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Abstract

Gabor frames have gained considerable popularity during the past decade, primarily due to their
substantiated applications in diverse and widespread fields of engineering and science. Find-
ing general and verifiable conditions which imply that the Gabor systems are Gabor frames is
among the core problems in time-frequency analysis. In this paper, we give some simple and suf-
ficient conditions that ensure a Gabor system

{
Mu(m)bTu(n)ag =: χm(bx)g

(
x− u(n)a

)}
m,n∈N0

to be a frame for L2(K). The conditions proposed are stated in terms of the Fourier transforms
of the Gabor system’s generating functions.
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1 Introduction

The notion of frame was first introduced by Duffin and Schaeffer [1] in connection with some deep
problems in non-harmonic Fourier series. Frames are basis-like systems that span a vector space
but allow for linear dependency, which can be used to reduce noise, find sparse representations,
or obtain other desirable features unavailable with orthonormal bases. The idea of Duffin and
Schaeffer did not generate much interest outside non-harmonic Fourier series until the seminal
work by Daubechies, Grossmann, and Meyer [2]. They combined the theory of continuous wavelet
transforms with the theory of frames to introduce wavelet (affine) frames for L2(R). After their
work, the theory of frames began to be studied widely and deeply. Today, the theory of frames
has become an interesting and fruitful field of mathematics with abundant applications in signal
processing, image processing, harmonic analysis, Banach space theory, sampling theory, wireless
sensor networks, optics, filter banks, quantum computing, and medicine and so on. An introduction
to the frame theory and its applications can be found in [3,4].

Gabor frames form a special kind of frames for L2(R) whose elements are generated by time-
frequency shifts of a single window-function or atom. More specifically, let g ∈ L2(R) and a, b ∈
R+, we use G(g, a, b) to denote the Gabor family or system {MmbTnag : m,n ∈ Z} generated by g
where Tnaf(x) = f(x− na) is the translation unitary operator and Mmbf(x) = e2πimbxf(x) is the
modulation unitary operator. The composition MmbTna is called the time-frequency shift operator.
The system {MmbTnag : m,n ∈ Z} is called a Gabor frame if there exist constants A,B > 0 such
that

A
∥∥f∥∥2

2
≤
∑
m∈Z

∑
n∈Z

∣∣〈f,MmbTnag
〉∣∣2 ≤ B∥∥f∥∥2

2
, for all f ∈ L2(R). (1.1)

Gabor systems that form frames for L2(R) have a wide variety of applications. In practice, once
the window function has been chosen, the first question to investigate for Gabor analysis is to find

Tbilisi Mathematical Journal 9(2) (2016), pp. 129–139.
Tbilisi Centre for Mathematical Sciences.

Received by the editors: 07 January 2016.
Accepted for publication: 10 October 2016.



130 F. A. Shah

the values of the time-frequency parameters a, b such that {MmbTnag}m,n∈Z is a frame. A useful
tool in this context is the Ron and Shen [5] criterion. By using this criterion, Gröchenig et al.[6]
have proved that the system {MmbTnag}m,n∈Z cannot be a frame for a > 0 and b integer greater
than 1. Many results in this area, including necessary conditions and sufficient conditions have
been established during the last two decades [7–10]. We refer the reader to the books [11,12] for a
comprehensive treatment of Gabor frames.

A field K equipped with a topology is called a local field if both the additive and multiplicative
groups of K are locally compact Abelian groups. For example, any field endowed with the discrete
topology is a local field. For this reason we consider only non-discrete fields. The local fields
are essentially of two types (excluding the connected local fields R and C). The local fields of
characteristic zero include the p-adic field Qp. Examples of local fields of positive characteristic are
the Cantor dyadic group and the Vilenkin p-groups. Local fields have attracted the attention of
several mathematicians, and have found innumerable applications not only in the number theory,
but also in the representation theory, division algebras, quadratic forms and algebraic geometry.
As a result, local fields are now consolidated as a part of the standard repertoire of contemporary
mathematics. For more details we refer to [13].

The local field K is a natural model for the structure of Gabor frame systems, as well as a
domain upon which one can construct Gabor basis functions. There is a substantial body of work
that has been concerned with the construction of Gabor frames on K, or more generally, on local
fields of positive characteristic. Jiang et al.[14] constructed Gabor frames on local fields of positive
characteristic using basic concepts of operator theory and have established a necessary and sufficient
conditions for the system

{
Mu(m)bTu(n)ag =: χm(bx)g

(
x− u(n)a

)}
m,n∈N0

to be a frame for L2(K).

Recently, Li and Jun [15] established a complete characterization of Gabor frames on local fields
by virtue of two basic equations in the Fourier domain and show how to construct an orthonormal
Gabor basis for L2(K). Recent results related to wavelet and Gabor frames on local fields of prime
characteristic can be found in [16-19] and the references therein.

In this article, we continue our investigation on Gabor frames on local fields and will present
generalized inequalities for Gabor frames on local fields of positive characteristic via Fourier trans-
form. The inequalities we proposed are stated in terms of the Fourier transforms of the Gabor
system’s generating functions. Although, we consider Gabor frames generated by a single function
here, our results can easily be verified to Gabor frames with multi-generators on local fields of
positive characteristic.

The paper is organized as follows. In Section 2, we discuss some preliminary facts about local
fields of positive characteristic and state the main results. Section 3 gives the proofs of the results.

2 Preliminaries on local fields

Let K be a field and a topological space. Then K is called a local field if both K+ and K∗ are
locally compact Abelian groups, where K+ and K∗ denote the additive and multiplicative groups
of K, respectively. If K is any field and is endowed with the discrete topology, then K is a local
field. Further, if K is connected, then K is either R or C. If K is not connected, then it is totally
disconnected. Hence by a local field, we mean a field K which is locally compact, non-discrete and
totally disconnected. The p-adic fields are examples of local fields. We use the notation of the book
by Taibleson [13]. In the rest of this paper, we use the symbols N,N0 and Z to denote the sets of
natural, non-negative integers and integers, respectively.
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Let K be a local field. Let dx be the Haar measure on the locally compact Abelian group K+.
If α ∈ K and α 6= 0, then d(αx) is also a Haar measure. Let d(αx) = |α|dx. We call |α| the absolute
value of α. Moreover, the map x→ |x| has the following properties:

(a) |x| = 0 if and only if x = 0;

(b) |xy| = |x||y| for all x, y ∈ K;

(c) |x+ y| ≤ max {|x|, |y|} for all x, y ∈ K.
Property (c) is called the ultrametric inequality. The set D = {x ∈ K : |x| ≤ 1} is called the ring
of integers in K. It is the unique maximal compact subring of K. Define B = {x ∈ K : |x| < 1}.
The set B is called the prime ideal in K. The prime ideal in K is the unique maximal ideal in D
and hence as result B is both principal and prime. Since the local field K is totally disconnected,
so there exist an element of B of maximal absolute value. Let p be a fixed element of maximum
absolute value in B. Such an element is called a prime element of K. Therefore, for such an ideal
B in D, we have B = 〈p〉 = pD. As it was proved in [13], the set D is compact and open. Hence,
B is compact and open. Therefore, the residue space D/B is isomorphic to a finite field GF (q),
where q = pc for some prime p and c ∈ N.

Let D∗ = D \B = {x ∈ K : |x| = 1}. Then, it can be proved that D∗ is a group of units in
K∗ and if x 6= 0, then we may write x = pkx′, x′ ∈ D∗. For a proof of this fact we refer to [13].
Moreover, each Bk = pkD =

{
x ∈ K : |x| < q−k

}
is a compact subgroup of K+ and usually known

as the fractional ideals of K+. Let U = {ai}q−1
i=0 be any fixed full set of coset representatives of B

in D, then every element x ∈ K can be expressed uniquely as x =
∑∞
`=k c`p

` with c` ∈ U . Let χ
be a fixed character on K+ that is trivial on D but is non-trivial on B−1. Therefore, χ is constant
on cosets of D so if y ∈ Bk, then χy(x) = χ(y, x), x ∈ K. Suppose that χu is any character on
K+, then clearly the restriction χu|D is also a character on D. Therefore, if {u(n) : n ∈ N0} is a
complete list of distinct coset representative of D in K+, then, as it was proved in [13], the set{
χu(n) : n ∈ N0

}
of distinct characters on D is a complete orthonormal system on D.

Definition 2.1. If f ∈ L1(K), then the Fourier transform of f is defined by

F
{
f(x)

}
= f̂(ξ) =

∫
K

f(x)χξ(x) dx. (2.1)

It is noted that

f̂(ξ) =

∫
K

f(x)χξ(x)dx =

∫
K

f(x)χ(−ξx) dx.

The properties of Fourier transform on local field K are much similar to those of on the real line.
In fact, the Fourier transform have the following properties:

• The map f → f̂ is a bounded linear transformation of L1(K) into L∞(K), and
∥∥f̂∥∥∞ ≤ ∥∥f∥∥1

.

• If f ∈ L1(K), then f̂ is uniformly continuous.

• If f ∈ L1(K) ∩ L2(K), then
∥∥f̂∥∥

2
=
∥∥f∥∥

2
.
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The Fourier transform of a function f ∈ L2(K) is defined by

f̂(ξ) = lim
k→∞

f̂k(ξ) = lim
k→∞

∫
|x|≤qk

f(x)χξ(x) dx, (2.2)

where fk = f Φ−k and Φk is the characteristic function of Bk. Furthermore, if f ∈ L2(D), then we
define the Fourier coefficients of f as

f̂
(
u(n)

)
=

∫
D

f(x)χu(n)(x) dx. (2.3)

We now impose a natural order on the sequence {u(n)}∞n=0. We have D/B ∼= GF (q) where GF (q)
is a c-dimensional vector space over the field GF (p). We choose a set {1 = ζ0, ζ1, ζ2, . . . , ζc−1} ⊂ D∗

such that span{ζj}c−1
j=0
∼= GF (q). For n ∈ N0 satisfying

0 ≤ n < q, n = a0 + a1p+ · · ·+ ac−1p
c−1, 0 ≤ ak < p, and k = 0, 1, . . . , c− 1,

we define
u(n) = (a0 + a1ζ1 + · · ·+ ac−1ζc−1) p−1.

Also, for n = b0 + b1q + b2q
2 + · · ·+ bsq

s, n ∈ N0, 0 ≤ bk < q, k = 0, 1, 2, . . . , s, we set

u(n) = u(b0) + u(b1)p−1 + · · ·+ u(bs)p
−s.

This defines u(n) for all n ∈ N0. In general, it is not true that u(m + n) = u(m) + u(n). But, if
r, k ∈ N0 and 0 ≤ s < qk, then u(rqk + s) = u(r)p−k + u(s). Further, it is also easy to verify that
u(n) = 0 if and only if n = 0 and {u(`) + u(k) : k ∈ N0} = {u(k) : k ∈ N0} for a fixed ` ∈ N0.
Hereafter we use the notation χn = χu(n), n ≥ 0.

Let the local field K be of characteristic p > 0 and ζ0, ζ1, ζ2, . . . , ζc−1 be as above. We define
a character χ on K as follows:

χ(ζµp
−j) =

{
exp(2πi/p), µ = 0 and j = 1,
1, µ = 1, . . . , c− 1 or j 6= 1.

(2.4)

We also denote the test function space on K by Ω, that is, each function f in Ω is a finite
linear combination of functions of the form Φk(x− h), h ∈ K, k ∈ Z, where Φk is the characteristic
function of Bk. This class of functions can also be described in the following way. A function g ∈ Ω
if and only if there exist integers k, ` such that g is constant on cosets of Bk and is supported on
B`. It follows that Ω is closed under Fourier transform and is an algebra of continuous functions
with compact support, which is dense in C0(K) as well as in Lp(K), 1 ≤ p <∞.

For a given g ∈ L2(K), define the Gabor system

G(g, a, b) :=
{
gm,n(x) =: χm(bx)g

(
x− u(n)a

)
: n,m ∈ N0

}
. (2.5)
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We call the Gabor system G(g, a, b) a Gabor frame for L2(K), if there exist positive numbers
0 < C ≤ D <∞ such that for all f ∈ L2(K)

C
∥∥f∥∥2

2
≤
∑
m∈N0

∑
n∈N0

∣∣〈f,Mu(m)bTu(n)ag
〉∣∣2 ≤ D∥∥f∥∥2

2
. (2.6)

Before stating our results, we introduce some notations. For any g ∈ L2(K) and a, b > 0. We
set

∆k(ξ) =
∑
m∈N0

∣∣∣ĝ(ξ − bu(m)
)
ĝ
(
ξ − bu(m) + a−1u(k)

)∣∣∣,
αk = ess sup

ξ
∆k(ξ), k ∈ N0, β =

∑
k∈N

αk, γ = ess inf
ξ

∆0(ξ),

Λk(ξ) =
∑
k∈N0

ĝ
(
ξ − bu(m)

)
ĝ
(
ξ − bu(m) + a−1u(k)

)
,

δk = ess sup
ξ

∣∣Λk(ξ)
∣∣, k ∈ N0, µ =

∑
k∈N

δk .

Theorem 2.1. Let a, b > 0 and g ∈ L2(K). If α0, β and γ satisfy

β < γ ≤ α0 <∞,

then system in (2.5) constitutes a Gabor frame for L2(K) with bounds
C1

a
and

D1

a
, where C1 = γ−β

and D1 = α0 + β.

Remark 1. The analogous time domain version of Theorem 2.1 was established by Li and Jiang[14]
(Theorem 5.2, pp. 173), while the above frequency version can be verified by using the machinery
of shift-invariant spaces in the same way as used by Li et al. in [20].

Drawing inspiration from the general results of Gabor frames on local fields of positive charac-
teristic obtained by Li and Jiang [14], we shall present two sufficient conditions in frequency domain
for such frames on local fields. The conditions obtained are better than that of one in Theorem 2.1.

The first result of the paper is stated as follows.

Theorem 2.2. Let a, b > 0 and g ∈ L2(K). If α0, γ and µ satisfy

µ < γ ≤ α0 <∞, (2.7)

then the Gabor system G(g, a, b) as defined in (2.5) is a frame for L2(K) with bounds
C2

a
and

D2

a
,

where C2 = γ − µ and D2 = α0 + µ.

Remark 2. Obviously, µ ≤ β, so the frame bounds in Theorem 2.2 are better than ones in Theorem
2.1.
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Next, we prove a more general result which includes not only the results of Theorem 2.1 and
2.2 as special cases, but also leads to a standard development of interesting generalizations of some
well-known results. To do so, we set

σ = ess sup
ξ

∑
k∈N

∣∣Λk∣∣.
Theorem 2.3. Let a, b > 0 and g ∈ L2(K). If α0, γ and σ satisfy

σ < γ ≤ α0 <∞, (2.8)

then the Gabor system G(g, a, b) given by (2.5) constitutes a frame for L2(K) with bounds
C3

a
and

D3

a
, where C3 = γ − σ and D3 = α0 + σ.

Remark 3. Since σ ≤ µ, the frame bounds in Theorem 2.3 are better than ones in Theorem 2.2.

3 Proof of the main results

In order to prove Theorems 2.2 and 2.3, we need the following lemma whose proof can be found in
Christensen [3] (Lemma 5.1.7, pp. 92).

Lemma 3.1. Suppose that {fk}∞k=1 is a family of elements in a Hilbert space H such that there
exist constants 0 < A ≤ B <∞ satisfying

A
∥∥f∥∥2

2
≤
∞∑
k=1

∣∣〈f, fk〉∣∣2 ≤ B∥∥f∥∥2

2
,

for all f belonging to a dense subset D of H. Then, the same inequalities are true for all f ∈ H;
that is, {fk}∞k=1 is a frame for H.

In view of Lemma 3.1, we will consider the following set of functions:

Ω0 =
{
f ∈ Ω : suppf̂ ⊂ K\ {0} and

∥∥f̂∥∥∞ <∞
}
.

Since Ω is dense in L2(K) and closed under the Fourier transforms, the set Ω0 is also dense in
L2(K). Therefore, it is enough to verify that the system G(g, a, b) given by (2.5) is a frame for
L2(K) if the results of Theorems 2.2 and 2.3 hold for all f ∈ Ω0.

Assume that f ∈ L2(K) and h ∈ Ω0, then by periodization, we have

a

∫
K

h(ξ)f(ξ)χk
(
a(ξ − ω)

)
dξ = a

∫
Ga−1

∑
m∈N0

h
(
ξ + a−1u(m)

)
f
(
ξ + a−1u(m)

)
χk
(
a(ξ − ω)

)
dξ
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where Ga = {x ∈ K : |x| ≤ |a|} . Since h lies in Ω0, so it is bounded and compactly supported, as
a consequence, the number of m-terms in the above sum is finite. Thus, we can say the series∑

k∈N0

∫
K

h(ξ)f(ξ)χk
(
a(ξ − ω)

)
dξ (3.1)

is convergent to a periodic function H(ξ) ∈ L2(Ga−1), where

H(ξ) =
1

a

∑
m∈N0

h
(
ξ + a−1u(m)

)
f
(
ξ + a−1u(m)

)
. (3.2)

Proof of Theorem 2.2.

For any f ∈ L2(K), there exists a function sequence {fj}∞j=1 ⊂ Ω0, such that∥∥∥f̂j − f̂∥∥∥
2
→ 0 as j →∞, and supp f̂j ⊂ Bj

since Ω0 is dense in L2(K). Let gm,n(x) be the family of functions given by (2.5), then for fixed
m ∈ N0, we define the functional

Pm(h) =
∑
n∈N0

∣∣〈h, gm,n〉∣∣2 =
∑
n∈N0

∣∣∣〈ĥ, ĝm,n〉∣∣∣2 , for all h ∈ L2(K). (3.3)

Since the Fourier transform of gm,n is

ĝm,n(ξ) = χn

(
a
(
ξ − bu(m)

))
ĝ
(
ξ − bu(m)

)
,

therefore, with the aid of (3.1), we are able to express the relation (3.3) as

Pm(fj) =
∑
n∈N0

∣∣∣〈f̂j , ĝm,n〉∣∣∣2
=
∑
n∈N0

〈
f̂j , ĝm,n

〉〈
f̂j , ĝm,n

〉
=
∑
n∈N0

∫
K

f̂j(ξ) ĝ
(
ξ − bu(m)

)
χn

(
a
(
ξ − bu(m)

))
dξ

×
∫
K

f̂j(ω) ĝ
(
ω − bu(m)

)
χn

(
a
(
ω − bu(m)

))
dω

=
1

a

∑
k∈N0

∫
K

f̂j
(
ξ + a−1u(k)

)
ĝ
(
ξ − bu(m) + a−1u(k)

)
f̂j(ξ) ĝ

(
ω − bu(m)

)
dξ.

Let

P (f) =
∑
m∈N0

∑
n∈N0

∣∣〈f, gm,n〉∣∣2 =
∑
m∈N0

Pm(f), (3.4)
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then

P (fj) =
1

a

∑
k∈N0

∑
m∈N0

∫
K

f̂j
(
ξ + a−1u(k)

)
ĝ
(
ξ − bu(m) + a−1u(k)

)
f̂j(ξ) ĝ

(
ω − bu(m)

)
dξ

= Q1(fj) +Q2(fj), (3.5)

where

Q1(fj) =
1

a

∑
m∈N0

∫
K

∣∣∣f̂j(ξ) ĝ(ω − bu(m)
)∣∣∣2 dξ (3.6)

Q2(fj) =
1

a

∑
k∈N

∑
m∈N0

∫
K

f̂j
(
ξ + a−1u(k)

)
ĝ
(
ξ − bu(m) + a−1u(k)

)
f̂j(ξ) ĝ

(
ξ − bu(m)

)
dξ. (3.7)

Since α0 <∞, the series Q1(fj) is convergent and

γ

a

∥∥∥f̂j∥∥∥2

2
≤ Q1(fj) ≤

α0

a

∥∥∥f̂j∥∥∥2

2
,

or equivalently
γ

a

∥∥fj∥∥2

2
≤ Q1(fj) ≤

α0

a

∥∥fj∥∥2

2
. (3.8)

Next, we claim that Q2(fj) is absolutely convergent. To prove this, we set

Q∗2(fj) =
1

a

∑
k∈N

∑
m∈N0

∣∣∣∣∫
K

f̂j
(
ξ + a−1u(k)

)
ĝ
(
ξ − bu(m) + a−1u(k)

)
f̂j(ξ) ĝ

(
ξ − bu(m)

)
dξ

∣∣∣∣ .
Note that∣∣∣ĝ(ξ − bu(m) + a−1u(k)

)
ĝ
(
ξ − bu(m)

)∣∣∣ ≤ 1

2

(∣∣∣ĝ(ξ − bu(m) + a−1u(k)
)∣∣∣2 +

∣∣∣ĝ(ξ − bu(m)
)∣∣∣2) ,

hence we have

Q∗2(fj) ≤
1

a

∑
k∈N

∑
m∈N0

∫
K

∣∣∣f̂j(ξ + bu(m) + a−1u(k)
)
f̂j
(
ξ + a−1u(k)

)∣∣∣ ∣∣ĝ(ξ)
∣∣2 dξ.

Since each fj is bounded and compactly supported on Bj , and in fact they belongs to Ω0, hence
there exist a constant M > 0 such that

Q∗2(fj) ≤M
∥∥∥f̂j∥∥∥2

∞

∥∥g∥∥2
<∞,

which proves our claim that Q2(fj) is absolutely convergent.
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Using Cauchy–Schwarz inequality, we obtain∣∣∣Q2(fj)
∣∣∣ =

∣∣∣∣∣1a∑
k∈N

∫
K

f̂j
(
ξ + a−1u(k)

)
f̂j(ξ) Λk(ξ) dξ

∣∣∣∣∣
≤ 1

a

∑
k∈N

∫
K

{∣∣∣f̂j(ξ + a−1u(k)
)∣∣∣ ∣∣Λk(ξ)

∣∣1/2}{∣∣∣f̂j(ξ)∣∣∣ ∣∣Λk(ξ)
∣∣1/2} dξ

≤ 1

a

∑
k∈N

{∫
K

∣∣∣f̂j(ξ + a−1u(k)
)∣∣∣2 ∣∣Λk(ξ)

∣∣dξ}1/2{∫
K

∣∣∣f̂j(ξ)∣∣∣2 ∣∣Λk(ξ)
∣∣dξ}1/2

. (3.9)

It is easy to verify that

f̂j
(
ξ + a−1u(k)

)
= f̂j(ξ), and Λk

(
ξ − a−1u(k)

)
= Λk(ξ), ∀ k ∈ N.

Thus, we have ∣∣∣Q2(fj)
∣∣∣ ≤ 1

a

∫
K

∣∣∣f̂j(ξ)∣∣∣2 dξ∑
k∈N

δk =
µ

a

∥∥fj∥∥2

2
,

or equivalently,

−µ
a

∥∥fj∥∥2

2
≤ Q2(fj) ≤

µ

a

∥∥fj∥∥2

2
. (3.10)

It follows from (3.8) and (3.10) that

γ − µ
a

∥∥fj∥∥2

2
≤ P (fj) ≤

α0 + µ

a

∥∥fj∥∥2

2
.

Letting j →∞ in above inequality, we obtain

γ − µ
a

∥∥f∥∥2

2
≤ P (f) ≤ α0 + µ

a

∥∥f∥∥2

2
,

or
C2

a

∥∥f∥∥2

2
≤
∑
m∈N0

∑
n∈N0

∣∣〈f, gm,n〉∣∣2 ≤ D2

a

∥∥f∥∥2

2
,

where C2 = γ − µ and D2 = α0 + µ. This completes the proof of Theorem 2.2.

Proof of Theorem 2.3.

Similar to the proof of Theorem 2.2, (3.6)–(3.9) hold. It follows from (3.9), the Cauchy-Schwarz
inequality that∣∣∣Q2(fj)

∣∣∣ ≤ 1

a

{∑
k∈N

∫
K

∣∣∣f̂j(ξ + a−1u(k)
)∣∣∣2 ∣∣Λk(ξ)

∣∣dξ}1/2{∑
k∈N

∫
K

∣∣∣f̂j(ξ)∣∣∣2 ∣∣Λk(ξ)
∣∣dξ}1/2

=
1

a

{∑
k∈N

∫
K

∣∣∣f̂j(ξ)∣∣∣2 ∣∣Λk(ξ − a−1u(k)
)∣∣dξ}1/2{∑

k∈N

∫
K

∣∣∣f̂j(ξ)∣∣∣2 ∣∣Λk(ξ)
∣∣dξ}1/2
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=
1

a

{∫
K

∣∣∣f̂j(ξ)∣∣∣2∑
k∈N

∣∣Λk(ξ)
∣∣dξ}1/2{∫

K

∣∣∣f̂j(ξ)∣∣∣2∑
k∈N

∣∣Λk(ξ)
∣∣dξ}1/2

≤ σ

a

∥∥fj∣∣22, (3.11)

which implies that

−σ
a

∥∥fj∥∥2

2
≤ Q2(fj) ≤

σ

a

∥∥fj∥∥2

2
. (3.12)

Combining (3.8) with (3.12), we obtain

γ − σ
a

∥∥fj∥∥2

2
≤ P (fj) ≤

α0 + σ

a

∥∥fj∥∥2

2
.

By taking j →∞ in above relation, we get

γ − σ
a

∥∥f∥∥2

2
≤ P (f) ≤ α0 + σ

a

∥∥f∥∥2

2
,

or
C3

a

∥∥f∥∥2

2
≤
∑
m∈N0

∑
n∈N0

∣∣〈f, gm,n〉∣∣2 ≤ D3

a

∥∥f∥∥2

2
,

where C3 = γ − σ and D3 = α0 + σ. This completes the proof of Theorem 2.3.
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