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Abstract

A new multiple Čebyšev type functional is introduced by making use of the generalized frac-
tional integral operator with hypergeometric kernel and the notion of permanent of matrix
analysis. Inequalities for this functional are established for synchronous functions.
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1 Introduction

In recent years, a number of papers have appeared on the topic of the Čebyšev type functional
defined by certain fractional integral operators. Mostly in such works the functional is associated
with a special class of functions which are usually synchronous on a given interval.

Two functions ϕ,ψ : I → R are said to be synchronous (asynchronous) if they satisfy the
following condition:

[ϕ (t)− ϕ (s)] [ψ (t)− ψ (s)] ≥ (≤) 0 for each t, s ∈ I. (1)

In the literature, two functions that satisfy (1) are also called similarly ordered (oppositely ordered).
Obviously, two functions ϕ,ψ are synchronous if they are monotonic in the same sense, but not
conversely.

Belarbi and Dahman [3] established some interesting inequalities for the Čebyšev type functional
by making use of the well-known Riemann-Liouville integral operator. Subsequently, Saxena et al.
[14] introduced the Čebyšev-Saigo and multiple Čebyšev-Saigo functionals:

TS (ϕ,ψ) :=MS (ϕψ)−MS (ϕ)MS (ψ) (2)

and

TS (ϕ1, · · · , ϕn) :=MS

(
n∏
j=1

ϕj

)
−

n∏
j=1

MS (ϕj) , (3)
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where the integral mean MS is defined by

MS (ϕ) :=Mα,β,η
0,t (ϕ) =

Iα,β,η0,t [ϕ]

Iα,β,η0,t [1]
,

and Iα,β,η0,t denotes the Saigo fractional integral operator ([13]) defined by

Iα,β,η0,t [ϕ] :=
t−β

Γ (α)

ˆ 1

0

(1− x)
α−1

2F1

[
α+ β,−η

α
; 1− x

]
ϕ (tx) dx, (4)

which has been studied in several diverse areas during past few decades, see for instance, the works
in [5, 6], [11, 12], [16, 17, 18, 19, 20] and [21].

Purohit and Raina [10] also studied the same functionals and proposed their q-analogues. Fur-
ther extensions using the operator introduced by Curiel and Galué [4] and their related inequalities
was investigated by Baleanu et al. [1].

In the present paper, we study a new extension to the multiple Čebyšev-Saigo functional defined
by (3). Our main purpose is to rebuilt the functional (3) by making use of a new fractional integral
operator proposed in [7] and a multilinear mapping called permanent. The definition of the new
functional is described in Section 2 and Section 3 is devoted to the main results which includes a
theorem and a corollary.

2 Definitions and lemmas

Before stating our new functional, we first introduce some necessary notations and definitions.
The Pochhammer symbol (a)k is defined (as usual) by

(a)k :=
Γ (a+ k)

Γ (a)
=

{
1 (k = 0; a ∈ C \ {0})
a (a+ 1) · · · (a+ k − 1) (k ∈ N; a ∈ C) ,

where Γ (a) is the familiar Gamma function. We adopt the convention of writing the finite sequence
of parameters a1, · · · , ap by (ap) and the product of p Pochhammer symbols by
((ap))k ≡ (a1)k · · · (ap)k, where an empty product p = 0 is treated as unity.

The construction of our multiple Čebyšev type functional uses two new concepts. The first one
is a generalized fractional integral operator introduced by the authors in [7] which is defined in the
following manner.

Definition 2.1. Let x, h, ν ∈ R+, δ, a, b, f1, · · · , fr ∈ C and m1, · · · ,mr ∈ N. Also, let
A ≡ δ + ν(µ + h), < (µ) > 0 and ϕ (s) be a suitable complex-valued function defined on R+.
Then, the fractional integral of a function ϕ (x) is defined by

(Iϕ) (x) ≡
(
I µ;a,b: (fr+mr)
h;ν,δ: (fr)

ϕ
)

(x)

:=
νx−A

Γ (µ)

ˆ x

0

(xν − sν)
µ−1

r+2Fr+1

[
a, b,
µ,

(fr +mr)
(fr)

; 1− sν

xν

]
ϕ (s) sνh+ν−1ds, (5)

where r+2Fr+1[z] denotes the generalized hypergeometric function (see [8]; see also [15]) defined by

pFq

[
(ap)
(bq)

; z

]
:=

∞∑
k=0

((ap))k
((bp))k

zk

k!
. (6)
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A useful equivalent form of (5) which is more suitable for our study is given by

(Iϕ) (x) =
x−δ

Γ (µ)

ˆ 1

0

(1− y)
µ−1

r+2Fr+1

[
a, b,
µ,

(fr +mr)
(fr)

; 1− y
]
ϕ
(
xy1/ν

)
yhdy. (7)

If we set r = h = 0, ν = 1, δ = β, µ = α, a = α + β and b = −η in (7), we obtain the Saigo
fractional integral operator defined above in (4). For ϕ (s) = sλ, we have the following result ([7]):

Ixλ = xλ−δ
m∑
k=0

Ak
A0

(a)k (b)k Γ (c1 (λ)) Γ (c1 (λ) + pk)

Γ (c1 (λ) + µ− a) Γ (c1 (λ) + µ− b)
(8)

(< (µ) > 0;< (c1 (λ)) > −min[0,< (pm)]) ,

where

c1 (t) := 1 + h+
t

ν
,

pk := µ− a− b− k,

 (9)

and the coefficients Ak (0 ≤ k ≤ m := m1 + · · ·+mr) are given by

Ak =

m∑
j=k

{
j

k

}
σm−j , A0 = (f1)m1

· · · (fr)mr
, Am = 1,

with σj (0 ≤ j ≤ m) generated by

(f1 + x)m1
· · · (fr + x)mr

=

m∑
j=0

σm−jx
j .

Upon setting λ = 0 in the formula (8), we have

I (1) = x−δ
m∑
k=0

Ak
A0

(a)k (b)k Γ (1 + h) Γ (1 + h+ pk)

Γ (1 + h+ µ− a) Γ (1 + h+ µ− b)
(10)

(< (µ) > 0; 1 + h > −min[0,< (pm)]) ,

where pm is given by (9).
The second concept is based on the notion of ”permanent” used in the Matrix Analysis. Suppose

A = (aij) be an n × n matrix, then the permanent of A written as per (A) is defined by ([22, p.
99])

per (A) ≡ per
1≤i,j≤n

(aij) :=
∑
σ∈Sn

n∏
i=1

aiσ(i), (11)

where Sn deontes the symmetric group of degree n, i.e., the group of all permutation of
N ≡ {1, 2, · · · , n}. Thus, the permanent is the determinant without the alternating minus signs.

The combination of (7), (10) and (11) now suggests the following definition of our new multiple
Čebyšev type functional.
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Definition 2.2 (multiple Čebyšev type functional). Let µ, h, ν ∈ R+, and let a, b, f1, · · · , fr ∈ R
and m1, · · · ,mr ∈ N be such that the inequalities 1 + h > −min[0, pm] and

r+2Fr+1

[
a, b,
µ,

(fr +mr)
(fr)

; 1− y
]
> 0 (y ∈ (0, 1))

hold true, where pm is given by (9). Let ϕij : R+ → R (1 ≤ i, j ≤ n) be the functions such that
I (ϕij) (1 ≤ i, j ≤ n) exist. Then, for these functions, the multiple Čebyšev type functional is
defined by

Tn×n (ϕ11, · · · , ϕ1n, · · · , ϕn1, · · · , ϕnn) :=M
(

per
1≤i,j≤n

(ϕij)

)
− per

1≤i,j≤n
(M (ϕij)) , (12)

where per (·) is defined by (11) and the integral mean M (ϕ) in terms of the integral operator (7)
is given by

M (ϕ) :=
I (ϕ)

I (1)
. (13)

If we set ϕij = 0 (i 6= j; 1 ≤ i, j ≤ n), then the functional Tn×n reduces to

Tn (ϕ11, ϕ22, · · · , ϕnn) :=M

(
n∏
i=1

ϕii

)
−

n∏
i=1

M (ϕii) , (14)

which provides a generalization of the multiple Čebyšev-Saigo functional TS defined in (3).
On the other hand, if we set n = 2 in (14), and denote ϕ = ϕ11 and ψ = ϕ22, we obtain

T (ϕ,ψ) ≡ T2 (ϕ,ψ) :=M (ϕψ)−M (ϕ)M (ψ) .

For the Čebyšev type functional T, we have the following useful result.

Lemma 2.3 ([7, Theorem 5.1]). Let ϕ,ψ be synchronous (asynchronous) on R+, then

T (ϕ,ψ) ≥ (≤) 0.

In this section, we now introduce the synchronicity between m functions of single variable
(see [2, p. 644, Definition B.]; see also [9, p. 16, Definition 2.]).

For m ≥ 2, the functions ϕi : I → R (1 ≤ i ≤ m) are synchronous (or similarly ordered) if

[ϕi (t)− ϕi (s)] [ϕj (t)− ϕj (s)] ≥ 0 for 1 ≤ i, j ≤ m, all t, s ∈ I. (15)

When m = 2, the condition (15) is equivalent to the inequality (1). We notice that the condition
(15) now provides m2 inequalities. But not all of them are necessary for our definition. In fact,
since only 1

2m (m− 1) different inequalities are contained, the condition (15) can be replaced by

[ϕi (t)− ϕi (s)] [ϕj (t)− ϕj (s)] ≥ 0 for 1 ≤ i < j ≤ m, all t, s ∈ I. (16)

For the sake of brevity, we use below the notation 〈ϕi, ϕj〉, whenever, the functions ϕi, ϕj are
synchronous. With this new notation, we can state that ϕ1, · · · , ϕm are synchronous (or similarly
ordered) if and only if each two of them are synchronous, i.e.,

〈ϕi, ϕj〉 (1 ≤ i < j ≤ m) .
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Lemma 2.4. If ϕi : I → R+ (1 ≤ i ≤ m) are synchronous, then

〈ϕl, ϕl+1ϕl+2 · · ·ϕm〉, (17)

for l ≥ 1. More generally, we have〈
ϕl,

m∏
i=1,i6=l

ϕi

〉
(1 ≤ l ≤ m) . (18)

Proof. The proof is based on the part (iv) of Lemma 1 in [2]. It asserts that if 〈ϕ1, ϕ2〉 and 〈ϕ1, ϕ3〉,
then we have 〈ϕ1, ϕ2ϕ3〉. For arbitrarily chosen function ϕl (l ≥ 1) and from the definition of
synchronicity, we have 〈ϕl, ϕj〉 (l < j ≤ m), which provides

〈ϕl, ϕl+1〉, 〈ϕl, ϕl+2〉, 〈ϕl, ϕl+3〉, · · · , 〈ϕl, ϕm〉.

The first two angle brackets produce 〈ϕl, ϕl+1ϕl+2〉, which in the combination of the third one leads
to 〈ϕl, ϕl+1ϕl+2ϕl+3〉. Continuing this process, we finally obtain the result (17). If l = 1, then we
have 〈ϕ1, ϕ2ϕ3 · · ·ϕm〉. If l > 1, the definition also implies that 〈ϕj , ϕl〉 (1 ≤ i < l), i.e.,

〈ϕ1, ϕl〉, 〈ϕ2, ϕl〉, · · · , 〈ϕl−1, ϕl〉. (19)

Since notations 〈ϕ,ψ〉 and 〈ψ,ϕ〉 have the same meaning, (19) can be equivalently written in the
form:

〈ϕl, ϕ1〉, 〈ϕl, ϕ2〉, · · · , 〈ϕl, ϕl−1〉,

which gives
〈ϕl, ϕ1ϕ2 · · ·ϕl−1〉. (20)

Now combining (17) and (20), we obtain the desired result (18). q.e.d.

3 Main results

Theorem 3.1. Let ϕij : R+ → R+ (1 ≤ i, j ≤ n) be the functions such that I (ϕij) (1 ≤ i, j ≤ n)
exist and 〈

ϕiσ(i), ϕjσ(j)

〉
for 1 ≤ i < j ≤ n, all σ ∈ Sn. (21)

Then
Tn×n (ϕ11, · · · , ϕ1n, · · · , ϕn1, · · · , ϕnn) ≥ 0.

Proof. By making use of the definition of (11) of the permanent, we have

M
(

per
1≤i,j≤n

(ϕij)

)
=
∑
σ∈Sn

M

(
n∏
i=1

ϕiσ(i)

)
.

We thus only need to prove the assertion that for each (fixed) σ ∈ Sn,

M

(
n∏
i=1

ϕiσ(i)

)
≥

n∏
i=1

M
(
ϕiσ(i)

)
. (22)
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For given σ ∈ Sn, the functions ϕ1σ(1), · · · , ϕnσ(n) are different, and hence can be relabelled as
ψ1, · · · , ψn. Also, according to the condition (21), each two of them are synchronous, so we have

〈ψi, ψj〉 (1 ≤ i < j ≤ n) .

We note that this condition also means that ψ1, · · · , ψn are all synchronous. Therefore, it suffices
to prove that

M

(
n∏
i=1

ψi

)
≥

n∏
i=1

M (ψi) . (23)

We may proceed by induction on n. For n = 1, (23) is trivially true and for n = 2, (23) reduces
to the inequality M (ψ1ψ2) ≥M (ψ1)M (ψ2), which is also true due to Lemma 2.3. Now suppose
that the inequality (23) holds true for n ≥ 2. Let ψi : R+ → R+ (1 ≤ i ≤ n+ 1) be the functions
such that I (ψi) (1 ≤ i ≤ n+ 1) exist and satisfy

〈ψi, ψj〉 (1 ≤ i < j ≤ n+ 1) . (24)

The condition (24) means that all ψ1, · · · , ψn+1 are synchronous, and the following 1
2 (n+ 1)n

inequalities hold true:

[ψi (t)− ψi (s)] [ψj (t)− ψj (s)] ≥ 0 (1 ≤ i < j ≤ n+ 1; t, s ∈ R+) . (25)

Define

F (y) :=

n∏
i=1

ψi (y) and G (y) := ψn+1 (y) .

We now show that
[F (t)− F (s)] [G (t)−G (s)] ≥ 0 (t, s ∈ R+) , (26)

namely, F (y) and G (y) are synchronous. The inequality (26) obviously holds for those values of
t, s for which G (t) = G (s). Let

E> := {(t, s) ∈ R+ × R+ : G (t) > G (s)} and E< := {(t, s) ∈ R+ × R+ : G (t) < G (s)} .

If (t, s) ∈ E>, then in view of (25), we have ψi (t) ≥ ψi (s) (1 ≤ i < n+ 1), and thus

F (t) ≥ F (s) .

Similarly, it follows that
F (t) ≤ F (s) ,

if (t, s) ∈ E<. Therefore, the inequality (26) holds for all t, s ∈ R+.
Now, by using the Lemma 2.3 and the induction assumption, we have

M

(
n+1∏
i=1

ψi

)
=M (FG) ≥M (F )M (G) ≥

n∏
i=1

M (ψi)M (G) =

n+1∏
i=1

M (ψi) .

This completes the proof. q.e.d.
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Alternatively, we can also prove Theorem 3.1 in the following manner.
We first observe that the inequality (23) can be established by the repeated applications of

Lemma 2.3, provided that

〈ψi, ψi+1ψi+2 · · ·ψn〉 (1 ≤ i ≤ n− 1) . (27)

However, since 〈ψi, ψj〉 (1 ≤ i < j ≤ n), (27) clearly holds in view of the first result (17) of Lemma
2.4.

Remark 3.2. It may be point out that Theorem 3.1 remains valid if we replace the condition (21)
with the condition that all functions ϕij (1 ≤ i, j ≤ n) are synchronous, namely,

〈ϕjk, ϕil〉 (1 ≤ j, k, i, l ≤ n) . (28)

We then show that the conditions (21) and (28) are not equivalent in general. To see this, we
consider, for example, the case n = 2. When n = 2, the condition (28) means that

〈ϕ11, ϕ12〉, 〈ϕ11, ϕ21〉, 〈ϕ11, ϕ22〉, 〈ϕ12, ϕ21〉, 〈ϕ12, ϕ22〉 and 〈ϕ21, ϕ22〉,

while the condition (21) only gives

〈ϕ11, ϕ22〉 and 〈ϕ12, ϕ21〉,

and it does not confirm if ϕ11, ϕ12 are synchronous. Finally, it is worth mentioning that our
condition (21) is wider than the monotonicity condition imposed in [14, p. 677, Theorem 2.12],
since we can derive the synchronicity between m functions from the fact that they are monotonic
in the same sense, but not conversely.

Corollary 3.3. Let ϕij , ψij : R+ → R+ (1 ≤ i, j ≤ n) be the functions such that I (ϕij) and I (ψij)
exist. Let Φij := ϕij/ψij such that I (Φij) exists and〈

Φiσ(i),Φjσ(j)

〉
(1 ≤ i < j ≤ n;∀σ ∈ Sn) . (29)

Also, we assume that each pair Φij , ψij is asynchronous (oppositely ordered). Then, there holds
the inequality that

M
(

per
1≤i,j≤n

(Φij)

)
≥ per

1≤i,j≤n

(
M (ϕij)

M (ψij)

)
. (30)

Proof. The application of Theorem 3.1 to the functions Φij gives the inequality that

Tn×n (Φ11, · · · ,Φ1n, · · · ,Φn1, · · · ,Φnn) ≥ 0,

which is equivalent to the following form:

M
(

per
1≤i,j≤n

(Φij)

)
≥ per

1≤i,j≤n
(M (Φij)) . (31)

Now since Φij and ψij are asynchronous, we can apply Lemma 2.3 to get T (Φij , ψij) ≤ 0, which
implies that

M (ϕij) ≤M (Φij)M (ψij) .
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Finally, using the definition (11) of the permanent, we obtain that

per
1≤i,j≤n

(M (Φij)) =
∑
σ∈Sn

n∏
i=1

M
(
Φiσ(i)

)
≥
∑
σ∈Sn

n∏
i=1

M
(
ϕiσ(i)

)
M
(
ψiσ(i)

) = per
1≤i,j≤n

(
M (ϕij)

M (ψij)

)
,

which proves the Corollary 3.3. q.e.d.

Acknowledgements

The authors would like to express their gratitude to Prof. H.M. Srivastava of University of
Victoria for some valuable suggestions. The first author is supported in part by the National
Natural Science Foundation of China (Grant No. 11571114).

References
[1] D. Baleanu, S.D. Purohit and P. Agarwal, On fractional integral inequalities involving hypergeometric operators,

Chin. J. Math. 2014 (2014), Article ID 609476, 5 pages.
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