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Abstract

Fractional calculus and the fractional differential equations have appeared in many physical
and engineering processes. Therefore, an efficient and suitable method to solve them is very
important. In this paper, novel numerical methods are introduced based on the fractional
order of the Chebyshev orthogonal functions (FCF) with Tau and collocation methods to solve
differential equations of the arbitrary (integer or fractional) order. The FCFs are obtained
from the classical Chebyshev polynomials of the first kind. Also, the operational matrices of
the fractional derivative and the product for the FCFs have been constructed. To show the
efficiency and capability of these methods we have solved some well-known problems: the mo-
mentum, the Bagley-Torvik, and the Lane-Emden differential equations, then have compared
our results with the famous methods in other papers.
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1 Introduction

In this section, summary of fractional calculus history and some basic definitions and theorems
which are useful for our method have been introduced.

1.1 Summary of fractional calculus history

The fractional calculus is one of the oldest titles of classical calculus which we know today. The
original ideas of fractional calculus can be traced back to the end of the 17th century, when the
classical differential and integral calculus theories were created and developed by Newton and
Leibniz in 1695 [1], but for many reasons were not used in sciences for many years, for example,
the various definitions of the fractional derivative [2] and have no exact geometrical interpretation
[3]. A review of some definitions and applications of fractional derivatives is given in [4] and [5]. In
recent years, many physicists and mathematicians have undertaken studies on this subject. It was
found that various applications can be modeled with the help of the fractional derivatives [6, 7].
For example, the nonlinear oscillation of earthquake [8], the fractional optimal control problems
for dynamic systems [9, 10, 11, 12], and the fluid-dynamic models with fractional derivatives can
eliminate the deficiency arising from the assumption of continuous traffic flow [13, 14, 15]. During
the last decades, several methods have been used to solve fractional differential equations, fractional
partial differential equations, fractional integro-differential equations, the initial and boundary value
problems, and dynamic systems containing fractional derivatives, such as Adomian’s decomposition
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method [16, 17], fractional-order Legendre functions [18], fractional-order Chebyshev functions
of the second kind [19], Homotopy analysis method [20], Bessel functions and spectral methods
[21], Legendre and Bernstein polynomials [22], finite element methods [23], Legendre collocation
[24], modified spline collocation [25], multiquadratic radial basis functions [26], and other methods
27, 28, 29, 30, 31, 32, 33].

1.2 Basical definitions

In this section, some basic definitions and theorems which are useful for our method have been
introduced.

Definition 1. For any real function f(t), ¢ > 0, if there exists a real number p > p, such that
f(t) =tPf1(t), where fi(t) € C(0,00), is said to be in space Cy,, 4 € R, and it is in the space O} if
and only if f* € Cy, n€ N.

Definition 2. The fractional derivative of f(¢) in the Caputo sense by the Riemann-Liouville
fractional integral operator of order a > 0 is defined as [34]

Def(t) = ! ] /Ot(t —s)mem D™ f(s)ds, a >0,

'(m-—«

form—1<a<m, meN,t>0and f € C™. Some properties of the operator D are as follows:
For feC,, p>-1, o, >0, v>—1,No ={0,1,2,...} and constant C:

(i) D*C =0,

(it) D*DP f(t) = D**P f (1), (1.1)
0 v € Ny and v < «,

(ii7) D*Y = a1y o . (1.2)
mt’y @, Otherwise.

(iv) D*(>_cifi(t) = > eaiD*fi(t),  where c; € R. (1.3)

=1 i=1

Definition 3. Suppose that f(t),g(¢t) € C(0,1] and w(t) is a weight function then we define
1
2 2

= d N

1101 = [ Powo
1

Una®h = [ FOgua

0

Theorem 1. (Generalized Taylor’s formula) Suppose that f(t) € C[0,1] and D**f(t) € C[0,1],
where k =0,1,...,m+ 1,0 < a < 1. Then we have

e t(m,—i—l)a

J®) :; DO ST Da v D)

(m+1)a
L DO (), (1.4

with 0 < £ <'t, Vt € [0,1]. And thus

i t(m+1)o¢

0= 3 a0 ey 1)
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where M, > |Dm+he f(€)).
Proof: See Ref. [35].
In case of a = 1, the generalized Taylor’s formula (1.4) reduces to the classical Taylor’s formula.

Theorem 2. Suppose that {P;(t)} be a sequence of orthogonal polynomials, w(t) is weight func-
tion for {P;(t)}, and ¢(t) is a polynomial of degree at most n — 1, then for p,(t) € {P;(t)} we have:

<pn(t)7 Q(t)>w = 0.
Proof: See the section 2.3 in Ref. [36].

1.3 The Chebyshev functions

The Chebyshev polynomials have frequently been used in numerical analysis including polynomial
approximation, Gauss-quadrature integration, integral and differential equations and spectral meth-
ods. Chebyshev polynomials have many properties, for example orthogonal, recursive, simple real
roots, complete in the space of polynomials. For these reasons, many researchers have employed
these polynomials in their research [37, 38, 39, 40, 41].

Using some transformations, some researchers extended Chebyshev polynomials to semi-infinite
or infinite domain, for example by using z = %,L > 0 the rational Chebyshev functions on
semi-infinite domain [42, 43, 44, 45, 46, 47, 48], by using z = ﬁ, L > 0 the rational Chebyshev
functions on infinite domain [49] are introduced.

In proposed work, by transformation z = 1 — 2t%, a > 0 on the Chebyshev polynomials, the
fractional order of the Chebyshev orthogonal functions in interval [0, 1] have been introduced, that

can use to solve differential equations of arbitrary order.

The aim of the paper is to present new numerical methods (Spectral methods using the FCF's)
for approximating the solution of the differential equations of arbitrary (integer or fractional) order
as follows:

N1 No
Z A DYy(t) + > he(B)[y(0)]" = (1), (1.6)

with these supplementary conditions:
y(i)(to) =y, ¢=0,1,...,8—1, st. s—1<maz{y;}<s, s€N, (L.7)

where 0 <t <1, v; > 0 and h,, f € L%([0,1)) are known functions, y(¢) is the unknown function,
D7 are the Caputo fractional differentiation operator, A; are real numbers and Ny, Na, g, are
positive integers.

The organization of the paper is expressed as follows: in section 2, the FCFs and their properties
are obtained. Section 3 is devoted to applying the FCFs operational matrices of the fractional
derivative and the product to solve differential equations of arbitrary order. In Section 4, the work
methods are explained. Applications of the proposed methods are shown in section 5. Finally, a
conclusion is provided.

2 The fractional order of the Chebyshev functions

In this section, first, the fractional order of the Chebyshev functions (FCFs) have been defined, and
then some properties and convergence of them for our methods have been introduced.
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2.1 The FCFs definition

The efficient methods have been used by many researchers to solve the differential equations (DE)
is based on series expansion of the form > ¢;t’, such as Adomian’s decomposition method [50]
and Homotopy perturbation method [51]. But solution of many DEs and FDEs can’t be estimated
by polynomial basis, therefore we have decided to define a new basis for Spectral methods to solve
them as follows:

D, (t) = Zciti”‘7 a>0.
i=0

Now by transformation z = 1 — 2t“, a > 0 on classical Chebyshev polynomials of the first kind,
the FCFs are defined in interval [0, 1], that be denoted by FT¢(t) = T}, (1 — 2¢*).
By this definition the singular Sturm-Liouville differential equation of classical Chebyshev poly-

nomials becomes: y y
1—-txd 1—tod o 9 9 o
T [ P FTe (t)} +na” FTH(t) =0, (2.1)
where ¢ € [0,1] and the FCFs are the eigenfunctions of the Eq. (2.1).
The FT(t) can be obtained using the recursive relation as follows:

FT(t) =1 , FTX(t)=1-2t",

FTR L (8) = (2—4t%) FT(t) — FT(t), n=1,2-
Fig. 1 shows graphs of the FCFs for various values of n and «.
The analytical form of FT%(t) of degree na given by

n

o n2?k(n+k-1)!
FTR(t) = Z(l)k(n(—k)!(zk;)!)t i

k=0
n
= ) Baxt®™, telo1], (2.2)
k=0
where 2k .
n2*%(n+k —1)!
ﬂ k ( ) (TL — k)'(2k)' an, /BO,k:
Note that FT¥(0) =1 and FT2(1) = (—=1)™.
The weight function for the FCFs is w(t) = &%, and the FCF's with this weight function are
orthogonal in interval [0, 1] that satisfy in following relation:
! 0
/ FT3 (1) FT3 (0wt = [ o, (2.3)
0

where 0,,, is Kronecker delta, ¢ = 2, and ¢, = 1 for n > 1. The Eq. (2.3) is provable using the
property of orthogonality in the Chebyshev polynomials.
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2.2 Approximation of functions

Any function y(t), ¢t € [0,1], can be expanded as follows:

y(t) = 3 an FTS(),
n=0

where the coefficients a,, obtain by inner product:

((t), FT3 (0)w = (Y an FT (1), FT3 (1)

and using the property of orthogonality in the FCFs:

2
ap = —

1
/ FTo®ywd)dt, n=0,1,2, - .
TCn Jo

In the numerical methods, we have to use first (m + 1)-terms FCFs and approximate y(¢):

y(t) = ym(t) = > _an FTS(t) = AT®(t), (2.4)
n=0
with

A

- [a07a17"' aam]T;

(2.5)
o) = [FTg(t), FT{(t),---, FTo )"

35
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2.3 Convergence of method

The following theorem shows that by increasing m, the approximation solution f,(t) is convergent
to f(t) exponentially.

Theorem 3. Suppose that D*f(t) € C[0,1] for k = 0,1,....,m + 1, and E? is the subspace
is generated by {FTS(t), FTX(t),..., FT2(t)}. If fm, = AT ® is the best approximation to f from
E¢ , then the error bound is presented as follows

M, ™
|| f(t) - fm(t) ”wS 2(m+1)F((m+ 1)a + 1) m’

where M, > |[Dm™+Daf(4)| t € 0,1].

Proof. By theorem 1, we have y = > WD”]”(O"’) and

tia

t(erl)a

1) = )] < Mo e

Since the best approximation to f from E is f,,(t) = AT®(t), and y(t) € E%, thus

[FOE N A FIORSTON

M2 1 t%+2(m+1)o¢—1
< a dt
= F((m+1)a+1)2/0 Vi

M? 0

[e%

T((m + Da + 1)2 220D o (m + 1)1

Theorem 4. The fractional order of the Chebyshev functions FT,2(t), has precisely n real zeros
on interval (0,1) in the form

1_ (2k—1)my \ &
t = (Cosg%) k=12 ..n

a

Moreover, 2

FT2(t) has precisely n — 1 real zeros on interval (0, 1) in the following points:

1

1—cos(Ex)\ =
t;<w> , k=12, ..n—1.

2

Proof. The Chebyshev polynomial T, (x) has n real zeros [52]:

2k —1
T = COS <()7T> , k=1,2,...,n.
2n

Therefore T;,(x) can be written as

To(x) = (& —z1)(x — 22)...(x — Tp).
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Using transformation x = 1 — 2t yields to
FTX(t) = (1 —2t%) — z1)((1 — 2t%) — z2)...(1 — 2t%) — xp,),

so, the real zeros of FT(t) are ¢, = (1_%)5

Also, we know that, the real zeros of 47, (t) occurs in the following points [52]:

k
x, :cos(—ﬂ), k=1,2,..,n—1.
n

Q=

Same as in the previous, the real zeros of £ FTS(t) are t, = (1;wk) . %

3 Operational matrices of the FCF's

In this section, the operational matrices the fractional derivative and the product for the FCFs are
constructed, these matrices can be used to solve the linear and nonlinear differential equations of
arbitrary order.

3.1 The fractional derivative operational matrix of the FCF's

In the next theorem, the operational matrix of the Caputo fractional derivative of order a > 0 for
FCFs is generalized, which can be expressed by:

De®(t) = D d(t). (3.1)

Theorem 5. Let ®(t) be FCFs vector in Eq. (2.6), and D(®) be an (m + 1) x (m + 1) operational
matrix of the Caputo fractional derivatives of order o > 0, then for 4,5 =0,1,...,m:

2 % j T(ak+1)T(s+k—1 . .
(@) Ve, Dokt 2o BikBis Tlak—afDI(sFh)> ¢ J
Di’j = (3.2)
0 otherwise

Proof. Using Eq. (3.1)

Doo -+ Do -+ Dom 0N D®g
Dio -+ Di; - Dim Q; | =| D
Dm,O Dm,j Dm,m (I)m Daq)m

By orthogonality property of the FCFs, and the Egs. (1.2) and (2.2), for 4,5 =0,1,...,n — 1:
(o) 20 ! « [e] «
D = =2 [ DOFT () FTS (H)w(t)dt.
0

bJ TCj

Since D*FTg(t) = 0, therefore D{*) = [} D*FT§(t)FT{(tyw(t)dt = 0. And if i < j then

deg(D*(FT{(t))) < deg(FT;*(t)), therefore by theorem 2, DEZ) =0 for any ¢ < j. Now for ¢ > j
we have:
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akJrlto‘k a t3-1

p@ / A
b T 7 Z’k —a+1) Zﬂ“ \/—7

ak+1) / okt

= ZZﬂz kﬂ], CY+1) m

WCJ k=1 s=0
Now, by integration of the above equation, the theorem can be proved. *

Remark 1: The fractional derivative operational matrix of the FCFs for o = 1 is same as the
derivative operational matrix of the shifted Chebyshev polynomials [57].

3.2 The product operational matrix of the FCF's
The following property of the product of two FCFs vectors will also be applied.

o(t)0(t)T A~ AD(t), (3.3)
where A is an (m + 1) x (m + 1) product operational matrix for the vector A = {a; ™o

Theorem 6. Let ®(t) be FCFs vector in Eq. (2.6) and A be a vector, then the elements of

A are obtained as

m
= Z ak@, (34)
k=0
where
2% 1#0and j#0and (k=i+jork=1i—j|)
Gijk = 2—’; (j=0and k=1) or (i =0 and k = j)
0 otherwise
Proof. Using Eq. (3.3)
0 aop [ Aoo o Ao | [ @
O | [Qo-Pp D] | ar | = 121\1’,0 e A\i,m ®;
D, A, I A\m,O A\m’m | b,

By the orthogonality property Eq. (2.3) the elements {gij}g'szo can be calculated from

m—1
~ 2c
ij = ar9Gijk
J 7TCJ IR
k=0

where g;; is given by
1

Gijk = / FTH ) FT () FTg (t)w(t)dt.
0
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We use the following property:
FTFQFT}(t) = (FTfi]( )+ FT_ 5 (1)), (3.6)

and by substituting of the Eq. (3.6) in g;jx:
Tk iZ0and j#£0and (k=i+jork=1i—j|)

Gijk = § B& (j=0and k=1)or (i=0and k = j)
0 otherwise

now by using of Eq. (3.5), the theorem can be proved.

Remark 2: The product operational matrix of the FCFs is the same as the product operational
matrix of the shifted Chebyshev polynomials [57]. In whole, it can be said that the components of
A are independent of values of a.

4 Application of the Methods

In this section, the FCFs Tau and collocation methods to solve the differential equations of arbitrary
order are applied.

4.1 Tau method

In this section, the FCFs Tau method to solve the differential equations of arbitrary order in the
Eq. (1.6) with supplementary conditions in the Eq. (1.7) is applied.
First, unknown functions y(t), D*y(¢) and known functions f(¢) are expanded as follows

Z anFT(t) = AT®(t), (4.1)

Dy(t) ~ Z anDOFT(t) = ATD® (1), (4.2)
n=0

~ i [nFT(t) = FTO(1). (4.3)

And it is easy to show by induction that:
y(®) ~ AT A1), for gr =12,

Also
(0] he (1) = AT ()T 10() 07 (1) B, = AT(A)" 1 B,0(), (4.4)

where h,.(t) ~ BI®(t) and A, B, are the product operational matrices of vectors A and B,,
respectively.

For any v;, j =1,...,N1, we can choose the value of a such that, v;, j =1,..., N; be multiples
of @, and by using the properties of the operator D%, we can calculate the values D():

Diy(t) ZanD%FTO‘() ATDOD®(1). (4.5)
n=0
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Now, by substituting the approximations above into Eq. (1.6) we obtain:
Z)\ ATDOD B (1) + ZAT A)r1B &(t) = FTd(t). (4.6)
Jj=1

And, by multiplying two sides of Eq. (4.6) in ®7(¢) and then integration in the interval [0, 1],
according to the orthogonality of the FCFs we get (Tau method):

N1 N2
> ONATDOD) 4N AT(A) 1B, = FT. (4.7)

which is a linear or nonlinear system of algebraic equations. By solving this system and using the
initial conditions in the Eq. (1.7), we can obtain the approximate solution of Eq. (1.6) according
to Eq. (4.1).

The residual error function has been defined as follows:

Res(t ZAATD%>+ZAT Ar=1B, — FT | &(t). (4.8)

4.2 Collocation method

In this section, the FCFs collocation method to solve the differential equations of arbitrary order
in the Eq. (1.6) with supplementary conditions (1.7) is applied.

To apply the collocation method, we construct the residual function by substituting y,,(t) in
Eq. (2.4) for y(t) in the Eq. (1.6):

Res(t Z)\ AT DD G (1) +Zh — f(1), (4.9)
j=1

The equations for obtaining the coefficient {a;}7, in the Eq. (2.5) arise from equalizing Res(t)
to zero on (m + 1) collocation points:

Res(t;) =0, 1=0,1,...,m. (4.10)

In this study, the roots of the FCFs in the interval [0,1] (Theorem 4), as collocation points are
used. By solving the obtained set of equations and using supplementary conditions, we have the
approximating function y,, (t).

5 Illustrative examples

In this section, by using the present methods, some well-known linear and non-linear examples
of arbitrary order differential equations are solved. To show the efficiency and capability of the
Spectral methods based on the FCFs, the obtained results with the corresponding analytical or
numerical solutions are compared.
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Example 1. The first example is an inhomogeneous linear equation

RV ot 1 5 3
Dy(t) + y(t) = 2V 3o 13 443,
v(e) +u(t) == <2F<;a>+r<5a>>+ !

y(0)=0, 0<a<l.

The exact solution of this problem is y(t) = ¢3 + ¢3.
Tau method: By applying the technique described in the last section, m + 1 of algebraic
equations can be generated as

AT D@ 1 = FT
AT®(0) = o.

Collocation method: By applying the technique described in the last section, m + 1 of
algebraic equations can be generated as

Res(t) = ATD@p(t) +yn() — (VT
AT®(0) = o.

fori=0,1,....m— 1.
By solving the above equation using both methods, we obtained the same results, with m =5
and o = 0.50, we can obtain the exact solution with

AT = [0.55859375, — 0.87890625, 0.421875, — 0.119140625, 0.01953125, — 0.001953125].
Also for m = 10 and o = 0.25, we can obtain the exact solution with

AT = [0.401782989501953125, —0.7070770263671875, 0.481967926025390625, —0.255279541015625,
0.1061553955078125, —0.035430908203125, 0.0097293853759765625, —0.00217437744140625,
0.362396240234375¢ — 3, —0.3814697265625¢ — 4,0.19073486328125¢ — 5.

Example 2. Next, we consider an inhomogeneous multi-term fractional differential equation (the
Bagley-Torvik equation)[53]

EDVy(t)+ BDPy(t) + Cy(t) = f(t),  y(0) =yo, ¥'(0) = 1. (5.1)

where £ # 0 and B,C € R.
Tau method: By applying the technique described in the last section, the equations are
obtained as

AT [EDD 4+ BD®) s C1| = FT,

y<0) ~ ATq)(O) = Yo,
y'(0)~ ATDWe(0) = .
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Now, we must choose the value of « such that, v and 8 be multiples of «. Using the definition 3,
we can calculate the values D) and D),

Collocation method: By applying the technique described in the last section, m + 1 of
algebraic equations can be generated as

Res(t;) = ELATDDo(t;) + BATDP o(t) + Coym (ts) — f(t:) = 0,
AT@(O) = Yo,
ATDWMd(0) = .

fori=0,1,....m— 2.

Fory=2 =3 E=B=C=1and f(t)=1+1t7, 1 <5< 3, Eq. (5.1) has been reduced to
the inhomogeneous Bagley-Torvik equation originally proposed in [18, 54, 55]. This equation arises
in the modeling of a rigid plate immersed in a Newtonian fluid.

Dy(t) + Diy(t) +y(t) =147, y(0)=1, y/(0)=[1-n]+1.
The exact solution of this problem is y(t) = 1 + ¢".

By solving the above equation using both methods, we obtained the same results. For instance:

Case 1: if n=1

Now, we must choose the value of a such that 2, % and 1 be multiples of a. i.e. a = 0.5 or
a:0.25ora:%.

For a = 0.5 and m = 2 we have D = (D(5)* and D) = (D53 and the unknown
coefficients a; can be obtained as AT = [1.375, — 0.5, 0.125] which is obtained the exact solution
of this problem. Also for a = 0.25 and m = 4 we obtain the exact solution of this problem with
AT = [1.2734375, — 0.4375, 0.218750, — 0.06250, 0.0078125], and for o = L and m = 6 we obtain the exact

6
solution of this problem with
AT = [1.2255859375, — 0.38671875, 0.24169921875, — 0.107421875, 0.0322265625, — 0.005859375, 0.00048828125].

Case 2: if n = %
Now, we must choose the value of a such that 2, % and % be multiples of a. i.e. a = 0.25 or
1
a=z

3
For a = 0.25 and m = 5 we obtain the exact solution of this problem with

AT =[1.24609375, — 0.41015625, 0.234375, — 0.087890625, 0.01953125, — 0.001953125],
and for o = % and m = 10 we obtain the exact solution of this problem with

AT = [1.176197052001953125, — 0.3203582763671875, 0.240268707275390625, — 0.147857666015625,
0.0739288330078125, — 0.029571533203125, 0.0092411041259765625, — 0.00217437744140625,
0.362396240234375¢ — 3, — 0.3814697265625¢ — 4, 0.19073486328125¢ — 5].

Example 3. Consider the following linear initial value problem [18, 56]

Dy(t) —y(t) =1, y(0) =0, 0<a<1. (5.2)
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tcxk:
T(ak+1)"
Tau method: We can generate a set of linear algebraic equations as follows:

The exact solution of this problem is y(t) = > "=, N

AT —1) = FT
AT®(0) = o,

)

where FT = [1,0,...,0].
Collocation method: We have

Res(t;) = ATD@o(t;) —ym(ti) =1 = 0,
AT®(0) = o,

fort=0,1,....m—1.
The approximate solution of this problem is achieved. The absolute errors and the residual errors
with m = 30 and various values of «, by using the Tau and collocation methods are displayed in
Figs. 1.2(a), 1.2(b) and 1.3(a), 1.3(b), respectively.

Tables 1 and 2 show the absolute and residual errors for various values of @ and m = 30, by

using the Tau and collocation methods, respectively.
We can see that in this example, the Tau method is accurate.
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FIGURE 2. Graphs of Log absolute errors and Log residual errors for example 3 with m = 30 and
the various values of «, using the Tau method.

Example 4. Consider the nonlinear Abel differential equation of arbitrary order of the first kind
with 0 < o <1 [21]:

Dy(t) = sin(t)y>(t) — ty(t) + 2y(t) — 3, 0<t <1, (5.3)
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FI1GURE 3. Graphs of Log absolute errors and Log residual errors for example 3 with m = 30 and
various values of «, using the collocation method.

TABLE 1. The absolute and residual errors by the present method for example 3, using the Tau
method (with various values of o and m = 30)

t a=0.5 a=0.7 a=1
Abs. error Res(t) Abs. error Res(t) Abs. error Res(t)
0.1 7.811e-30 2.360e-29 1.744e-40 1.839e-37 3.577e-53 9.704e-51
0.2 6.761e-30 8.102e-29 8.412e-39 4.405e-38 9.172e-53 9.704e-51
0.3 4.892e-30 7.804e-29 6.906e-39 1.053e-37 2.220e-52 1.054e-50
0.4 8.253e-30 1.525e-29 1.165e-38 4.823e-39 2.015e-52 1.048e-50
0.5 1.047e-29 7.862e-29 1.203e-38 1.575e-37 5.048e-53 1.080e-50
0.6 8.900e-30 1.317e-29 1.973e-39 2.014e-37 2.087e-52 1.048e-50
0.7 9.543e-30 7.989e-29 7.991e-39 9.716e-38 5.560e-52 1.054e-50
0.8 4.016e-30 4.338e-29 9.854e-39 3.242e-38 9.764e-52 9.704e-51
0.9 4.754e-30 3.351e-29 8.300e-40 1.844e-37 1.700e-51 9.704e-51
1.0 8.917e-32 8.106e-29 7.094e-40 2.086e-37 2.699e-51 1.080e-50

with initial condition:

y(0) =0.
Tau method: The problem can be converted to
ATD®) — ATA2C + ATAE - A"F = -G7
AT®(0) = o.

where A is obtained from Eq. (3.4) and sin(t) ~ CT®(t), t ~ ET®(t), 12 ~ FT®(t) and 13 ~

GTo(t).

Collocation method: We have for i =0,1,....m — 1:
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TABLE 2. The absolute and residual errors by the present method for example 3 by using the
collocation method (with various values of a and m = 30)
t a=0.5 a=0.7 a=1

Abs. error Res. Abs. error Res. Abs. error Res.

0.1 2.068e-31 2.015e-29 1.866e-39 5.562e-38 2.222e-52 1.342e-51
0.2 3.464e-30 4.359e-30 1.123e-39 7.188e-38 4.810e-52 2.960e-51
0.3 4.893e-30 6.906e-30 3.641e-39 7.977e-38 6.974e-52 7.198e-52
0.4 6.833e-30 4.300e-29 3.145e-39 1.034e-37 8.655e-52 1.820e-52
0.5 1.863e-30 3.751e-29 1.394e-39 1.038e-37 1.008e-51 4.678e-84
0.6 1.244e-29 5.754e-29 8.395e-39 2.410e-38 1.127e-51 2.732e-52
0.7 7.762e-31 8.523e-29 1.327e-39 1.056e-37 1.224e-51 1.681e-51
0.8 1.991e-29 1.625e-29 1.832e-38 1.991e-37 1.214e-51 1.186e-50
0.9
1.0

3.297e-29 1.068e-29 1.601e-38 3.607e-37 9.312e-52 1.215e-50
1.840e-27 2.740e-26 1.242e-36 7.645e-35 6.150e-51 4.139e-48

Res(t;) = A" D g(t;) — sin(ts)ys, (t:) + tivm (t:) — Fym(B:) +1§ = 0,
AT®(0) ,

Fig. 4 shows the graphs of residual errors of the Eq. (5.3) with m = 20 for various values
of a, using the Tau and collocation methods, respectively. We can see that in this example, the
collocation method is more accurate.

Fig. 5 shows the graphs of approximate solutions of the Eq. (5.3) with m = 20 for various
values of a.

A class of Abel FDEs has been solved by Xu and He [58], and Parand and Nikarya [21].

Table 3 shows the approximate solutions and residual errors with m = 20 for various values of
« and t.

Table 4 shows the comparison between the approximate solutions using Parand and Nikarya
[21], and the present collocation method.

TABLE 3. Obtained values of y(t) and the residual errors by the present method for example 4,
using the collocation method (with m = 20 and various values of «)

t a=1.0 a=0.9 a=0.8 a=0.7
ym(t)  Res(t)  ym(t)  Res(t)  ym()  Res(t)  ym(t)  Res(t)

0.1  -2.500e-5  2.36e-10  -3.655e-5  2.79e-09  -5.330e-5  6.71e-08  -5.881le-5  2.16e-05
0.2 -4.004e-4  2.56e-11  -5.465e-4 1.66e-09  -7.443e-4  4.39e-08  -9.985e-4 1.47e-05
0.3 -2.032e-3  7.40e-13  -2.666e-3  7.72e-10  -3.492e-3  2.64e-08  -4.558e-3 1.00e-05
0.4  -6.459e-3 1.36e-11  -8.248e-3 1.06e-09  -1.052e-2  3.00e-08  -1.340e-2 1.59e-05
0.5 -1.591e-2  3.28e-50  -1.992e-2 1.03e-11  -2.495e-2  4.39e-08  -3.125e-2 1.74e-05
0.6  -3.346e-2 1.03e-11  -4.132e-2  9.61e-10  -5.108e-2  2.06e-08  -6.329e-2 1.86e-05
0.7 -6.327e-2  3.98e-13  -7.740e-2  6.98e-10  -9.499e-2  2.73e-08 -1.17le-1 1.96e-05
0.8 -l1.11le-1 7.80e-12  -1.353e-1  9.78e-10  -1.659e-1  4.53e-08  -2.056e-1 1.48e-05
0.9 -1.855e-1  6.36e-12  -2.263e-1  8.10e-10  -2.796e-1  6.13e-08  -3.535e-1 1.97e-05
1.0 -2.999e-1 1.13e-11  -3.701e-1 1.49e-09  -4.693e-1 7.88e-08  -6.297e-1  4.21e-05
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F1GURE 4. Graphs of Log residual errors for example 4 with m = 20 and various values of «, using
the Tau and collocation methods.
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FIGURE 5. Graphs of the approximation solutions for example 4 with m = 20 and various values
of a.

Example 5. Consider the Bessel differential equation [59, 60]

ty" () + 4/ (t) + ty(t) =0, (5.5)

with initial conditions
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TABLE 4. Obtained values of y(t) by Parand [21] and the present collocation method for example
4 with o = 0.8, 0.9, and m = 20.
t a=0.9 a=0.8
Parand Ym (t) Res(t) Parand Ym (t) Res(t)

0.1  -0.0000365 -0.0000365563  2.79e-09  -0.000053344  -0.0000533072  6.71e-08
0.2  -0.0005465  -0.0005465187  1.66e-09  -0.000744347  -0.0007443232  4.39e-08
0.3 -0.0026670  -0.0026667458  7.72e-10  -0.003492701  -0.0034926797  2.64e-08
0.4 -0.0082482  -0.0082471655 1.06e-09  -0.010522097  -0.0105220716  3.00e-08
0.5 -0.0199300  -0.0199158605 1.03e-11  -0.024954200  -0.0249541768  4.39e-08
0.6 -0.0413235 -0.0412367140 9.61le-10  -0.051085888  -0.0510858674  2.06e-08
0.7  -0.0774071  -0.0769938176  6.98e-10  -0.094999267  -0.0949992321  2.73e-08
0.8 -0.1353508  -0.1336610538  9.78e-10  -0.165925912  -0.1659259489  4.53e-08
0.9 -0.2263126  -0.2201541109  8.10e-10  -0.279684833  -0.2796838014  6.13e-08
1.0 -0.3701646  -0.3490293830  1.49e-09  -0.469341539  -0.4693420981 7.88e-08

A solution known as the Bessel function of the first kind of order zero denoted by Jy(¢) is

o~ (CDF tog
k=0
Tau method: The problem can be converted to
AT[D®B+ DM + Bl = 0,
ATo(0) = 1,
ATDWo(0) = o0,

where ¢t ~ BT®(t) and B is obtained from Eq. (3.4) for vector B.

Collocation method: For satisfying the initial conditions, we satisfy conditions (5.6) by
multiplying the operator the Eq, (2.4) by t? and adding it to 1, therefore, we have 7, (t) = 1+t2y,,(¢)
and for i = 0,1, ...,m:

Res(t;) = tigm” (ti) + Gm (ti) + tigm(t;) = 0. (5.7)

Fig. 6 shows the absolute errors of approximate solution with the exact solution and residual
errors for a = 1 and m = 15, using the Tau and collocation methods, respectively

To show the convergence of the Tau method to solve this example with o = 1, in the Fig. 7, we
showed that, the absolute error decreases with increasing m.

In Table 5, a comparison is made between the approximate values using Razzaghi [59], Yousefi
[60], and the Tau method together with the solution of Jy(t).

It is noted that the maximum error for this problem, obtained in Razzaghi [59] is 10~ and
Yousefi [60] is 10714; but in the Tau method, for m = 15 the maximum error is 10723,

Example 6. The Lane-Emden differential equations are very important in astrophysics, for this
reason, writing articles to review them [61, 62, 63, 64, 65]. Now, we consider the linear Lane-Emden
equation of fractional order as follows

DYy(t) + 5 Dy() + gu(t) = £(0), (53)
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FIGURE 7. The absolute errors for example 5 with o = 1 and m = 10, 13, 15 to show the
convergence of the Tau method.
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with the initial conditions
y(0) =0, y'(0) =0, (5.9)

where

e t2 T(4-pB)+kl(4—7) 2 T(3—-pB)+kl(3—7)
o =* <6t<6+ T - T —7) )2(2+ I3 LG 1) >)
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TABLE 5. Obtained values of y(t) by Razzaghi [59], Yousefi [60], the Tau method, and exact

solution for example 5 with m = 15

t Razzaghi Yousefi Tau method Exact solution Abs. Er.
0.1 0.997502  0.9975015620660412  0.99750156206604003228128  0.99750156206604003228128  1.3¢-24
0.2 0.990024  0.9900249722395755  0.99002497223957639081752  0.99002497223957639081750  1.6e-23
0.3 0.977625  0.9776262465382969  0.97762624653820608756973  0.97762624653829608756974  8.9e-24
04  0.960396  0.9603982266595635  0.96039822665956345034418  0.96039822665956345034416  1.7¢-23
0.5  0.938468  0.9384698072408127  0.93846980724081290422840  0.93846980724081200422840  4.de-24
0.6 0.912004  0.9120048634972114  0.91200486349721077595490  0.91200486349721077595489  1.1e-23
0.7  0.881200  0.8812008886074042  0.88120088860740528083880  0.88120088860740528083880  1.7e-24
0.8  0.846285  0.8462873527504811  0.84628735275048026608921  0.84628735275048026608920  8.8¢-24
0.9 0.807524  0.8075237981225438  0.80752379812254477730241  0.80752379812254477730240  1.7¢-24
1.0 0.765197  0.7651976865579627  0.76519768655796655144972  0.76519768655796655144971  5.0e-24

and y =2, =1 k=2 The exact solution of Egs. (5.8) and (5.9) is given as y(t) = t> — ¢? in

2, Z : . (5. .
(61, 63].

Tau method: The problem can be converted to

ATDEC +2ATDG) L ATE

AT®(0)
ATDMd(0)

= 7

)

0,

(3.4).

where t ~ CT®(t), t3 ~ ET®(t) and t.f(t) ~ FT®(t) and C, E are obtained from the Eq.
Collocation method: We have
Res(t:) = i ATD®) (1) + 24T DB o(t,) + t2ym(ts) — t:if (1) = 0,
AT®(0) = 0,
ATDWa(0) = o,

fori=0,1,....m
By solving the above equation using both methods, we obtained the same

-2

and o = 0.50, we can obtain the exact solution with

AT = [ —0.0478515625, 0.05078125, 0.02294921875,

The residual errors with m = 6 are displayed in Fig. 8.
Table 6 shows the comparison of the absolute error obtained by the present Tau method, the
reproducing kernel method (RKM) [61] and the collocation method in Ref. [63].

— 0.044921875, 0.0244140625,

results, with m = 6

— 0.005859375, 0.00048828125].

Example 7. Now, we consider the fourth-order, nonlinear, momentum differential equation as

follows [66, 67, 68

y”"(t) _

with the initial conditions

Sty () +3y" (t) — 2y(t)y"

(1) =

M?y"(t) =0,

(5.10)

(5.11)
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FIGURE 8. Graphs of the residual errors for example 6 with m = 10 and a = 0.50, by using the
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TABLE 6. Comparison of the present Tau method, the reproducing kernel method [61], and the
collocation method [63] of the absolute errors for example 6

t Akgul [61] Mechee [63] Tau method  Akgul [61] Mechee [63] Tau method

| m=5 | m =10
0.25 | 8.7370e-4  1.3345¢-3 1.3791e-3 | 8.4636e-6  1.3232e-5 3.029¢-95
0.50 | 9.9000e-4  1.5000e-3 4.0754e-3 | 2.9000e-6  2.6000e-5 1.318¢-94
0.75 | 7.6702e-4  5.0673c-3 2.7006e-3 | 8.5754e-6  1.5634c-6 3.220e-94
1.00 | 5.4736e-4  3.6339e-3 8.6079%-4 | 5.4345e-6  4.1443e-5 6.162e-94

where S is the squeeze number, M is the Hartman number, a is a constant. a > 0 corresponds to
suction and a < 0 corresponds to injection at the lower stationary disk in momentum problem [67]

Tau method: The problem can be converted to

ATDW _ 5. AT (D<3>§ +3D® 2D<2>2) ~M2ATD® = |,
AT®(0) = a,

ATDWa(0) = o,

1

ATo(1) = -

o = 1

ATDWa(1) = o,

where ¢t ~ BT®(t) and B, A are obtained from the Eq. (3.4).
Collocation method: For satisfying the initial conditions, we have g, (t) = a+0.5(3 —6a)t* +
(=1 +2a)t3 +t2(t — 1)%.y,,(¢) and for i = 0,1, ..., m:

Res(ti) = y/r\n/,//(ti) -5 (ti@\nm(ti) + 3y/r\n/,(tz) - 2y(tl)y/n\1,/(t2)) - M2y/r\n/,(ti) = 0,
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Tables 7 and 8 show the comparison of the obtained values by the present Tau method, the
present collocation method, and the variational iteration method (VIM) [66] with S = 0.1, M = 0.2,
and a = 0.1.

Fig. 9 shows the effect of the Hartman number M on y'(t) when there is suction or injection
into squeeze film while S = 0.01.

TABLE 7. Obtained values of y'(¢t) by Khan [66], Tau method (o« = 1,m = 20) and collocation
method (o = 0.5, m = 20), example 7 with S = 0.1, M = 0.2,a = 0.1.

t Khan [66] Tau method Collocation method

0.2 0.384801  0.38480128029055731  0.38480128029055732

0.4 0.575554  0.57555414305433113  0.57555414305433115

0.6 0.575174  0.57517467556439543 0.57517467556439545

0.8 0.384040  0.38404043290258845  0.38404043290258847
Extremum

point ' () 0.49958498632719809  0.49958498632719819

TABLE 8. Obtained values of y(t) by the Tau method (a = 1, m = 20) and the collocation method
(a = 0.5,m = 20), example 7 with S = 0.1, M =0.2,a =0.1.

t Tau method Res. Err.

0.1 | 0.111259419974244944  8.759e-18
0.2 | 0.141752942532303441 1.887e-16
0.3 | 0.186604279882068437 1.217e-16
0.4 | 0.240990261007359037  5.088e-17
0.5 | 0.300123812543702849 8.016e-19
0.6 | 0.359237998438074101  5.230e-17
0.7 | 0.413570592630439735 1.224e-16
0.8 | 0.458348679966845107 1.878e-16
0.9 | 0.488772783363147929  9.669e-18

Res. Err.

4.700e-13
5.193e-13
2.817e-13
4.628e-13
4.590e-13
4.143e-13
4.105e-13
5.395e-13
6.654e-13

Collocation method

0.111259419974244944
0.141752942532303441
0.186604279882068437
0.240990261007359037
0.300123812543702848
0.359237998438074101
0.413570592630439734
0.458348679966845107
0.488772783363147929

6 Conclusion

In this paper, the fractional order of the Chebyshev functions (FCFs) of the first kind have been
introduced. Then the operational matrices of the fractional derivative and the product of these
orthogonal functions have been obtained. Since the solution of many differential equations and
fractional differential equations can’t be estimated by polynomial basis, therefore we have decided
to use new basis namely the FCF and their operational matrices for Spectral methods. As shown,
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FIGURE 9. Influence of the Hartman number M on y'(t) with suction and injection when S = 0.01
for example 7.
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the methods are convergent, and the accuracy and stability them are good, and the error decreases
with increasing m. Illustrative examples show that these methods have good results, and these
could be due to the choice of fractional basis.
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