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Abstract

In this paper, we introduce and define a new metric on the space of fuzzy continuous functions
in the fractional calculus. Regarding this metric and using the well-known Banach fixed point
theorem, we provide some conditions that guarantee the existence and uniqueness of solution to
a nonlinear fuzzy fractional differential equation in the proposed metric. Finally, two examples
are given to illustrate the results.
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1 Introduction

Theory of differential equations is an important part of pure and applied mathematics which plays
a prominent role in many disciplines including engineering, physics, economics and biology. One of
the significant branches of theory of differential equations is fractional differential equations that
in recent years, has received considerable attention not only in mathematical research but also in
other applied sciences. In fact, Fractional differential equations are the development of differential
equations to real order. These type of differential equations can be applied to many real-world
field such as polymer physics, viscoelastic materials, viscous damping and seismic analysis see
[3, 9, 11, 12, 13, 14, 18].

On the other hand, when one intends to analyze a real world phenomenon, it is also necessary
to deal with uncertain factors. In this situation, the theory of fuzzy sets may be one of the best
non-statistical or non-probabilistic approach, which leads us to investigate theory fuzzy fractional
differential equations.

Recently, the topic of existence and uniqueness for the solutions to linear and nonlinear fuzzy
fractional differential equations has been further investigated and discussed by many researchers in
various aspects. For example, in [2] the existence and uniqueness of solutions of Riemann- Liouville
fuzzy fractional differential equations has been proved by Arshad and in [16] the existence and
uniqueness of solutions as well the approximate solutions to fuzzy fractional differential equations
under the Liouville-Caputo H-differentiability has been studied by Salahshour and et al.. Further-
more, the existence and uniqueness of solutions for fuzzy fractional differential equations under the
Liouville-Caputo generalized Hukuhara differentiability has been investigated by Allahviranloo et
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al. in [1].
In this paper, we intend to propose a new metric on the space of fuzzy continuous functions by using
Mittag-Leffler functions and we study and investigate the existence and uniqueness of solutions to
nonlinear fuzzy fractional differential equations under fractional generalized H-differentiability in
the sense of the Liouville-Caputo differentiability.

This paper organized as follows: A brief review on the well-known fuzzy concepts as well as
fractional calculus are given in Section 2. Afterward in Section 3, a new metric for the space of
fuzzy continuous functions is introduced and the main result of the paper i.e., the existence and
uniqueness of solutions for nonlinear fuzzy fractional differential equations will be proved. Finally,
two examples are given to illustrate the application of the result.

2 A brief review on fuzzy concepts and fractional calculus

2.1 Fuzzy Theory

Definition 2.1. [5] Let X be a nonempty set. A fuzzy set u in X is characterized by its membership
function u : X → [0, 1]. Then, for each x ∈ X we interpret u(x) as the degree of membership of the
element x in the fuzzy set u: u(x) = 0 corresponded to non membership; 0 < u(x) < 1 to partial
membership; and u(x) = 1 to full membership.

Definition 2.2. [5] We denote by RF the class of fuzzy subsets of the real axis u : R → [0, 1]
satisfying the following properties:

(i) u is normal, i.e., there exists x0 ∈ R with u(x0) = 1;

(ii) u is a convex fuzzy set, i.e., u(λx+ (1− λ)y) ≥ min{u(x), u(y)} for all λ ∈ [0, 1] and x, y ∈ R;

(iii) u is upper semicontinuous on R, i.e. for each a ∈ [0, 1], {x : u(x) < a} is open in R;

(iv) cl{x ∈ R : u(x) > 0} is compact, where cl denotes the closure of a set.

We call RF the space of fuzzy numbers.

Obviously R ⊂ RF . Here R ⊂ RF is understood as R = {χ{x}; x is usual real number}. For
0 < r ≤ 1, denote [u]r = {x ∈ R;u(x) ≥ r} and [u]0 = cl{x ∈ R;u(x) > 0}.
By the definition of fuzzy numbers, it follows that for any r ∈ [0, 1], [u]r is a bounded closed interval.
The notation [u]r = [ur, ur] denotes explicitly the r-level set of u. We refer to u and u as the lower
and upper branches on u, respectively.

For u, v ∈ RF and λ ∈ R, the sum of two fuzzy numbers and the multiplication between a real and
a fuzzy number are defined respectively by

[u+ v]r = [u]r + [v]r = {x+ y : x ∈ [u]r, y ∈ [v]r}

and
[βu]r = β[u]r = {βx : x ∈ [u]r}

for all r ∈ [0, 1], where [u]r + [v]r is the usual addition of two intervals of R and β[u]r is the usual
product of a number and a subset of R.
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The Hausdorff distance between fuzzy numbers is given by d∞ : RF × RF → R+ ∪ {0} as
d∞(u, v) = sup0≤r≤1 max{|ur − vr|, |ur − vr|}. The metric space (RF , d∞) is complete and the
following properties for the metric d∞ hold (see [15]):

(i) d∞(u+ w, v + w) = d∞(u, v), ∀ u, v, w ∈ RF ;

(ii) d∞(u+ w, v + z) ≤ d∞(u, v) + d∞(w, z) ∀ u, v, w, z ∈ RF ;

(iii) d∞(ku, kv) = |k|d∞(u, v), ∀k ∈ R, u, v ∈ RF .

Definition 2.3. [17] A mapping f : T × RF → RF is called continuous at (t0, x0) ∈ T × RF
provided for any arbitrary ε > 0, there exist an δ(ε) > 0 such that

d∞(f(t, x)), f(t0, x0) < ε,

whenever |t− t0| < δ(ε) and d∞(x, x0) < δ(ε) for all t ∈ T, x ∈ RF .

Definition 2.4. [6] Let x, y ∈ RF . If there exists z ∈ RF such that x = y + z, then z is called the
H-difference of x and y and it is denoted by x	 y.

Definition 2.5. [7, 19] Given u, v ∈ RF , the gH-difference is the fuzzy number w, if it exists, such
that

u	gH v = w ⇔ (i) u = v + w or (ii) v = u+ (−1) · w (1)

Remark 2.6. If u	gH v exists, then its r-level set is given by

[u	gH v]r = [min {ur − vr, ur − vr} ,max {ur − vr, ur − vr}] .

Definition 2.7. [1] The generalized Hukuhara derivative of a fuzzy-valued function f : (a, b)→ RF
at x0 is defined as

f ′gH(x0) = lim
h→0

f(x0 + h)	gH f(x0)

h

If f ′gH(x0) ∈ RF , is said that f is gH- differentiable at x0.

Remark 2.8. If f(x0 + h) 	gH f(x0) exists as (i) in (1) is said that f ′gH(x0) is [(i) − gH]−
differentiable and If it exists as (ii) in (1) is said that f ′gH(x0) is [(ii)− gH]− differentiable.

2.2 Fractional calculus

The Rimann-Liouville fractional derivative and integral of order α > 0 of a function y, respec-
tively are defined by (see [8])

Dαy(t) :=
1

Γ(dαe − α)

ddαe

dtdαe

(∫ t

0

(t− s)dαe−1−αy(s)ds

)
(2)

and

Iαy(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds, (3)
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besides, for α = 0, we set D0 := I, the identity operator.
Also the Liouville-Caputo derivative is defined by

CDαy(t) := Dα(y − Tdαe−1[y])(t), (4)

where Tdαe−1[y] is the Maclaurin polynomial of order dαe − 1 of y = y(t), i.e., Tdαe−1[y](t) =∑m−1
k=0

yk(0)

k!
tk.

In the fractional calculus, the Mittag-Leffler function plays an important role same as the
exponential function in the classical calculus. The Mittag-Leffler function of order α > 0 is denoted
by Eα(z) and it is defined as follows

Eα(z) :=

∞∑
k=0

zk

Γ(αk + 1)
, α > 0, z ∈ C. (5)

Note that, for α = 1 the function E1(z) becomes the classical exponential function exp(z). More-
over, by composing two functions Eα(z) and tα we have

Eα(λtα) :=

∞∑
k=0

(λtα)k

Γ(αk + 1)
, t ∈ [0, a] ⊂ R, (6)

where α > 0 and λ > 0 is a constant. In fact, the function Eα(λtα) is the unique solution to the
following initial value problem

CDαx(t) := Dα(x− Tdαe−1[x])(t) = λx(t),
x(0) = 1, x′(0) = 0, ..., xdαe−1(0) = 0,

(7)

for t ≥ 0.
Here, it is necessary to review that for α ∈ N, dαe = α,

CDαf = Dα(f − Tα−1[f ]) = Dαf −Dα(Tα−1[f ]) = Dαf

since Tα−1[f ] is a polynomial of degree α− 1.

3 The main result

We start this section with the following definition of Liouville-Caputo’s derivative under generalized
Hukuhara derivative presented in [1].

Definition 3.1. Let f
(m)
gH ∈ C[a, b] ∩ L[a, b]. The gH- fractional Liouville-Caputo differentiability

of fuzzy valued function f is defined as follows:

gH
CDαf(x) = Im−α(f

(dαe)
gH )(x) =

1

Γ(dαe − α)

∫ x

0

(x− t)(dαe−α−1)f
(dαe)
gH (t)dt (8)

where x > 0 and dαe = m.

Theorem 3.2. [1] Let f : [a, b]→ RF be a fuzzy-valued function on [a, b].
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(i) If f is [(i)− gH]-differentiable at x0 ∈ [a, b] then f is C [(i)− gH]- differentiable at x0.

(ii) If f is [(ii)− gH]-differentiable at x0 ∈ [a, b] then f is C [(ii)− gH]-differentiable at x0.

Lemma 3.3. [1] The Fuzzy Fractional Initial Value Problem (FFIVP)

C
gHD

α(x(t)) = f(t, x(t)), x(0) = x0, t ∈ [0, a], (9)

for which 0 < α < 1, is equivalent to one of the following integral equations

x(t) = x(0) +
1

Γ(α)

∫ t

0

(s− t)αf(s, x(s))ds, (10)

or

x(t) = x(0)	 (−1)
1

Γ(α)

∫ t

0

(s− t)αf(s, x(s))ds. (11)

Here, we introduce and define a new metric on space RF

dλ∞(u, v) = max
t∈[0,a]

d∞(u(t), v(t))

Eα(λtα)
, α > 0, λ > 0, u, v ∈ RF . (12)

Lemma 3.4. Assume d∞(u, v) is Hausdorff metric on RF .

(i) dλ∞ is a metric on space of C([0, a],RF ).

(ii) The metric dλ∞ is equivalent to the metric d0
∞ = maxt∈[0,a]d∞(x(t), y(t)).

(iii) The metric space ((C[0, a],RF ), dλ∞) is complete.

Proof. (i) If λ > 0 is constant, then we have Eα(λtα) > 0 for all t ∈ [0, a] and Eα is continuous
on [0, a]. Therefore, three properties of a metric can be easily verified.

(ii) Since Eα is continuous and strictly increasing on [0, a], we have

1

Eα(λaα)
≤ 1

Eα(λtα)
≤ 1, for all t ∈ [0, a], (13)

hence, it ensures that two metrics dλ∞ and d0
∞ are equivalent.

(iii) The completeness of (C[0, a], dλ∞) follows from the completeness of (C[0, a], d0
∞) (see [10]) and

(ii). If {xn} is a Cauchy sequence in C([0, a], d0
∞), thus (ii) follows that {xn} is a Cauchy

sequence in C([0, a], dλ∞) and

lim
n,m→∞

d0
∞(xn, xm) = 0, implies lim

n,m→∞
dλ∞(xn, xm) = 0.

q.e.d.

Lemma 3.5. [20]For every constant λ > 0, we have

1

Γ(α)

∫ t

0

(t− s)α−1Eα(λsα)ds =
Eα(λtα)− 1

λ
for all t ≥ 0. (14)
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Theorem 3.6. Let R0 = [0, a] × RF and f : R0 → RF be continuous such that the following
Lipschitz condition holds: There exist a constant L > 0 such that

d∞(f(t, x), f(t, y)) ≤ Ld∞(x, y), (t, x), (t, y) ∈ R0. (15)

Then the FFIVP

gH
CDαx(t) = f(t, x), x(t0) = x0

has two unique solutions on [0, a].

Proof. Since f is a continuous function on R0 , so the integral equations (10) and (11) are well
defined. Let L > 0 be the constant defined in (15), and set λ := Lγ where γ > 1 is an arbitrary
constant. Consider the complete metric space (C[0, a], dλ∞), and let operators F1 and F2 are defined
by

(F1x)(t) := x(0) +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds, t ∈ [0, a] (16)

and

(F2x)(t) := x(0)	 (−1)
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds t ∈ [0, a]. (17)

According to Lemma 3.3, the proof of the theorem is equivalent to show that each of two operators
F1 and F2 have a fixed point, i.e. there exist unique points x1 and x2 such that F1(x1) = x1 and
F2(x2) = x2.
So, we will prove that F1, F2 : C([0, a],RF )→ C([0, a],RF ) are contractive maps with contraction
constant σ = 1/γ < 1, with respect to the metric dλ∞.

For any x, y ∈ C([0, a],RF ), consider

dλ∞(F1x, F1y) : = max
t∈[0,a]

d∞(F1x(t), F1y(t))

Eα(λtα)

≤ max
t∈[0,a]

(
1

Eα(λtα)

1

Γ(α)

∫ t

0

(t− s)α−1d∞(f(s, x(s)), f(s, y(s)))ds

)
≤ max
t∈[0,a]

(
1

Eα(λtα)

1

Γ(α)

∫ t

0

(t− s)α−1Ld∞(x(s), y(s))ds

)
= L max

t∈[0,a]

(
1

Eα(λtα)

1

Γ(α)

∫ t

0

(t− s)α−1Eα(λsα)
d∞(x(s), y(s))

Eα(λsα)
ds

)
≤ Ldλ∞(x, y) max

t∈[0,a]

(
1

Eα(λtα)

1

Γ(α)

∫ t

0

(t− s)α−1Eα(λsα)ds

)
= Ldλ∞(x, y) max

t∈[0,a]

(
1

Eα(λtα)
(
Eα(λtα)− 1

λ
)

)
=
dλ∞(x, y)

γ
max
t∈[0,a]

(
1− 1

Eα(λtα)

)
=
dλ∞(x, y)

γ

(
1− 1

Eα(λaα)

)
≤ dλ∞(x, y)

γ
.
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Thus, we see that the condition γ > 1 ensures that F1x is a contractive map. Similarly we can
prove that F2x is a contractive map, so fuzzy fractional differential equation (9) has two unique
solutions.

q.e.d.

Remark 3.7. In Theorem 3.6, we use the metric (12) that involves the Mittag-Leffler function.
This particular metric is optimal in the sense that it compels the operator to be contractive on
the whole of C([0, a],RF ), i.e., the space of fuzzy continuous functions on [0, a], rather than on a
smaller set in the previous research.
For example, according to Theorem 4.3 in [1] it has been proved that a fuzzy fractional differential
equation has two unique solutions on [0, r] , such that 0 ≤ r ≤ a. In addition, the conditions of
Theorem 4.3 [1] are somewhat robust whereas in this study, we only use the Lipschitz condition.
In other words, the metric (12) not only help us to find two solutions on whole of C([0, a],RF )
but also it allows us to have an easier proof, that is we only need to provide the condition which
satisfies the well-known Banach fixed-point theorem.

Example 3.8. suppose that f(t, y(t)) = ηy(t), so

d∞(f(t, y1(t)), f(t, y2(t))) ≤ |η|d∞(y1(t), y2(t))

and L = |η|, since λ := Lγ and γ > 1, the fuzzy fractional differential equation gH
CDαx(t) =

f(t, x(t)), x(0) = x0, where x0 ∈ RF , has two unique solutions on the space C([0, a],RF ) with
the metric dλ∞ for all λ > |η|. The exact solution of the fuzzy fractional differential equation for
η > 0 in the case of C [(i) − gH]-differentiable is x = x0Eα(ηxα) and for η < 0 in the case of
C [(ii)− gH]-differentiable is x = x0Eα(ηxα).

Example 3.9. Assume that f(t, y(t)) := 1√
π
y(t) + (0, 1, 2)t, thus

d∞(f(t, y1(t)), f(t, y2(t))) ≤ 1√
π
d∞(y1(t), y2(t))

and L = 1√
π

, since λ := Lγ and γ > 1, the fuzzy fractional differential equation gH
CDαx(t) =

f(t, x(t)), x(0) = [−0.1262r,−0.2523 + 0.1262r], t ∈ [0, π2 ], has two unique solutions on the space
C([0, π2 ],RF ) with the metric dλ∞ for all λ > 1√

π
. For example, when α = 1, the exact solution in

the case of C [(i)− gH]-differentiable is,

x = −π2r − e
t

π (
631r

5000
− π2r)− πrt,

x = e

t

π (
631r

5000
− π2r + 2π2 − 2523

10000
)− 2πt+ π2r − 2π2 + πrt

and in the case of C [(ii)− gH]-differentiable is

x = e

t

π (π2 − 2523

20000
)−

631r

5000
+ π2r − π2 − 2523

20000

e

t

π

+ π2r − 2π2 − πrt
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x =
(
631r

5000
+ π2r − π2 − 2523

20000
)

e

t

π

− 2πt+ e

t

π (π2 − 2523

20000
)− π2r + πrt.
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