = f(t,u(®)),t € (ti tip1],i € ING,
ul(0) = uy,j € Ny, (1.10)
Au (t;)] = Ljs(u(t:)), i € NV, j € NG,

where a € (n—1,n) with n being a positive integer, CD;r represents the standard Liouville-Caputo

fractional derivatives of order «, ]Ng ={a,a+1,--- ,b} with a,b being integers, 0 =ty < t; < --- <
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ty <tpr1=1,I; € O(R,R)(i € N}, j € Ng~'), f:[0,7] xR — IR is continuous. Henderson and
Ouahab [22] studied the existence of solutions of the following initial value problems and periodic
boundary value problems of impulsive fractional differential equations:

D ult) = £t u(t), € (10, tig], i € I,
u)(0) = uy,j € N, (1.11)
w9 (t;)] = Ljs(u(t;)), i € N, j € INg,

and
CD?{r ( ) = f(tvu(t)) te (thti-‘rlLi € H\Igv
u(0) = ud(b),j € N}, (1.11)
w9 (t:)] = Ljs(u(ti)),i € N}, j € INg,

where o € (1,2, 6> 0,0 =ty <t1 < - <tp <tpp1=0b, f:[0,b] xR - R, I;; : IR - IR are
continuous functions. Readers should also refer [53].

In [60], Zhao and Gong studied existence of positive solutions of the following nonlinear impulsive
fractional differential equation with generalized periodic boundary value conditions

CD;I+ (t) f(t7u(t)) te (OaT] \ {tlv e 7tp}7
( i)] = Liu(t:)), i € INT, (1.12)
( )] il tl)) i€ ]NIl),
( ) = Bu(l) =0, au'(0) — Bu'(1) =0

where ¢ € (1,2), CD; represents the standard Liouville-Caputo fractional derivatives of order
G a>p>00=1t <ty < - <ty <ty =1, L;,J; € C(l0,4),[0,4+0))(i € INY,
f:[0,1] x [0,400) — [0,4+00) is continuous.

Wang, Ahmad and Zhang [54] studied the existence and uniqueness of solutions of the following
periodic boundary value problems for nonlinear impulsive fractional differential equation

vu(t) = ftu), e (0, TI\{tr, -},

( )] = Li(u(t;)),i € INY,
A ()] = IF (u(ty)),i € ]N (1.13)
u'(0) + (— ) u(T) = bu(T ) u(0)+(—1)9u(T):o,

(
(

where a € (1,2), CD% represents the standard Liouville-Caputo fractional derivatives of order «,

9—120—t0<t1 <t <tp+1—TI“IZ*€C(IRIR)(’LGN f [OT]XIR%IRIS
continuous.

In [9, 10, 61], authors studied the existence of solutions of the following nonlinear boundary
value problem of fractional impulsive differential equations

ca(t) = w(t) f(t2(t),2'(1),t € (0, 1]\ {tr, -+, 1},
| =

( ) I( (E)),ZE]N
o' (t;)] = Ji(2(t;)),i € INY, (1.14)

( ) £b2'(0) = g1 (), ¢ ( ) +dz' (1) = ga(2),
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where a € (1,2), “Dy; represents the standard Liouville-Caputo fractional derivatives of order a,
a,b,c,d > 0 with ac—;ad—i—bc;é(), O=to<t; < - <t,<tpr1=11I1,J; e CR,R)(: € N}, f:
[0,1] x IR? — IR is continuous, w : [0,1] — [0, +00) is a continuous function, g1, ge : PC(0,1] — IR
are two continuous functions.

In 2015, Zhou, Liu and Zhang [62] studied the existence of solutions of the following nonlinear
boundary value problem of fractional impulsive differential equations

(t) = )“r(t) + f(t,l‘(t), (Kx)(t)v (Hx)(t))vt € (07 1] \{tlv T 7tp}a
( i) = Li(x(t:)),i € INY,
@(t:)] = Ji(x(t:)),i € N,

h (1.15)
ax( ) — bz’ (0) = o, cx(l) + da'(1) = z1,

where a € (1,2), CD;ﬁr represents the standard Liouville-Caputo fractional derivatives of order «,
a20,b>0,0207dl>0with5:ac+ad+bc7é0,)\>0, xo,xlélR 0—t0<t1 < - <t <

tpr1 = 1, IZ,J € C(IR IR)(Z € NP, f:]0,1] x R?® — R is continuous, fo s)ds
and ( fo s)ds.

In [33, 37} authors studled the existence of solutions of the following nonlinear boundary value
problem of fractional impulsive differential equations

va(t) = f(tx(t),t € (0, 1\ {tr, - 1},
( i)l = ( (t:)),i € ]N
Az'(t;)] = Ji(x(t:)), i €
az(0) + bz (1) = g1(x), ax ( ) +b2'(1) = ga(2),

(1.16)

where a € (1,2), “D7 represents the standard Liouville-Caputo fractional derivatives of order
a, a,b€ Rwitha >b>00=1t <t; < - <t, <tpp1 =1, I;;J; € C(R,R)( € IN},
f:]0,1] x R — IR is continuous, g1, g2 : PC(0,1] — IR are two continuous functions.

In [36], Liu and Li investigated the existence and uniqueness of solutions for the following
nonlinear impulsive fractional differential equations

“Dfult) = (b u(t), o (1), (1), ¢ € (titinn), i € N,
)ou

u(0) = Mu(T) + & [y G1(s,u(s), v (s), u”(s)) ds,
' (0) = Mu/(T) + & [ (s, u(s), u'(s), u" (s))ds,
u"(0) = Mgu(T) + €5 [ as(s,u(s), ' (s),u"(s))ds, (1.17)
Au(ty)] = Ai(u(t;)),i € Ny,
Au'(ti)] = Bz(u(tl)),z S ]N{,
Au(t;)] = Ci(u(t;)),i € INY,

where a € (2,3), CD?; represents the standard Liouville-Caputo fractional derivatives of order «,
O=to<t1 < - < t; <tpr1 =T, N, & € R(i =1,2,3) are constants, 4;, B;,C; € C(R,IR)(% €
INY, f:]0,7] x R® — IR is continuous.

Recently, in [?], to extend the problem for impulsive differential equation u”(t) — Au(t) =
ftu(t)),u(0) = u(T) = 0, Au'(t;) = I;(u(t)i)),i = 1,2,--- ,p to impulsive fractional differential
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equation, the authors studied the existence and the multiplicity of solutions for the Dirichlet’s
boundary value problem for impulsive fractional order differential equation

{ ‘DG (“Dgx(t) + a(t)x(t) = Af(t,2(t)).t [?
1€

T, t #t;,i € N,
a’De €D a(t) = pLi(a(t; ). i € NY', 2(0) =

( )*07

where a € (1/2,1], A, u > 0 are constants, 0 =t <1 < -+ <ty <tme1 =71, f:[0,T] xR = R

is a continuous function, I; : R — IR(: € INJ*) are continuous functions, D, (or °DZ._) is the

standard left (or right) Liouville-Caputo fractional derivative of order a, a € C[0,T] and there exist

constants ai,as > 0 such that a; < a(t) < ag for all t € [0,T], Ax|i—t, = lim+ x(t) — lim x(t) =
t—t t—t

i i

(1.18)

z(t]) — x(t]) and x(t]), z(t;) represent the right and left limits of z(t) at ¢t = t; respectively,
a,b,zo a constant with a + b # 0. One knows that the boundary condition ax(0) + bz(T') = x¢
becomes x(0) —z(T") = “& when a+b = 0, that is so called nonhomogeneous periodic type boundary
condition.

For impulsive fractional differential equations whose derivatives have single starting points t = 0,
there has been few papers published. In [49], authors presented a new method to converting the
impulsive fractional differential equation (with the Liouville-Caputo fractional derivative) to an
equivalent integral equation and established existence and uniqueness results for some boundary
value problems of impulsive fractional differential equations involving the Liouville-Caputo frac-
tional derivatives with single start point. The existence and uniqueness of solutions of the following
initial or boundary value problems were discussed in [49]:

‘Dg.x(t) = f(t,2(t )) < (0,1]
Ax(t;)] = Li(x(t
2(0) = wo, 2'(0)

\ {tla te 7tp}a
i ) ( i)l = Ji(x(t:)), i € INT, (1.19)

‘Dgyx(t) = f(t,2(t),t € (0,1 \{tx, -~ ,tp},
Ax(t;)] = Li(x(t:)), Ad'(t:)] = Ji(x(t:)), i € INT, (1.20)
2(0) + () = zo, 2(0) = 1,
Dy, a(t) = f(t,x(1)),t € (0,1]\ {t1, ph
Az(ty)] = L(x(t;)), i € N, (1.21)
az(0) + bx(1) =0,
CDS’+$(75) :f(tax(t)) ( ]\{tl"" 7t10}’
Az(t)] = Li(x(t:)), A (t)] = Ji(z(t), i € NP, (1.22)

I
=X
o
=
\
=l
&\
=
=
Il
8

0, cx(1) + da' (1) =,

and

]

/—\g,1
8 =
i
S
N

= Mt b
Ax(t)] = Lia(t), A ()] = Ji(a(t)), i€ Ny, (1.23)

(0) = az(§) = (1) — bx(n) = 0,
where a € (1,2], 8 € (0,1], Dg, is the Liouville-Caputo fractional derivative with order * and single

start point ¢t =0, f : [0,1] x ]R — 1R, I;,J; : IR — IR are continuous functions, a, b, c,d, zg,x1 € IR
are constants, ¢ : PC(0,1] — IR is a functional.

{ o+x()_ (t)) < (0,1]
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In [60], authors studied the existence of positive solutions of the following nonlinear boundary
value problem of fractional impulsive differential equations

= f(t,z(t),t € (071]\{t1"" 7t;v}’
el = L(a(0))i € N
AL (t;)] = Ji(w(t:)), i € INT,
az(0) — bz(1) = 0, az’(0) — ba'(1) = 0,

‘D 0+a:t

(1.24)

where a € (1,2), CD8‘+ represents the standard Liouville-Caputo fractional derivatives of order «,
a>b>0,0=t<t; < <ty <tpr1=11,J; € CR,R)(i € N}, f:[0,1]] xR = R is

continuous.

(B) Existence and uniqueness of solutions of boundary value problems of impulsive fractional
differential equations with single starting point ¢ = 0.

In [56], authors studied existence of solutions of the following boundary value problem for higher
order fractional differential equation

D u(t) + Af(t,u(t) =0,0 <t <b,A>0,a€[n,n+1),

(1.25)
u(0) = 0,7 € NI~ w1 (b) = 0.
In [58], solutions of the following problem were presented:
D¢, u(t) +p(t)u(t) =0,0 <t <1,A>0,a € [n—1,n),
(1.26)

u(0) = 0,7 € NJ~2 u(1) = 0.

In recent paper [31], Liu studied existence of positive solutions for the following boundary value
problems (BVP) of fractional impulsive differential equations

D0+u( ) f(t’u(t))7t€(Ovl)at#tk7k:172a"' , M,
(1.27)
u(ty) = (1 —ex)ulty), k € NP, w(0) = u(1) =0,

where Df, is the Riemann-Liouville fractional derivative of order a € (1,2) with the base point 0,
m is a positive integer, ¢; € (07 %)7 f:[0,1] x [0,4+00) — [0,400) is a given continuous function,
u(t}) and u(t; ) denote the right limit and left limit of u at ¢4 and u(t}) = u(tx), i.e., u is right
continuous at ¢;. By constructing a novel transformation, BVP(1.27) is convert into a continuous
system. using a specially constructed cone, the Krein-Rutman theorem, topological degree theory,
and bifurcation techniques, some sufficient conditions are obtained for the existence of positive
solutions of BVP(1.27). However, we find that Lemma 3.1[31] is un-correct.

1.3 Purposes of this paper

We note that in known papers existence of solutions of boundary value problems for the Liouville-
Caputo type fractional differential equations of lower order has been discussed deeply. Solvability
of boundary value problems for impulsive higher order fractional differential equations has not
been studied. The reasons are as follows: higher order fractional differential equations can not be
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converted to fractional differential systems with lower order since D, 0+£E( ) # Dgﬁr Pa(t) [44].

it is difficult to convert an impulsive fractional differential equation W1th the Riemann-Liouville
fractional derivatives to an equivalent integral equation.

(C) The first purpose of this paper is to establish a general method for converting an impulsive
fractional differential equation with the Riemann-Liouville fractional derivatives to an equivalent
integral equation.

(D) The second purpose of this paper is to establish existence results for the following three classes
of (n,n — k) type boundary value problems of higher order fractional differential equations with

impulse effects:
D u(t) = f(t,u(t)), te (tstsy1], s € NG,

1'7u(0) = 0, DT u(0) = 0,5 € Ny,
Iy u(1) =0, Dy " u(1) = 0,5 € Ny~ (1.28)

lim (¢ — £,)"~u(t) = L(ts, u(t,)), s € NY"

t—td

ADST"u(ty) = Lits,u(ts)),j € Nyl s € NP
D¢ u(t) = f(t,ult), tE€ (tstsi1], s € NI,

I'7u(0) =0, DS "Hu(0)=0,5 € Ny 2,
D" u(1) = 0,5 € NI (1.29)

lm (¢t — t5)" " *u(t) = L,(ts, u(ts)), s € NP

t—td

ADS"ult,) = I(t,ulty)),j € NI 7Y s € Np°

and
D u(t) = f(t,u(t)), t€ (ts,tsa], s € NG’
Dy u(0) = 0,4 € INF,
Dy u(1) = 0,5 € Ny F, (1.30)
lim (¢ — £,)" = u(t) = L(ts, u(ts)), s € N,
t—td
ADST"u(tys) = Li(ts,u(ts),j € Ny ! s € NP
where

(a) n—1 < a < n, nis a positive integer, D, the Riemann-Liouville fractional derivatives of
order v with starting point 0 respectively,
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D) 0=ty <ty < -+ <ty <tmi1 =1, N2 ={a,a+1,a+2,---,b} for every pair of integers
a<b, 1 €IN¥ keINT!is a positive integer,

(¢) f:(0,1)xIR—=1R, I, I; : {t; : s €« NT"} xIR = IR, f is a Carathéodory function, I;(j € INT)
are discrete Carathéodory functions,

A function z with = : (0,1] — IR is said to be a solution of BVP(1.28) (or BVP(1.29), BVP(1.30))
if

1 € CO%ts,toga], lim (t —ts)" " %w(t) exists for all s € IN*, Dfj,  are measurable on (0, 1]
t—td

Ll(ts tssr

and z satisfies all equations in (1.28) or (1.29), (1.30) respectively.

We shall construct a weighted Banach space and apply two standard fixed point theorems to
obtain the existence of at least one solution of BVP(1.28), BVP(1.29) and BVP(1.30) respectively.
Our results are new and naturally complement the literature on higher order impulsive fractional
differential equations. This paper may be the first one concerned with the solvability of boundary
value problems for higher order singular fractional differential equations with impulse effects and
the Riemann-Liouville fractional derivatives.

The paper is outlined as follows. Section 2 contains some definitions needed. Preliminary results
are given in Section 3. Applications (Main results) are given in Section 4. In Section 5 we give
examples to illustrate the efficiency of the results obtained. Section 6 is a conclusion section. In
Appention section, we given proofs of Theorem 4.1 and Theorem 4.3.

2 Definitions
For the convenience of the readers, we shall state the necessary definitions from fractional calculus
theory.

For ¢ € L'(0,1), denote [|p|l; = fol |o(s)|ds. Let the Gamma and beta functions I'(a)(a > 0)

and B(a,b)(a > 0,b > 0) be defined by I'(a) = f0+oo r* le=%dx, B(a,b) = fol 297 (1—2)" Ydu.

Definition 2.1[44]. The left Riemann- Lioum’lle fractional integral of order v > 0 of a function
g:(0,00) = IR is given by I g(t) = F(a) fo (t — 5)*"1g(s)ds,t > 0 provided that the right-hand
side exists.

Definition 2.2[44]. The left Riemann-Liouville fmctional derivative of order a > 0 of a function
g : (0,00) = IR is given by D, g(t) = F(nl ) 4 fo = Sg)((fz,,,ﬂds,t > 0 where n — 1 < a < n,
provided that the right-hand side exists.

Remark 2.1. Let h: (0,1] — IR satisfy A, +,,,] € C(t;, tiy1]i € ING'). The left Riemann-Liouville
fractional integral of order aw > 0 of h at point ¢ € (¢;,t;+1] is given by

Ig.h(t) = Zf““ — )" h(s)ds + [} (t — 5)* " h(s)ds

provided that each term of the right-hand side exists.
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Let h : (0,1] ] € C(ti, tip1]i € ING'). The left Riemann-Liouville fractional
derivative of order aw > 0 of h at point ¢t € (¢;,t;+1] is given by

. dn 17 h d" h(s)
D3 h(t) = wray | dem Z S i ds + i [ ek ds |

where n — 1 < a < n, provided that each term of the right-hand side exists.

Definition 2.3. Set p > —1 and ¢ € (—1,0]. We say K : (0,1) x R — R is a Carathéodory
function if it satisfies the followings:

(i) t = K (¢, (t —ts)* ") is integral on (tg,ts11](s € IN§") for every z € IR,
(ii) = = K (¢, (t —ts)* ") is continuous on IR for all t € (ts,ts41] (s € INJ);

iii) for each r > 0 there exists a constant A, s > 0 satisfying
f
|K (¢, (t—ts)* "a)| < A, gtP(1 —1t)4

holds for t € (ts,ts41], s € N, |z <7

Definition 2.4. G : {t;: s € N"} x R — IR is called a discrete Carathéodory function if
(i)  — G (ts, (ts —ts—1)* "x) is continuous on IR for each s € INJ*

(ii) for each r > 0 there exists A, g s > 0 such that

‘G (tm (ts - t571)a—nw)| < A”xG’s

holds for |z| <7, s € INJ".

Definition 2.5[39]. Let E and Z be Banach spaces. L : D(L) C E — Z is called a Fredholm
operator of index zero if ImL is closed in F and dim Ker = co dim ImL < +o0.

It is easy to see that if L is a Fredholm operator of index zero, then there exist the projectors
P: E—F andQ: Z— Zsuchthat ImP=Ker L, KerQ=Im L, X =Ker L&Ker P, Y =
ImL&Im Q.

If L: D(L) C E — Z is called a Fredholm operator of index zero, the inverse of L|D(L)mKer P
D(L)NKer P — Im L is denoted by K
Definition 2.6[39]. Let F;(i = 1,2) be a Banach space and T : E; — Es is well defined. If
T is continuous and maps bounded subsets of E; to relative compact subsets of Fs, we call T a
completely continuous operator.

3 Preliminary results

In this section, we introduce a new method for converting an impulsive fractional differential equa-
tion with the Riemann-Liouville fractional derivatives to an equivalent integral equation.
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Theorem 3.1[30]. Suppose that n — 1 < a < n, h is integral on (0,1). Then x satisfying

(ts,ts+1]> D(‘;‘:Jx S Co(ts,t5+1], s € ]Nomd S ]1\1711717

T

tlirg(t —t5) (1), tlirg Dg‘fjx(t) exist for all s € Ny, j € N} !
— s — s

is a solution of
Dgra(t) = h(t),a.e.,t € (t;,ti41](i € Ng') (3:2)

if and only if there exist constants ¢,; € IR(v € INT, j € INi") such that

‘ Cuj a—v —s)* " ; m
2() =2 Ym0+ fy Sekh(s)ds,t € (ti, tia] i € Np. (3.3)

Define

|t trsa) € COtss ts] (s € NG,

X=<z:(0,1]] > R:
lim (¢t — t5)" *x(t) exists (s € INJ")

t—td

For x € X, define the norms by ||z|| = ||z||x = max{ sup  (t—ts)" z(t)] : s € INZ)”} .
te(t57ts+1]

Lemma 3.2. X is a Banach space.
Proof. The proof is standard and omitted. |

Lemma 3.3. Let M be a subset of X. Then M is relatively compact if and only if the following
conditions are satisfied:

(1) {t—= (t—ts)" “x(t) : x € M} is uniformly bounded,

(ii) {t = (t—ts)" *xz(t) : x € M} is equicontinuous in any interval (ts,ts41](s € INGY).
Proof. The proof is standard and omitted. |

Remark 3.1. Suppose that z € C°(0,#1], « € (n—1,n), A is a constant. Then lirélJr trex(t)=A
t—

implies lim I7"%z(t) = I'(o —n+1)A. In fact, for each € > 0, by lim t"~*xz(t) = A, there exists
t—o+ 0 t—0+

§ € (0,t1] such that A —e <t" z(t) < A+e,t € (0,§). Note

f(f 7@}?2::7:)71 s "ds = 01 7(1}?27;)71 w* "dw =T(a—n+1).

Then for t € (0,6), we have

ft Mw(s)ds —Ta-n+1)A

I e(t) — Dla—n+ 1)A] = | f; S

t (=) o e t (="' 4ln
< 0%8 |s"x(s) — Alds < € [, (F“’()Ta)s =T(a—n+1)e.

This is lim Ip+z(t) =T(a—n+1)A. |
t—07t
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Remark 3.2. Let M = (m;j)nxn be a matrix with |M]| # 0 and |m,;| < 1(4,j € INT). Suppose
M;; be the the algebraic cofactors of m;;. Then |M;;| <T'(n). In fact, we have

miy myj—1 mi j4+1 min

|M| ol Mi—11 v My—1 j—1 Myi—1 541+ Mi—1n
il =

mMi41 1 0 My41 j—1 M441 j41 - M4l n

Mn1 My j—1 My j+1 Mp n

— Z (_1)U(i1,i27"' 7in)m1 D Gy My 4,

o(i1,82, ,in . . .
< > (=1 (.62 wmy M2 iy My g, | < T(n),
11,82, " ,in
where i1,149, -+ , i, is an array of the elements of IN? and (1,42, -+ ,4y) is the inverse number of
11,72, " ,ln- [ |

To obtain the main results, we need the Leray-Schauder nonlinear alternative.

Lemma 3.4[39]. Let E be a Banach space, U be a closed, bounded and convex subset of E,
Q) C U be an open ball aand the zero point § € Q. Suppose T : Q — E is completely contnuous.
Then one of the following results holds:

(i) T has atl least fixed point in §;

(ii) there exist a x € 9Q and A € 01 such that © = pTx + (1 — A)6.
Lemma 3.5[39]. Suppose E and Z are Banach spaces. Let L : D(L) N E — Z be a Fredholm
operator of index zero and N : E — Z be L—compact on each open nonempty set ) centered at
zero. Assume that the following conditions are satisfied:

(i). Lz # ANz for every (z,\) € [D(L) \ KerL) N 99 x (0, 1);

(ii). Nz ¢ ImL for every x € KerL N 94

(iii). deg(A7'QN |Kers » 2N KerL,0) 5 0, where A=' : Y/ImL — KerL is the inverse of the
isomorphism A : KerL — Y/ImL.

Then the equation Lz = Nz has at least one solution in D(L) N Q.

4 Applications

In this section, we apply Theorem 3.1 to establish existence results for BVP(1.28), BVP(1.29),
BVP(1.30) respectively. We firstly converting these problems into integral equations by using
Theorem 3.1. By applying Lemma 3.4, we prove the main results for BVP(1.28) and BVP(1.29).
By using Lemma 3.5, we establish existence result for BVP(1.30). Denote f,(t) = f(t,z(t)),t €
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(ts,tst1],8 € NG and K, (ts) = K(ts, x(ts)), s € INT". Define the following (n — k) x (n — k) matrix:

M = (Mij) (n—k)yx(n—k) =

1 1 1 1 1 1
F(ln) F(nl—l) F(nl—k) F(n—lk—l) F(k1+2) I‘(kl—i-l)
T(n—1) T(n—2) Y Tn—k—-1) T(n—k—2) = T(ktD) T(k)
B U T O
F(nl—k') F(n—lk'—l) F(n;2k) I"(n—12k—1) T(2) 1“8) for k < nT—l,
T(n—k—1) T(n—k—2) T(n—2k—1) T(n—2k—2) ()
o G 1 . 0
T(k+2) T(k+1) Fg2) (1)
1 L . L 0 . 0 0
T(k+1) (k) (1)
1 1 1
F(In) F(nl—l) N F(L—f—l)
'(n—1) TI'(n—2) T'(k) for k > anl
1 _1 cee 1
T(k+1) T(k) T(2k—n+2)

n—k
Remark 4.1. By direct computation, we know that |[M| = > m;;M;; # 0, where M;; is the
j=1

algebraic cofactors of m;; respectively. Furthermore, we have from Remark 3.2 that [M;;| < T'(n—k)
and M~! = %, where M™ is the adjoint matrix of M, i.e.,

M11 M21 R Mnfkr 1
e s S
Ml n—k M2 n—k °°° Mn—k n—k

Lemma 4.1. Suppose that h: (0,1) — IR is integral and satisfies |h(¢)| < t?(1 —¢)? on (0,1), and
I; € IR. Then z € X is a solution of

Dg_,_l‘(t) = h(t), te (ts;ts—i-l]a s € NQ,
I§*(0) = 0, D" Va(0) =0, j € Ny,

['2(1) =0, Dy " z(1) = 0,5 € Ny~

lm (t —ts)" =z (t) = Ins, ADS"a(ty) =1I,_;,,j € Ni 7' s e NP,

t—tT
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if and only if

m n—(— _G—1)—
a’w(l_tw)LY G-1-e
E Z (oD —oTT)

v= ]: w=1 o=1

n—k n
_ v Mj, 1l (1—s)*~G-D-1
Uzzjl Tla—otD) J; ot Jo ey h(s)ds

+3 Y rralrs (= 1)+ fy U h(s)ds, t € (ta, taa], s € NG,

w=1v=1

Proof. On sees that

t (t—s)* ! o B(«a
‘fo T h(s)ds’ < goctpraBlogzitl

and

t(t—s)" 71 n—j B(n—j+q.p+1) k—
IK %h(s)ds’ <t y+p+q%7j SN

Firstly we prove that z satisfies (4.2) if 2 € X and z is a solution of (4.1).
Since x € X, there exists r > 0 such that

||| = max{ sup  (t—ts)" ¥x(t)]: s € ]Ngl} =r
te(

ts,tsia]

By Theorem 3.1, there exist constants ¢,,, € R(v € INy, w € INj*) such that

2(t) = >0 5 e (= 1)+ o G h(s)ds,t € (fe,tpa], s € N

w=0v=1

By Definition 2.1 and Definition 2.2, we have

- Cow n v t s m
oty = 3 3 o (= 1) + %h(s)ds,te (ts, tos1],s € NI,

w=0v=1

S n J

Di () = 3

tSnJl

; T2y (¢ — tw) 7Y +fy Wh(s)d&

t € (ts,tsrn),s €IND', j € NP1
(i) It follows from I"“x(0) = 0, (4.4) and (4.7) that c,o = 0.

Y. Liu

(4.2)

(4.5)

(4.6)

(4.7)

(ii) From D{"H2(0) =0, (4.7), (44),n—k+1+p+qg >0, we get c,_;j o = 0(j € Ny ).

(iii) From hrn (t —ts)"%x(t) = I, s and (4.6), we get ¢, s = I, s(s € INT").
t—td

(iv) From ADO‘ "Ha(ty) = I_j « and (4.7), we get ¢,_j s = I,_j o(s € NP", j € INT 1),

(v) From IS au( ) =0and Dg "Hx(1) = 0, (4.6) and (4.7), (i)-(iv), we get

m n

S c n v 1 st
2 v T 2 ;W(l — )"+ Jy CRg—h(s)ds = 0,

n—j—uv 1 (1-—s)"" i-t _ . n—k—1
EF(n] v+1)+z Zr(n] v+1)(1—tw) J— _|_f 771 ) h(s)ds =0,j € INJ .
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Case 1. £ < ”Tfl

We have
1 _1r .. 1 1 .ot 1
D (=D (=) T(n—F=T) T+2) TG
T(n—1) T(n—2) Y Tn—k—-1) T(n—k—2) = T(k+t1) T(k)
B G I T
Tk T—F-1) N T2k T(n=2k=1) E FS) %
I'(n—k—1) T(n—k-—2) F(n 2k—1) T'(n—2k—2) )
I(k+2) L(k+1) 3 r(1)
_1 _1 . 1 0 . 0 0
T(k+1) T(k) @)
1 1—s [e% 1
wZMZ F(a u+1) +f ( F(L) h(s)ds
C10 m n—1 n—l—uv n—1-—1
vw 1_tw 1 (-
C2 0 __ 21 Z r((n71f)v+1) +fo : Ffv)zﬂ) h(s)ds
Cn—k 0 m n—(n—k—1)
Ly (1=ty) "= 7F7D =Y 1 (1—g)n= (k71
wE1 Z D(n—(n—k—1)—v+1) +fo T(n—(n—k—1)) h(s)ds
Hence
= n va(l tw)a v 1 (1_8)(171
P ; (o +Jo i@y M(s)ds
C10 m n— n-l-v n—1-1
(1=t 1 (1-s
20 _ -t Z} 2 F(n i )v+1) +fo ! r(y)L—n h(s)ds
Cn—k 0 m n—(n—k—1) Tow(1—t,,)" = (n=k=D—v 1 (1—g)n—(n—k=1-1
= = F'(n—(n—k—1)—v+1) +f0 I'(n—(n—k—1)) h(S)dS

It follows that

n—k m n—(j—1) C(i—1)— C(i—1)—
My, Tguw (1—t,)*~U~D=@ 1 (1-s)o--D-t . n—k
Cio=— 3 Ti ( 3 02:31 F(Ey—(j—)l)—o—i-l) + i (7F(i_(j_l)) h(s)ds) e INTTE (4.8)

Case 2. k> 51
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We have
1 1 1
F(ln) T(n—1) F(kl+1) Ci1o0
T(h-1) Tn-2) T(k) €20
EE ¢
T(k+1) (k) T(2k—n+2) n—k 0

m n I'nw 1_tw a—uv 1 (1—s)2— 1
DY ( ) +f (1—s)

— T'(a—v+1) T'(a) S)dS

Tyw(1—ty)" 17" 1 (1-s)" !
et ((n 1 )11+1) +IO ( F(T)L—l) h(S)dS

|
HlE

Tow(L—t,)"~(m=k=D—v 1 (1—g)n~(r—k=1=1
—~ — I'(n—(n—k—1)—v+1) +f0 I'(n—(n—k—1)) h(s)ds

We get (4.8) similarly. Substituting c,,, into (4.6), we know that x satisfies (4.2).
Secondly we prove x € X and z is a solution of (4.1). It is easy to see from (4.2) that z € X
and

I'7%2(0) = 0, D" 2(0) =0, j € Ny
I'7°x(1) =0, D" Ha(l) = 0,5 € Np—F!
lim (t — tg)"

Jimn, s z(t) = Ins, s € NP,
—td

ADY T a(ty) = Iy 5,5 € NT 7! s € N
Now, we prove that x satisfies D, x(t) =
prove D§, x(t) = h(t) if x satisfies (4.6).

In fact, for t € (¢;,t;4+1](¢ € INJ"), by Definition 2.2, we have

h(t). We remember (4.8) and (i)-(iv), then it suffices to

(n)
Dg x(t) = F(n ) [fo (t—s)n—at (s)ds}

i—1 )
= ) lzofttf“(t—8)"‘“‘1x(s)ds+j;i(t— a-
=

s)" 2 lx(s)ds

h(t),t € (ti,tit1],7 € INJ.

From above discussion, we know that € X and z satisfies (4.1). The proof is completed. |
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Let
N = (ni;) =
1 1 1 1 1
F(nlfl) F(nfllfl) N F(nfk) F(nflkfl) N F(klfl) F(kfll+1)
T(n—I—-1) T(n-1-2) T(n—k—1) T(n—k—2) T(k—I—1) T(k—1)
T(n—Fk) T(n—k—1) ' T(n—2k+1) T(n—2k+i—1) @ (1)
1 1 1 1 1 0
T(n—k—1) T(n—k—2) T(n—2k+i—1) F(n72k+l72) (1)
1 1 1
T(k=1+2) Tk—-I+1) @ ( (1) 0 0
L L e 0 0 0
T(k—I+1) T(k—1) )

and N;; be the algebraic cofactors of n;; respectively. Furthermore, we have |N,;| < I'(n — k) by
Remark 3.2 and N~! = ‘N‘ where N* is the adjoint matrix of V.

Lemma 4.2. Suppose that h: (0,1) — IR is integral and satisfies |h(¢)| < t?(1 —¢)? on (0,1), and
I; € R. Then x € X is a solution of

Do a(t) = h(t), tE€ (tstsr], s € Ny,
I§w(0) =0, Dy a(0) = 0,5 € Ny,
DS (1) = 0,5 € INpTAL (4.9)

lim (t —t5)" %a(t) = Lns, s € NP

t—td

ADST"a(ty) = Ih_j 5,j € NI 7H s € NP

if and only if

oY — N & Ty n—j—v
z(t) = — vz F(otcfv+1) ng TN wz::l 2 Ti—j—v+) (1 =)™
n—=k n—k ]
a—v Nz 1 (1—s n—j—1
L e X W o St hls)ds (4.10)

S n
a v t S m
+w§1v§1ﬁ(t + [ s >) h(s)ds,t € (ts,ter1],s € INT.

Proof. Suppose that = € X is a solution of (4.9). Then by Theorem 3.1, we have (4.6). Further-
more, we have same results (i)-(iv) in the proof of Lemma 4.1 and

1 (1-—sn ! . n+l—k—
Z et 2 2 Foy (1= )" 970+ [y Sim—h(s)ds = 0, € N HR
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Note I € IN¥. Tt follows that

1 1
I'(n—1 I'(n—1-1
( b ) ( . )
T'(n—1-1) T'(n—1-2)
1 1
I'(n—k I'(n—k—1
( ; ) ( . )
I'(n—k—1) TI'(n—k-2)
1 1
F(kfllJrQ) F(kfll+1)
T'(k—1+1) T'(k—1)
C10
C2 0
Ck—1+1 0 _ _
Ck—14+2 0
Cn—k—10
Cn—k 0
Then we get

§|N<§:§3mmgmn“‘t)”J”+hls

Substituting all of ¢, into (4.6), we get (4.10).

Lemma 4.1 and omitted.
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1 1 1 1
F(nl—k) F(n—lk—l) F(kl—l) F(k—1l+1)
T(n—k—1) T(n—k—2) T(k—i—1) T(k—1)
N o I
F(n—12k+l) F(n—?iﬁ-l—l) T'(2) (1) %
T(n—2k+1—1) T(n—2k+1—2) T(1) 0
1 1
I ’
N6 0 0 0
Iuw(l tw n 1-v 1 (1—8)”7171
Zl Z T(n—1—o+1) "‘fo T(n—1) h(s)ds
m n72
Tyw(1—ty)" 727" 1 (1—s)n—2-1
21 Z: T(n—2—v+1) +f0 T(n—2) h(s)ds
m n—(n+l—k—1) _ N
11]1‘)(17tw)n (n+l—k—1)—v
wZ::1 vgl T'(n—(n+l—k—1)—v+1)
1 (1—s)"~ (n+l—k—1)—1
+ o T(n—(n+l—k—1)) h(s)ds
(4.11)

Now, we define the following operators on X by

(Thz)(t) =

n—~k
_ Z oot D)
1

v=

Zp(

v

(x—v—l—l)

LPIPIRC

w=1v=

a—v+1)

yr—i-t

n”immggem??

The remainder of the proof is similar to that of

|
n—Fk m n—(j—1) o
Too(tw)(1—t, )~ U~ D—c
=1 2 ng Tla—(j—1)—0o+1)
1 s(x—(7 1)—1
%fr(s)ds (41
(t—t)o v + [ & FS(L) fo(s)ds,t € (ts,tsi1],s € IND.
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and

Lemma 4.3. Suppose that (a)-(c) hold and I € IN¥. Then Both operators T}

a—v — m n—j .
Tt =~ E e 5 4 K e -t
n—k n—k ;
e~ ii 1 (1_s)n—3—1
X Temwrn X W Jo Tty Sels)ds

Lyg (tw a—v t (t—
£33 - )

w=1v=1

(s)ds,t € (ts,tst1],s € ING".

Ty : X — X are well defined and completely continuous.

Proof. The proof is standard and is omitted, one may see [56].
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(4.13)

: X - X and

Choose Z = L'(0,1) x IR with the norm ||(z,a;; : i € Nj~',j € INP)|| = max{||z||1, |a;;| :
i € IN7?,j € N7}, Choose F = X and

D(L

Define the linear operator Ly : X () D(L1) — Z and the nonlinear operator Ny : X — Z by

1) ={z € X :°Dg,x € LY(0,1), DI " u(0) = 0,i € N¥, DI (1) = 0,5 € N7~}

cDg+x(t) fa (t)
ADY " Va(t,) - s € Ny Lia(ts):s € N
(L1z)(t) = N , » (Naz)(t) =
ADg w(ts) « s € NP, I i o(ts) 1 s € INT,
lim (£ — )"z (t) : s € INT! Ina(ts) : s € INT?
st
(4.14)
Lemma 4.4. Suppose that (a)-(c) hold. Then
(i) L, is a Fredholm operator of index zero.
(i) Ni: Q — Zis called L;—compact for bounded set Q C X.
(iii) =z is a solution of BVP(1.30) if and only if L1z = Njx.
Proof. Let
1 e 1 1 oo 1
o) TGnF) T—F=1) TR T
T(n—2) Y T(n—k-1) T(n—k—2) ' I‘(k+1) T(k)
K = (kij)(n—k—l)x(n—k—l) = @ F(n712k+1) F(n;2k) ? ﬁ
k1) °  Tmokh oD T 0
% e ﬁ ﬁ e 0 0

Then |K| # 0. Let K;; be the the algebraic cofactors of k;;. Then |K;;| < T'(n — k).

Firstly we prove that Ly : D(L;) C E — Z is a Fredholm operator of index zero.
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Claim 1.
KerLy = {cpot® ™ :cp0 € R}. (4.15)
In fact, x € KerL; if and only if
( 611))0+33( ) 0
ADG" Va(ts) 1 s € NT 0:se Ny
=] 0:se N
ADS‘flx(ts) :s € INT?
lim (¢ —t5)" “x(t) : s € INT 0:s5secIN™
t—td !

Use Lemma Theorem 3.1, we have x € D(Ly) and
i n )
x(t) = Z_:O z_:l o 11‘)’+1)( tw)aiv,t S (ti,ti+1],2 S ]1\]81,
Dng n+]$(t) = Z Z W(t - tw)n_]_vvt € (ti’tiJrl]vZ € INg*,j € INy g

w=0v=1

By D" (0) = 0,i € N, we get ¢; o = 0,5 € N"~;. By D37 " a(1) = 0,5 € NT™F, we have

_1 . 1 1 .11

r(n1—1) F(nl—k) I"(n—lk—l) F(k+2) r(k1+1) €10 0

T(n—2) T T—k—1) T(n—k—2) ' F(k+1) T(k) C2 0 0

Tn—k) Tn—2k+1)  T(n-2F) e T ™D Ck 0 10
1 . 1 L 0 c 10

I'(n—k—1) F(n 2k) T(n—2k—1) ( k+1 0
@ ce T T 0 0 Cn—(k+2) 0 (O)
Cp—
O] o) 0 0 0 (k+1) 0

Then ¢; g = 0,1 € ]NTfk*l, Hence z(t) = ¢y, 0t*~ ™. On the other hand, we have ¢, ot*~" € KerL.
Then (4.15) holds.

Claim 2.
kot a'uw(l ty)" avw (I—tw)*™"
- Z:l Z:l T(k—i+1)[K]| z+1)\K| Z Z (n—j— v+1 + Zl E I'(k—v+1)
Ile = (U,aij) 7k nj:k, 1 K, L (1_s)" g 1 1 (1_s) .
- 21 21 SR F TR f Ty ws)ds + [ r(k u(s)ds =0
= j=
(4.16)
In fact, (u,a;; 4 € Ng~',j € Ny*) € ImL; if and only if there exists = € D(L;) such that
DS, (t) u(t)
ADS:(n 1)£U(ts) cse N a1s @ s € INY

azs : s € INT

ADg- Ya(ty) 1 s € NP

Hm (£ — )"~ %z(t) : s € N an-15 5 € INY*
t—td Gn s: s €N
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By Theorem 3.1, we know that there exist constants c¢,,, € IR(v € INJ",w € INJ*) such that
x € D(L1)N X and

Cow a—uv t (t—s)*7! m
( ) Z Z Tla— v+1)( -1 ) + fo ¢ F(L) U(S)dsat € (tSats+1]75 € INg". (4-17)

By Definition 2, we have for j € lNg_1 that

n—j j—1

a—n+j z =7 c n—j—ov t s)"
Dg; Hm(t):u;w;ﬁ“itw) Ut (tr(nij)u(s)ds,

(4.18)
t € (ts tssr],s €IND, j € INTTL,

(i) From ADS“;"J_”:U(L‘S) = a;s and (4.18), we get c;js = a;s(j € N} 1 s € INP).
ii) From D'k”“x =0,ie IN¥, we get ¢; o =0,i € IN" "L,

1 n—k
(iii) By Doy ”%(1) =0,7 € N"* we have from (4.18), (i), (ii) that

1 . 1 1 R S 1
F(nl—l) F(nl—k) F(n—lkt—l) F(k1+2) F(kf_l) c10
T(n—2) T T(n—k—1) T(n—k—2) °° T(k+1) (k) C2 0
2 I S i)
F("fk) F(n712k+1) F(nIQk) T(2) (1) Ck 0
Tnk—1) Tn—2k) Tm-—2t-1) =~ T 0 Ck+10
1 1 1
NG) E) 0 0 0 Cn—(k+1) 0
m n—1
avw(litw)n—l—u (1—s)"~ 1—1
2 2 et o St u(s)ds
m —2
avw(l_tw)niziv 1 (1_5)”‘7271
> Tih—2—of1) T Jo T(n—2) u(s)ds
w=1v=1
m n—k avw(lftw)"7k7” 1 (175)71—1«—1 d
wgl 24 T Tn—k—vtD) +Jo T(n—F) u(s)ds
= n—(k+

m G (1—t)"~ (D=0 1 (1—g)n=(et1)—1
> F ot T Jo Troammryw(s)ds

+1 k4+1—v k+1—1
apu(1=ty) 1 (1-s)
> 21 trrorn T o T w(s)ds

k k—v k—1
Ay (1—1qy 1 (1—s
21 21 F((k—v+)1) +Jo ( r(i) u(s)ds
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Then ¢; g = 0,7 € ]NT_k_l. It follows that

m n—1
Auw (I=tw)" 717" 1(-sn='7t
Z I(n—1—v+1) + fo T(n—1) u(s)ds
w=1 'u:;
m n—
avw(l*tw)n7277’ 1 (1 s n 2—1
€10 > T(n—2—v+1) +f( NG u(s)ds
C2 0 w=1v=1
B N_l i n—k avw(litw)n—k—v Jrfl (1—s n—k—1 ( )d
Ck 0 == et I'(n—k—v+1) 0 = T(n—k) u(s)as
w=1 v=
C
k+1 0 m n—(k+1) e (1t )= B+ = 1 (1_gn- (D1
Z T'(n—(k+1)—v+1) fo INCECESY))
Cn—(k+2) 0 w=1 wv=1
m k+1 1o o
Qyw (1—tw) 1 (1-s)
Zl Zl (k+1 'U+1) + fo F(k-‘,—l) u(s)ds
w=1v=

and

ci A (1—1,,)F 7 1 (1—s)k—1 .
Z INC=Esyins Z Z (kiu—i-l)+f0 ( F(i) u(s)ds = 0.

So

n—k—1 ) )
K, ww (1—=t)" 777" 1 (1—g)n—d—1 . n—k—
Gio=~— '21 \IJ( ( > Z = F((nfjf)v+1) + o ( Fk(?ij) U(S)d5> i€ NP~
]:

w=1v=1

Substituting (4.20) into (4.19), we have

m n—
i Ay (1—ty)"~I 7Y 1 (1—s)" 79—
TR <z:: z:: oo — o “ T

k . u(s)ds)
j=1 w=1wv Gy (1— tw
- Z - T(k—it1) + Z Z (k 'u+1)

i=1 w=1v=

1 —s k—1
+ /o @ F&) u(s)ds = 0.

That is

n—k—1
>

1 j=1

-

w=1v=1

K2

—1

n—k—1 ;

Kj i 1 (1-g)n it 1 (1—s)"

. '21 Th—i+ K] Jo ( F(’r)L—j) u(s)ds + |, ( r(i) u(s)ds = 0.
i=

N

K2

m n—j L
K; i Ay (1—=1)" 77 Ay (1—ty)"
Tt DIK] }::1 1)2::1 Tihj—ofD) T Z Z T U+1)

Y. Liu

(4.19)

(4.20)

(4.21)

On the other hand, if (u,a;; : i € ]Ng_l,j € INT*) satisfies (4.21), we can prove that there exists

x € D(L1) N X such that Lyx = (u,a;; : i € NJ™',j € INT). Hence (4.16) is valid.

Claim 3. For (u,a;; : i € INg~',j € IN") € ImL;, there exists € D(L;)()X such that
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Lz = (u,a;; 11 € Ng ™', j € NT') with

n—k—1n—k—1

a—n Ayw (1=t v 1 (1—s)n it a—1
) =en ot = 2 2 - S (Z Z tas o YT “(s)d8>t
R

s n _g)e—1
+ Z Z ey (= 1) + [y SRk u(s)ds,t € (£, taa], s € NG
w=1v=1

(4.22)
This claim follows from Claim 2.
It follows from Claim 1 and Claim 2 that dim KerL; = 1 and ImL; is closed in Z. Furthermore,
define projectors P : X — KerL; and @) : Z — ImL; by

1"z (0)

Pz(t) = mto‘_", reX,

Q(u,ai; i € N}, j € N') = (Qu,%,o e NIl j e ]NT) ,

where

Ct— =

-1
k n—k—1 )

re) _ (A—s)** K; i (=771

Qu,a”—[ ( T(K) _'21 21 Th—i+]K] T(n—3) >d3] x
=1 =

k n—k—1 m n—j n—i—uv m k —w
-3 % Kj i DY Ay (1—ty)" 7 Y% Gy (1—t0p)*
: : T(k—i+1)|K]| T(n—j—v+1) T'(k—v+1)
i=1 j=1 w=1v=1 w=1v=1

1 k n—k—1 ;
(1—s)" Kji  (1—s)" i
+/ ( TR T 2 2 TR T ) “(s)dS] :
0 i=1 j=1
It is easy to see that P : X — Kerl; and Q : Z — Z/ImL; are well defined and
ImP=KerL;, KerQ=ImL;, X=KerLi®Ker P, Z=Im L; ®Im Q.

So dim KerL; = co dim ImZL; =1 < +o0. Then L; : D(L) C X — Z is a Fredholm operator of
index zero.
The inverse of L1|D(L1)mKeI‘P : D(Ly)NKer P — Im L; is denoted by Kp : ImL; —

D(Lq) N Ker P with
Kp(u,a;;:i€ Ng~', j € INT)(2)

mn—

n—k—1n—k—1 )
_ K i Gy (1—ty)" 97" 1 (1—g)n—i—1 v
== Zl _Zl (oot DIK] (Z Z e o r(nj)u(S)dS) t
1= j= w=1 v=1

2 2 a a—uv t(t—s)*! m
+ ; ;W(t—m + Jo Sl uls)ds, t € (ts, tepa], s € N

Secondly for each nonempty open bounded subset (2 of E satisfying D(L1)NQ # @, we prove that
Ni: Q — Zis called Ly —compact. It suffices to prove that QN (£2) is bounded and K, (I —Q)N(2)
is bounded and relatively compact.
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One sees that

ONiz(t) = Q| Lu(ty):seNm | = (@fm(t)y,m(tj),o e NI e INT) :

where

-1
1 . k n—k—1 .
= _ (1—s)F1 K (1—s)"—9~1
Qf:c(t)vlim(tj) - [{( T(k) 21 Zl T(k—i+D)[K] T(n—j) )d‘s] X
1= 1=

k n—k—1 m n—j m  k
Kj i o (tw)(I—ty)" 7" Lya w)(l —t)*
[_ Zl Zl F(k*iil)”{ Z Z T'(n—j—v+1) +w21 12 T'(k—v+1)

1 . k n—k—1 .
1—s)k—1L K; ; (1—s n—j—1
“r{ <( p(?c) - z; ]21 T(k—it 1) K] F(?lfj) ) fm(s)ds] .

By direct computation, we have

fx(t) _@famlim(tj)
s):s €N

K, (I — Q)N1x(t) = KpNiz(t) — KpQNya(t) J) i seINP

K, o, (

o nEE T gy L e Sy (tw)® t
== L Y w2 X Tt belt) + 3 2 iRy Le(t)
i= j= =lv=1 w=te=t
—k—1n—k—1
K; (1—s)n 91 )
_ 2:1 El (o= v+1)\K| fo F(n ) [fz(s)_szJm(tj)]ds
i= Jj=

+f0 r(a) m( ) @fz,lix(tj)]dsat € (tsats+1]73 € ]Ngl'

By Lemma 3.4, we can prove that QN1 (Q) is bounded and K, (I—Q)N; () is bounded and relatively
compact. Hence N; : Q — Z is called L;—compact for bounded set Q C X.

Thirdly, it is easy to see that z is a solution of BVP(1,30) if and only if L1z = Nyz. The proof
is completed. [ ]

(H1) there exist nonnegative numbers by, ay, By, A;, 0 > 0 such that
)f (t, ﬁ)] <tP(1— t)9[bs + agla|”],x € Ryt € (ts, tor), s € NI,

’Ij (tsa W)‘ S B[‘SC| + AI|.’IJ|O-,$ S ]R,S S N?L,] S H\I’il
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Denote

n—k n—k m n—(G—1)
— 1 L(n—Fk) (1—t,)*" U D°
My = T(a—v+1) J;l [TM]] wz:: 0';1 T(a—(j—1)—0c+1) Br + Z F(a v+1)

n n—~k
I'(n—k) B(a—j+q,p+1 B(a+q,p+1
+ X tamern X T et b + rEE

n—k (-1
_ 1 L) (1t~ =0- ma
M= 2 remwm J; AT Z ;::1 fast a4 + Z ey

I'(n—k) B(a—j+q,p+1) B(a+q,p+1)
+ Z T(a— v+1) 21 [[M]] F(a](qp)) af + (qal)) ar.

Theorem 4.1. Suppose that (a)—(c) (defined in Section 1), (HI1) holds. Then, the system (1.28)
has at least one solution in X if one of the following items hold:

(i) o <1; (i) o=1with My < 1; (iii) o> 1 with My Mg ~! < =D

Proof. The details may be seen in Appendix section. |
(H2) there exist constants My, M; > 0 such that

’f (t7 W)‘ S Mf,t c (ts,ts_i_l],s S ]Ngl

Corollary 4.1. Suppose that (a)-(c) and (H2) hold. Then BVP(1.28) has at least one solution.
Proof. Choose p=¢g=0,b; =0,a5 =My, By =0,A; = M, 0 = 0. One sees by (H2) that (H1)
holds. By Theorem 4.1 (i), we get its proof. |

Denote

I'(n—k) (1 tw)® ™ B
No = Z oot D) ;1 ATl ,Z Z (a—j— a+1 - Br + Z Fla—o D)

(n—k) B(a—j+q,p+1) B(a+q,p+1)
+ Z o= v+1) E N Ta—G-1) °f T = 1) 05

T'(n—k) (1—t4)” mA
E Y CETEEY Z ||N|| 12 Z Tla—j— a+1 A+ E Tla—vrD)

(n—k) B(a—j+q,p+1) B(a+qp+1)
+ Z MaorD) Z N Ta-G-1) & T = Ty %
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Theorem 4.2. Suppose that (a)—(c) (defined in Section 1), (H1) holds. Then, the system (1.29)
has at least one solution in X if one of the following items hold:
)o' 1

(i) o<1 (ii) o=1with Ny <1; (iii) o> 1 with N;NJ~' < &7
Proof. It is similar to the proof of Theorem 4.1 and omitted. W

Corollary 4.2. Suppose that (a)-(c) and (H2) hold. Then BVP(1.29) has at least one solution.
Proof. It is similar to the proof of Corollary 4.1 and omitted. |

(H3) there exist nonnegative non-decreasing functions [],, []; : [0,00) — [0, 00) such that
[ (8 e )| S TL U1 = 67,8 € (b, o], 5 € NG,

‘If (t ﬁ)! <TII;(Jz]),s € NT*,j € IN.

(H4) there exists a constant M > 0 such that € X (| D(Ly) with |z(¢)| > M for all ¢ € (0, 1]
implies

k n—k—1
m(tw (I—tw)™™ Lya (te) (L—ty)* ™
_Z Z T(k—i+1)|K]| H—l \K\ Z Z (n—j— ’u+1) +wzlv2 T(k—v+1)
k n—k—1 :
Kj L (s 77! 1 (1—s)* !
_‘21 21 T(h—i+1)[K] o T(n—yj) fe(s)ds + |, e Ja(8)ds # 0.
1= Jj=

(H5) there exists a constant My > 0 such that

w=1v=1

k n—k—1 —n n—j—uv m  k a—n k—v
1, unct?u )(lftw) ’ Iv(twatw )(17tw)
[ Z Z TR Z Z ey + 2 X T o D)

k n—k—1 1 1 g yn—i—1 a—n 1(1— S) _—
> '21 T(k— z+1)|K\ f f(s,es%™)ds + [, TR f(s,cs )ds| >0
j=

i=1

holds for all |¢| > My or

j=1 w=1v=1

kE n—k— m a—n n—j—v m k a—n k—v
Iu(tu”ct Y(1—to,)" 9~ tw,ct )(1—ty)
[ Z: Z T(k—i+1)[K]| z+1)|K| Z Z T'(n—j—v+1) Z Z T'(k—v+1)

k n—k—1 K, 1 (1—g)n—i—1 L S) .
-2 X T(h— +1)|K\ f r(n o) f(s,es*™™)ds + |, Wf(s,cs )ds| < 0.
i=1 j=1 7

holds for all |¢| > Mj.

Theorem 4.3. Suppose that (a)-(c), (H3)-(H5) hold. Then BVP(1.30) has at least one solution if

A AT OFETL e S b (4.23)
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where M7 = and

M
I'(a—n+1)

Mo — 1 nka:flnff:fl T(n—k) Z Z (1—t,)"" j—v
2~ T(a—n+1) o & T'(a— z+1)HK|| T(n—j—v+1)

n—k—1n—k—1 D(n—Fk) m lt)”j“ n m
+1"(a n+1) Z I'(a— v+1) + Z Z I'a— z+1)HK|| Z Z I'(n—j—v+1) vgl I'(a—v+1)°

n—k—1n—k—1
_ 1 P(n—k)  B(nt+g—j,p+1) 1 B(a+tg,p+1)
M; = T(a—n+1) l; ng I(a—i+1)|| K] T(n—j) + T(a—n+1) I'(a)

n—k—1n—k—1
C(n—k)  B(ntg—jp+l) | B(atg,p+l)
+ 2 X Te-aDlRl M) 1T T

Proof: The details can be seen in Apendix section. |

5 Some examples

In this section, we firstly point out a mistake occurred in [31]. Then to illustrate the usefulness of
our main result, we present some examples.

Remark 5.1. In [31], existence of positive solutions of (1.27) was studied. Suppose « € (1,2).
Lemma 3.1[31] claimed that if v € PC[0,1] is fixed point of the operator A : PC[0,1] — PC|0,1]
defined by

(Au)(t) = fol G(t,s)f(s,u(s))ds +t>=1 > r2-u(ty), uw e PC[0,1],

t<tp<l

where [H(1— ) — (£ — 5!
t(l—s)|* " —(t—5)",0<s<t< 1,
G@s{[ﬂy—@PA,ogtgsgL

then u is a solution of BVP(1.27). However we find that this lemma is in-correct.
Proof. In fact, if v is a fixed point of A, we have

= [ G(t,8)f(s,u(s)ds + >0 % rZu(ty), u € PC0,1],

t<tp<l
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For t € (t1,t2), by Definition 2.2, we have by direct computation that

Diatt) = rasy [t =91 ([} 6o, outeto s 50 5 cku(tk))ds}/,

1—cg
s<tp<l

"

[f(:(tfs)l*“J;}G(s,u>f<u,u<v>>duds]”+{J‘J(tfsf*asa* = li'zku<tk>ds}

s<tp <1

I'(2—a)

. [fot (t—s)lf‘l(f(f G(s,v)f(v,u(v))dv-i—fsl G(s,v)f(v,u(v))dv)ds]”
- I'(2—a)

[ 1(t—s)t=os

(tk)ds+ff (t—s)t7os>™1 — u(tk) :|”
Ir'(2—aw)

_|_

UO (t—s)*~ s ([s (1—v)]* t—(s— v)a_l)f(v,u(v))dvds«kfot(tfs)l_"‘ fsl[s(lf'u)]a_1f('u,u(v))d'uds]”
I'(2—a)

1 1 m
(t—s) =" ds Y

t1 1—a _a—1 <
o (t—s) s dsk
—1
+

()|
F(2 a) '

By interchange integral order for the first term and w = $ for the second term, we get

o ft fsf’(t—s)lfCX [s(l—v)]‘)‘*l—(s—v)a‘*1 dsf(v,u(v))dv-ﬁ—ft fs(t—s)lf‘lso‘flds(l—v)aflf(v,u(v))dv "
D0+u(t) — [0 ( ) T2 0 Jo ]

t1 mo mo "
|:t fot (l—w)lf"‘w“*ldw kzl 1—’Zk. u(ty)+w ftlil(l—w)lfawafldw kZQ 17’;)@ u(tk):|
= T3 =
r(2—a)

+

U =) s s (1) f(v,u(v))do— [ [L(t—5)' " (s—v)> " ds) f(v,u(v))dv]”
- r2—a)

til m
tfo? (I—w)'™*w* dw P —

kiz 1?“% u(tk):|
" =

F(Zfa)t

. [(tB(Q—oz,a) fot(1—v)°‘71f(v,u(v))dv—fot fst(t—s)lf"(5—1))0‘71ds)f(v,u(v))dv]”
- r(2—a)

1"
m
[tfo (1—w)t = o 1dw101 u(t1)+tB(2—a,a) Z li’f:ku(tk):|

+ Te—a) : # —f(t, u(t)).

Then Lemma 3.1[31] is in-correct. |

Remark 5.2. Impulse conditions u(t{) = (1 — cp)u(ty,) i
problem.

Proof. By Theorem 3.1, we have from D, u(t) =

n (1.27) is unsuitable for this kind of

—f(t,u(t)),t € (ts,tst1], s € INJ* that

t(t— “71 C1v v Cou(t—t,)* 2 m
t)=—Jy F(L) ())d3+Z%“‘Z%JG(%%HLSGNO.
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According to assumptions u(0) = 0 and w is right continuous at tx(k € INT*, we have cos = 0,8 €
ING*. Then

t (t—s)® 1L SCv*va_l m
ut) = — [ (¢ F(L) f(s,u(s))ds + ZO%J € (ts, ts4a], s € ING™.

However, we find that u(tf) — u(t;) = 0. So impulse conditions u(t{) = (1 — cx)u(t; ) is unsuit-
able. |

Example 5.1. Consider the following impulsive boundary value problem

8 1 1 ) 1
D) =141 = 0)F [bo+ aol(t — /2 u)7] . te (;, Ly 2} im0,

2 2 5.1
I3 u(0) =0, I3, u(l) =0, (5.1)
lim (t — 1/2)}u(t) = I, ADZ,u(1/2)=J,
t—st

where by, ag, I, J are constants.

BVP(5.1) is a revised form of BVP(1.27). The boundary conditions and impulse functions are
changed. Corresponding to BVP(1.28), we have 0 =ty < t; =1/2 <ty =1, a = £ with n =2 and
k=1, f(t,x) =t75(1 — )75 [bo + aol(t —i/2)*/%2]°], te€ (g,;‘l 1], i=0,1, L(1/2,2) = I,
and I1(1/2,z) = J, f is a Caratheédory function with p = ¢ = —z. One finds that M = (1) with
||M|| = 1. It is easy to see that (H1) holds with by = |bo|,a; = |ao| and B; = max{|I|,|J|}, A; = 0.
By direction computation, using Mathlab 7.0, we have

_[_a (1/2)%5 (/275 1 1
Moy = {1"(8/5) ( TR/E) T TE/m) ) +rEm T r(3/5)] max{|1],[J]}

B(2/5, B(7/5,
+ (F(81/5) (rg(/ss/?>§5) + (r7(/s5/§)/5)) |bo| < 3.7max{|I],[J]} + 4.6[bol,

1 B(2/5,4/5) |, B(7/5,4/5
My, = (F(8/5) (F(/8/5§ ) + (F(/8/5)/ )> |(l0| < 46|a0|

By Theorem 4.1, BVP(5.1) has at least one solution if one of the following items hold:
(i) o < 1; (i) o =1 with 4.6|ag| < 1; (iii) o > 1 with 4.6|ao|(3.7 max{|I|,|J|} +4.6]bo|)7~* <
|

(0__1)071

oo
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Example 5.2. Consider the following impulsive boundary value problem
38 o1 1
Diu(t) =t=3(1— )% b0+a0[(t7i/2)2/5u(t)]"} te <; ;+ 2} i=0,1,
(5.2)
24 .
Dofﬂu(l) =0,j € IN{,

lim (f — 1/2)3u(t) = Is, Au(1/2)=1;, i € NI,
t—st
where by, ao,do, I, I;(i € IN]) are constants.

Corresponding to BVP(1.29), we have a = 23 with n =8, m = 1 with 0 = tg < t; = 1/2 <
ta=1k=4,1=1, and f(t,fL') = t_%(]' - t) [bO —I—G,()[(t - Z/2)2/5 ] ] ) IZ(277 ) = IZ(Z € ]N’S)’ f
is a Caratheddory function with p = ¢ = —%. One finds that

5

TG T TE T
T4 TE) T T

with || N|| = fg3es05- It is easy to see that (H1) holds with by = |bo|, as = |ao| and By = max{|I;] :
i € IN$}, Ar = 0. By direction computation, using Mathlab 7.0, we have

4 — 38/5—j—o
1036800T(4) 1/2
(Z T(43/5— q(J 2 z:: (F(/43)/5 =y T Z F43/5 ) ) max{|[;] : i € INY}

4 4

1036800I'(4 B(37/5—3,4/5 B(37/5,4/5 L

+ (})1 et ) ) e R >> Ibo| < 4469800 max{|I;| : i € INS} + 23664]bo|,
v= =

4
10368001 (4 B(37/5—4,4/5) , B(37/5.4/5
Ny = (Z_: T(43/5— SJ) Z 4/3/5] Jf Lt (F(B/S/5§ )> |ao| < 23664]ag|-

By Theorem 4.2, BVP(5.2) has at least one solution in X if one of the following items hold:
() o < 1; (i) o =1 with 23664|ao| < 1; (iii) o > 1 with 23664|ao|[4469800 max{|L;| : i €
o—1
NS} + 23664bo[)7 ! < = ]
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Example 5.3. Consider the following impulsive boundary value problem

8 1 1
Diu(t) =t=3(1— )% bo+a0[(t7i/2)2/5u(t)]%}, te <;;+2] L i=0,1,

D§, u(0) = 0, Dj,u(1) =0, (5.3)

lim (¢ — 1/2)8u(t) = Lu(1/2)]V/3, ADYP M u(1/2) = L[u(1/2)]V/3,
t—s
where by, ag, 1,1 € R, I} > 0,15 > 0,aq9 > 0 are constants.

Corresponding to BVP(1.30), we have a = % withn = 2,0 =ty < t; = % < tg =1,
k=1, and f(t,z) = t75(1 — )75 [bo+ao[(f*i/2)2/5x}%}a I;(1/2,2) = Lizs, j € N}, fis a
Carathédoey function with p = ¢ = —1. It is easy to see that (H3) holds with [I;(z) = |bo| +agz/3,
[1;(z) = max{| 11|, Is}x5.

One finds

o 1/2 1
M=b [ s75(1—s)"5ds + by il s75(1—s) 5ds
0 1/2
1/2

+6Lx(1/2)5 +ag [ s75(1—s)"552/5[x(s)]5ds
0

+ag fl s75(1—s)"5 (s — 1/2)2/15[x(s)] 3 ds.
1/2

Choose

/2 4 1 1 1 1
bo [ sT5(1—s) 5ds+by [ s 5(l—s) 5ds
_ 3 0 1/2
M = /2 4 1 1 1 1 ’
Ii+ag [ s75(1—s) 5s2/18ds+ag [ s 5(1—s)” 5(s—1/2)2/15ds
0 1/2

If |z(t)| > M on (0, 1], by l(ill}flz)Jr(t —1/2)2/52(t) = Ly[z(t)]"/3 with I > 0, we know that z(t) has
t—

same sign on (0, 1]. Then either z(t) > M for all t € (0,1] or z(t) < —M for all ¢ € (0, 1]. It is easy
to see that M # 0. Hence (H4) holds.
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Similarly we know (H5) holds. By direct computation, we have M; = 1“(3#/5) and

3 3
1 10368007 (4) (1/2)89—v
My = T'(3/5) Z; 21 (43/5—1) Z T(9—j—v)

<.

28]1/

8 3 3 8
1 1 10368007 (4) (1/2) 1
AYETE) UX_: T(43/5—=0) "’i;]zl T(43/5—0) Z TO——v) vz=:1 T(43/5=)

3 3
1036800 (4) B(37/5—7,4/5) 1 B(37/5,4/5)
; z:: N ey T ai v o e H 7y R S €YY

3 3
1036800I'(4) B(39/5—4,4/5) , B(37/5.4/5)
T2 X T F(S—.]j) T TrEsE)

By Theorem 4.3, BVP(5.3) has at least one solution since

A e Moo T Tao 17314 M5 max (T fieNTy /s — 100 > L.

6 Conclusion and future studies

One important part of this paper is to present a new method for converting BVPs for impulsive
fractional differential equations to integral equations and to establish existence results for three
classes of two-point booundary value problems for hiigher order impulsive fractional differential
equations involved the Riemann-Liouville fractional derivatives.

Another important part is to demonstrate the application of the powerful mathematical tool
(fixed point theorems in Banach spaces) for solving nonlinear fractional differential models.

Some problems considered in this paper can be improved under weaker conditions on the func-
tions f,g and Iy, Ji. Further studies are also located on seeking the numerical simulation of these
models.

Impulsive fractional differential equations represent a real framework for mathematical modeling
to real world problems. Significant progress has been made in the theory of impulsive fractional
differential equations. Impulsive fractional differential equations is an important area of study [5].

This paper contributes within the domain of impulsive fractional differential equations. The
author strongly believes that the article will highly be appreciated by the researchers working in
the field of fractional calculus and on fractional differential models.

7 Appendix
Proof of Theorem 4.1. Let T be defined by (4.12). From Lemma 4.1 and Lemma 4.3, we know
that z is a solution of BVP(1.28) if and only if x is a fixed point of T3, T1 : X — X is completely
continuous. We shall apply Lemma 2.1.

Let Q, ={z € X : ||z|]| <r}. For x € Q,. Then ||z|| <r, ie., |z(t)| <r for all t € (0,1]. So
(H1) implies
(t)

|f (@t z(t))] < [bf +ayf U] (1= )7 < [by + agro|t?(1 — )9,

z(ts)
(t57t571)71—a

|I (ts,.’E( >)|<BI+A SB[-FA[?"U.
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We know |M;;| <T'(n— k). By (4.12), we have

m n—(j—1)

n—k n—k .
ne n-a - | M| oe (t)|(1=t)* =0~V 77
(t = )" (Tu) ()] < (¢ — ) [; MaoiD X M 2 X a-G- Do

n—k
a—uv M]Ul 1 (1 S)a (7—1)—1
+ 2 F(ifm) T Jo “Tamgmmy 1 fa(s)lds

. w a—v t —s a—1
+ z z destbell (p— g, yomv 4 (O | f(s)|ds

m n—(j—1) o
I'(n—k) (1—t,,)*"U-D-2 mB
Z O Z i X X tastnem Bt Z Mo viD)

w=1

I'(n—Fk) B(a—j+q,p+1) B(a+g,p+1)
+ Z NGy Z T ety br + PRy

Z Zl—‘nk f:ni(zjzil)(lt)a(]l)gA_*_z
T(a— v+1) [1M]] = A T(a—(G—-1D—o+1) ‘M F(a v+1)

T'(n—k) a—j+q,p+1) B(a+q,p+1) o
+ Z N GeTEsY Z ITMT] Pt ey + BOfEE Ry | 1.

It follows that
|| Thz|| < Mo+ Mqre. (7.1)

In order to use Lemma 3.4, from (7.1), we must choose r > 0 such that
Mo+ Myr? <. (72)

Then 779, C Q,.. So T3 has a fixed point in €,.. Then BVP(1.28) has a solution. We consider the
following three cases:

Case 1. o < 1.

Since lim M = 0, we can choose r > 0 sufficiently small such that (7.2) holds. Then
7—>00

719, C Q,. So T; has a fixed point in §2,.. Then BVP(1.28) has a solution.
Case 2. o=1.

Since lim M°+M”U = M; < 1, we can choose r > 0 sufficiently small such that (7.2) holds.
7—>00

Then 719, C Q,. So T; has a fixed point in €,.. Then BVP(1.28) has a solution.
Case 3. 0> 1.

1/o
Choose r = (%) . Then we have by the inequality in (iii) that

|| Thz|| < Mo+ Myr? <.
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Then T1Q, C Q,.. So T; has a fixed point in €,.. Then BVP(1.28) has a solution.
The proof of Theorem 4.1 is completed. |

Proof of Theorem 4.3. Let X, Z L; and N; be defined by (4.14). By (a)-(c), (H3)-(H5),
from Lemma 4.4, L, be a Fredholm operator of index zero and N; be L;—compact on each closed
nonempty set (2 centered at zero. We seek fixed point of the operator equation Lixz = Nyx. To
apply Lemma 3.5, we should define an open bounded subset 2 of X centered at zero such that (i),
(ii) and (iii) in Lemma 3.5 hold. To obtain €, we do three steps. The proof of this theorem is
divided into four steps.

Step 1. Let Oy = {z € X N D(L1) \ KerLy, Lix = ANz for some X\ € (0,1)}. We prove that
) is bounded.

In fact, for x € Q;, we have L1yx = ANyx and Niz € ImL;. Then

D, x(t) = Af(t,x(t), te (ts,tsq1], s € INg,
Dy 2(0) = 0,4 € INF,
Do " x(1) = 0,5 € Ny F,

lim (£ — t,)"2(t) = M (ts, 2(ty)), s € NP

t—tt

ADYT" T a(ts) = Mj(ts, 2(ts)), 5 € NPT s € NP,

So
k n—k—1 m n—' m
(1t)"J“ Ty (tw) lt)k“
(7.3)
k n—k—1 gn—i-1 Lo
> (k- z+1 WS fo 11‘(7)7,7‘7') fa(s)ds + [, a (s)ds = 0.

=1 1

It follows from (H3) that

<.
Il

1 a) < TT; (59 ) (1= 07 < TT,(lal Pt = 09, ¢ € (b, tora], s € NG,
11 (ts2(t)] < TL,(lall), s € NP, j € INY.
It follows from (H4) and (4.26) that there exists ¢ € (ts,ts41] (for some s € INJ*) such that

lz()| < M. (7.4)
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By similar method used in (4.22), we have

e n—k—1n—k—1

z(0) o\ p Ly (b)) (A=) " 97" i
a(t) = st " — Z Z Tla— 1+1)|K| Z Z (F(V)L(—j—v—)i-l) ¢

n—k—

1
(A—s)"" - a—1i
(a— 1—0—1 \K\ fo T(n—j) ff(s)dst

n—k—1
-
i=1

j=1

+ 21 2 F(ZZ(zi)l) (t —t O‘ Y + fO F(a) fZC( )d57t € (t37ts+1],5 S INz)n

Then
~ I %2(0) camn n—k—1n—k—1 K i m n—j Lo (t) (1—t) =7 =7 za—i
= rtlamem! T 4 & TRl 2 2 T
Eink (1—s)" 9~ a—1
- Z: Z: I'a— z+1)\K\ fO F(n 7) fx( )dSt
& S Lo (tw) (7 a v (t— S)a ! d -
+ Zl 21 T'(a—v+1) (t - t + fO T'(a) fw( ) Svt € (tsvts-l‘l]'
w=]1v=
We get

|17 (0)]

< ; fn—a n—k—1n—k— |K e ()| (1—te)" 9~ Ufn_i
T'(a—n+1) —| ()| + l; ; T(a— z+1)||KH Z Z F(n J—u+1)

—i-

n—k—1n—k— '

K i 1 (1—s 1 o

" Z1 Zl 1“(oz|1+1)|IIKH ( 1“(7)1 — | fo(s)|dst" "
i= j=

& Iur w a—ypIn— o -n—uo t —

3L i - )T T T (5)]ds
—k—1n—k—
I'(n—k 1 —i-v
<M+’ ; 2 - z z et T ()
n—k—1n—k—1
I'(n—k B(n+q—j,p+1

+ . I‘(a—(i+1)|)|K|\ (r((il_jjl)j )Hf(HfH)

n m B(«a
+ 2 i il + a1 (E
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So for t € (ts,ts+1], we have
(=t %la(®)] < (¢ = )" | FEy e
I e 3 Ut 5 3 et e
S e i RS et ) ]

L Y i T e
I'(a—n+1) = = T'(a—i+1)||K]| T'(n—j—v+1)

M
< I'(a—n+1) +

n—k—1ln—k—1

I'(n—k) (1—ty)" ™ n
i X e Y 2 TGl P} Z Foe e + 2 W%U] T (Il

n—k—1n—k—1

T(n—k)  B(n+q—jp+1 1 B(a+q,p+1
T(a—n+1) n+1) Z Z F(a( ) (ntg—jp+1) (a+g,p+1)

* i+ D[ K]| L(n—j) T Ta—ntD T(a)

n—k—1n—k—1
I'(n—k)  B(nt+gq—j,p+1) | B(a+gq,p+1)
T2 X TR ron oy | Tl

It follows that

[lf] < My + Mo T ([J]) + Ms T ([]]])- (7.4)
Since rlggo Y PESYR 1_[1(:)+M3 L0 > 1 (see (4.23)), we get from (7.4) that there exists a constant
My > 0 independent of A such that ||z|| < My. It follows that €y is bounded.

Step 2. Let Qo = {ct®* ™ € KerLy : Ni(ct* ™) € ImL;}. We prove that 5 is bounded.
For ct*~"™ € 5, we have

f(t,ct*™")
I (ts,ctd™™) : s € NP
Nl(Cta_n) = Ig(ts,ctgin) IS NT

I, (ts.cts™™) : s € N
So

n—k—1 m n—j

. Zk: Xk:  Kjai > Lt ety ™) (tw)" 97 i": Zk: Iy (fu et ™) (1=t ) F 7
A A Th—i+ )| K] T(n—j—v+1) T(k—v+1)
=1 j=1 w=1v=1 1

k n—k—1 )
1 DA a—n 1 (1-—s)* ! a—n
“X X T Ko Jo Sriy fs 057 ds + [y Ut (s, e ") ds = 0.
i=1 j=
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From (H5), we get that |¢| < Mp. This shows Qg is bounded.

Step 3. If the first inequality in (H5) holds and

1 k n—k—1 ]
a- q)k ! K (A-—s)n—77!
Of ( =2 X TR To=h ) ds > 0,

i=1 j=1

or the second inequality in (H5) holds and

i=1 j=1

1 k n—k—1 i
1—s)F—1L K; (1—s n—j—1
Of <( r(i) -2 X TR F(r)L—j) ) ds <0,
we prove that Q3 = {¢ € Ker L1 : AA(¢) + (1 — N)QNi(c) =0, X € [0,1]} is bounded, where

A :KerL — Z/ImL; is the isomorphism given by A(ct®™") = (c,0:4 € INg~', j € INT).
For ct*™™ € Ker L1, one sees that

AN (ct® ") = =A(c,0: 4 € Ng~,j € INT)

= (1= N (Qupon 1,4, c0o-m), 0: i € NG j € INT" ),
SHOR S

where
1 k n—k—1 -t
o) _ (- "5 Kji  (1=s)"77"
QCt“*’Lvli(t-f»Ct?w) - Lf< Z Z P(k—i+DIK|  T(n—j) >d5] "
k n—k—1 m n—j a—n n—j—v a—n k—v
K; ; Ly (b, ctS ™) (A—ty)" 7 Iy (tw,ct )(1—tq,)
X X TGaIR L G S Z To=otD)
i=1 j=1 w=1v=1 w=1v=
1 k n—k—1 )
(1—s) 7t K (A=s)" 37" a—n
+f< TR~ 2 2 TR Tn) )f(s’cs )dsl :
0 =1 gj=1
Then
1 k n—k—1 -t
_ (1—s)""* " Kji (=g 77!
—A? = (1-2) [f ( T T 2 2 TR T ) ds} X
0 =1 j=1
k n—k—-1 m n—j a—n n—j—v m k a—n k—v
Iy (tw,ct®™ ™) (1—ty,)" 77~ Iy (tw,ct )(1—tw)
¢ [_ Z : T(k—i+1)[K] z+1)|K| Z E T(n—j—vt1) + 22 [(k—v+1)
=1 j=1 w=1v=1
1 k n—k-—1 "
(1— Kj ; (1—s)n—971 a—n
+E]f ( - Z Z T it DK T 7) ) f(s;es )dsl :
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IfA=1 wegetc=0. If A€[0,1), and |c| > My, we get

-1
1 k n—k—1 .
_ (1—s)k1 K (=" i1
0>-A?=(1-2) [g ( OIS Z; ;1 Tt [K] T ) dS] X

J

kon—k— m n—j o i m ok e .
cl— Z Z K Z Z Ty (tw,cty, ™ ™) (1—ty)" 77 + Z Z I,( tw,ct )(1— tw)k

. . T'(k— 2+1)|K| T'(n—j—v+1) T'(k—v+1)

i=1 j=1 =1lv=1 w=1v=1

+

Ot

1—s)k—1 k k-1 K; 1—g)n—d—1t a—n
<( r(zc) -2 2 F(k—z’+1)|K\( F(T)L—j) )f(s,cs )ds] >0,

i=1 j=1

a contradiction. Then |¢| < My. Then Q3 is bounded.
If the first inequality in (H5) holds and

Ct— =

X k n—k—1 )
(1—s)*! Kj i (1—s)" 971
or the second inequality in (H5) holds and

1 k n—k—1 ]
(1- )k 1 K, ; (1—s)n—9-1
/ ( W T X X TErR T )ds >0,

i=1 j=1

we can prove that Q3 = {c € Ker Ly : AA (¢) — (1 = N)QN1(c) =0, X\ € [0,1]} is bounded, where
A :KerL — Z/ImL is the isomorphism given by A(ct®™") = (c,0:4 € INg~',j € INP).
Step 4. We shall show that all conditions of Lemma 2.2 are satisﬁed

Set 2 be a open bounded subset of X centered at zero such that € D U Q;. By Lemma 4.4, L,
1=1

is a Fredholm operator of index zero and N; is L; —compact on Q. By the definition of Q, we have

(a). Li(z) # AN(z) for x € (D(L;1) \ KerL;) N 9Q and A € (0,1);

(b). Ni(z) ¢ ImL, for 2 € KerL; NN

(c). deg(Q@NilKerr,» 2N KerLi,0) # 0. In fact, let H(z,\) = £AA () + (1 — N)QN1(z).
According the definition of Q, we know H(z,A) # 0 for z € 9Q N KerL;, thus by homotopy
property of degree,

deg(QN1|Kerp, 2 N KerLy,0) = deg(H (-, 0), 2N KerLy, 0)
=deg(H(-,1),2NKerL;,0) = deg(A, 2N KerLy,0) # 0.

Thus by Lemma 3.5, Lz = Niz has at least one solution in D(L1) N Q. Then z is a solution of
BVP(1.30). The proof is completed. |
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