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Abstract

In this paper, we consider the stationary fractional reaction-diffusion equations with Riemann-
Liouville boundary conditions

xD
α
T (0D

α
xu(x)) + 0D

β
x(xD

β
Tu(x)) = f(x, u(x)), x ∈ (0, T ),

lim
x→0

0I
1−α
x u(x) = lim

x→T
xI

1−β
T u(x) = 0.

(0.1)

where 0 < α, β < 1 and f ∈ C([0, T ] × R,R). Under suitable conditions on the nonlinearity
f , we study the multiplicity of weak solutions of (0.1) by using the genus in the critical point
theory.

2010 Mathematics Subject Classification. 26A33. 34A08, 30E25
Keywords. Riemann-Liouville fractional derivatives, fractional derivative space, boundary value problem, genus, variational
methods.

1 Introduction

Fractional differential equations have been an area of great interest recently. This is because of
both the intensive development of the theory of fractional calculus itself and the applications of
such constructions in various scientific fields such as physics, chemistry, biology, geology, as well as,
control theory, signal theory, nanoscience and so on [3, 14, 18, 21, 22, 34] and references therein. In
fact, the adequacy of fractional derivatives to describe the memory effects and hereditary properties
in a great variety of processes makes fractional differential models interesting and with a great
potential in applications, which is supported by the good adjustment between simulations and
experimental data. As indicated in [20], the dynamics of natural systems are in many occasions
complex, so that classical models might not be adequate. In this reference, the authors also show
that the order of the fractional derivative is important to control the speed in which the trajectories
of fractional systems move with respect to the critical point. This behavior is found by the authors
of [20] as an interesting issue in relation with anomalous behavior appearing among competing
species or in the study of diseases and justifies the applicability of fractional models in biology.

The existence and multiplicity of solutions for BVP for nonlinear fractional differential equations
is extensively studied using various tools of nonlinear analysis as fixed point theorems, degree theory
and the method of upper and lower solutions [4, 5]. Very recently, it should be noted that critical
point theory and variational methods have also turned out to be very effective tools in determining
the existence of solutions of BVP for fractional differential equations. The idea behind them is
trying to find solutions of a given boundary value problem by looking for critical points of a suitable
energy functional defined on an appropriate function space. In the last 30 years, the critical point
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theory has become a wonderful tool in studying the existence of solutions to differential equations
with variational structures, we refer the reader to the books due to Mawhin and Willem [15],
Rabinowitz [19], Schechter [23] and papers [10, 12, 13, 17, 26, 27, 28, 31] for bounded intervals and
[16, 25, 29, 30, 33, 34] in the real line.

Very recently Fazli and Bahrami [11], have study the existence of weak solutions to the steady
fractional reaction-diffusion equation

xD
α
1 (0D

α
xy(x)) + 0D

β
x(xD

β
1 y(x)) = f(x, y(x)) (1.1)

with Riemann-Liouville boundary conditions

lim
x→0

0I
1−α
x y(x) = lim

x→1
xI

1−β
1 y(x) = 0, (1.2)

where 0 < α, β < 1, f : [0, 1]×R→ R is Carathéodory function and 0D
α
x , xD

α
1 denote left and right

Riemann-Liouville fractional derivatives of order α respectively. Under some suitable conditions on
f , the authors show the existence results by using generalized Weierstrass theorem and relatively
simple techniques from nonlinear functional analysis.

Equation (1.1) comes from the fractional reaction-diffusion equation

∂

∂t
y(t, x) = xD

α
1 (0D

α
xy(x)) + 0D

β
x(xD

β
1 y(x)) + f(x, y(x)),

that is a generalization of the classical reaction-diffusion equation in which the second-order deriva-
tive is replaced with a fractional derivative of order less than two. The resulting solutions spread
faster than the classical solutions and may exhibit asymmetry, depending on the fractional deriva-
tive used, see [6, 8, 24] for more details.

In this paper, we consider the multiplicity result for (1.1) over (0, T ), namely, we consider the
following fractional boundary value problem:

xD
α
T (0D

α
xu(x)) + 0D

β
x(xD

β
Tu(x)) = f(x, u(x)), x ∈ (0, T ),

lim
x→0

0I
1−α
x u(x) = lim

x→T
xI

1−β
T u(x) = 0.

(1.3)

where 0 < α, β < 1 and f ∈ C([0, T ]× R,R) satisfy the following assumptions

(f1) F (t, 0) = 0 for all t ∈ [0, T ], F (t, u) ≥ a(t)|u|q and |f(t, u)| ≤ qb(t)|u|q−1 for all (t, u) ∈
[0, T ] × R, where 1 < q < 2 is a constant, a, b : [0, T ] → R+ are a continuous functions and
F (t, u) =

∫ u
0
f(t, s)ds.

(f2) There is a constant 1 < µ ≤ q < 2 such that

f(t, u)u ≤ µF (t, u) for all t ∈ [0, T ] and u ∈ R.

(f3) F (t, u) = F (t,−u) for all t ∈ [0, T ] and u ∈ R.

Before stating our result let us introduce the main ingredients involved in our approach. We let
Hα,β0 (0, T ) be the fractional Hilbert space defined by

Hα,β0 (0, T ) := {u ∈ L2(0, T ) : 0D
α
xu, xD

β
Tu ∈ L

2(0, T ), lim
x→0+

0I
1−α
x u(x) = lim

x→T−
xI

1−β
T u(x) = 0}
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equipped with the norm

‖u‖α,β =

(∫ T

0

|0Dα
xu(x)|2dx+

∫ T

0

|xDβ
Tu(x)|2dx

)1/2

For u ∈ Hα,β0 (0, T ) and f satisfying (f1), as we see in Sect. §3, we may define the functional

I : Hα,β0 (0, T )→ R by

I(u) =
1

2
‖u‖2α,β −

∫ T

0

F (t, u(t))dt, (1.4)

which is of class C1. Moreover, we say that u ∈ Hα,β0 (0, T ) is a weak solution of (1.3) if u is a
critical point of I.

Now we are in position to state our main result.

Theorem 1.1. Suppose that (f1)-(f3) are satisfied. Then, (1.1) has infinitely many nontrivial
solutions.

The rest of the paper is organized as follows: In Section §2 we present preliminaries on fractional
calculus and we introduce the functional setting of the problem. In Section §3 we prove Theorem
1.1.

2 Preliminary results

In this section we introduce some basic definitions of fractional calculus which are used further in
this paper. For the proof see [14, 18, 22].

Let u be a function defined on [a, b]. The left (right ) Riemann-Liouville fractional integral of
order α > 0 for function u is defined by

aI
α
x u(x) = 1

Γ(α)

∫ x
a

(x− t)α−1u(t)dt, x ∈ [a, b],

xI
α
b u(x) = 1

Γ(α)

∫ b
x

(t− x)α−1u(t)dt, x ∈ [a, b],

provided in both cases that the right-hand side is pointwise defined on [a, b]. Here and in what
follows Γ denotes the Gamma function.

The left and right Riemann - Liouville fractional derivatives of order α ∈ (0, 1] of a function u
denoted by aD

α
t u(t) and tD

α
b u(t), respectively, are defined by

aD
α
xu(x) = d

dxaI
1−α
x u(x),

xD
α
b u(x) = − d

dxxI
1−α
b u(x),

where x ∈ [a, b].
Now we consider some properties of the Riemann-Liouville fractional integral and derivative

operators [14].

Theorem 2.1. 1. We have

aI
α
x (aI

β
xu(x)) = aI

α+β
x u(x), xI

α
b (xI

β
b u(x)) = xI

α+β
b u(x), ∀α, β > 0,
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2. Left inverse. Let u ∈ L1[a, b] and α > 0,

aD
α
x (aI

α
x u(x)) = u(x), a.e. t ∈ [a, b], xD

α
b (xI

α
b u(x)) = u(x), a.e. x ∈ [a, b].

3. Let α ∈ (0, 1] and p ≥ 1. If aD
α
xu(x) ∈ Lp(a, b) (resp. xD

α
b u(x) ∈ Lp(a, b)), then

aI
α
x aD

α
xu(x) = u(x)− aI

1−α
x u(a)

Γ(α)
(x− a)α−1 and

xI
α
T xD

α
Tu(x) = u(x)− xI

1−α
b u(b)

Γ(α)
(b− x)α−1

4. Let p ≥ 1. The fractional integration operators aI
α
x and xI

α
b with α > 0 are bounded in

Lp(a, b)] and

‖aIαx u‖Lp ≤
(b− a)α

Γ(α+ 1)
‖u‖Lp , ‖xIαb ‖Lp ≤

(b− a)α

Γ(α+ 1)
‖u‖Lp (2.1)

5. Integration by parts∫ b

a

[aI
α
x u(x)]v(x)dx =

∫ b

a

u(x)xI
α
b v(x)dx, α > 0, (2.2)

provided that u ∈ Lp[a, b], v ∈ Lq[a, b] and

p ≥ 1, q ≥ 1 and
1

p
+

1

q
< 1 + α or p 6= 1, q 6= 1 and

1

p
+

1

q
= 1 + α.

6. Let 0 < 1
p < α ≤ 1 and u(x) ∈ Lp[0, T ], then 0I

α
t u is Hölder continuous on [0, T ] with

exponent α− 1
p and lim

x→0+
0I
α
x u(x) = 0. Consequently, 0I

α
x u can be continuously extended by

0 in x = 0.

2.1 Fractional Hilbert space

In this section we introduce the fractional Hilbert space in which boundary conditions are nonlocal,
we follow [11]. For α, β ∈ (0, 1), we define the following fractional space

Hα,β0 := {u ∈ L2(0, T ) : 0D
α
xu, xD

β
Tu ∈ L

2(0, T ), lim
x→0+

0I
1−α
x u(x) = lim

x→T−
xI

1−β
T u(x) = 0},

with the inner product

〈u, v〉α,β =

∫ T

0
0D

α
xu(x) · 0Dα

xv(x)dx+

∫ T

0
xD

β
Tu(x) · xDβ

T v(x)dx, (2.3)

and the corresponding norm

‖u‖α,β :=

(∫ T

0

|0Dα
xu(x)|2dx+

∫ T

0

|xDβ
Tu(x)|2dx

)1/2

. (2.4)

Clearly, if α = β = 1, the space Hα,β0 (0, T ) coincides with the Sobolev space H1
0 (0, T ).
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Remark 2.2. By Theorem 2.1 - 3 and 4, for every u ∈ Hα,β0 (0, T ), we have

0I
α
x 0D

α
xu(x) = u(x) and xI

β
T xD

β
Tu(x) = u(x),

next

‖u‖L2 = ‖0Iαx 0D
α
xu‖L2 ≤ Tα

Γ(α+ 1)
‖0Dα

xu‖L2 ,

and

‖u‖L2 = ‖xIβT xD
β
Tu‖L2 ≤ T β

Γ(β + 1)
‖xDβ

Tu‖L2 .

Therefore

‖u‖L2 ≤ C
(
‖0Dα

xu‖2L2 + ‖xDβ
Tu‖

2
L2

)1/2

= C‖u‖α,β , (2.5)

where C = Tα

Γ(α+1) + Tβ

Γ(β+1) . So, the continuous embedding Hα,β0 (0, T ) ↪→ L2(0, T ) holds.

In the same way of [11], we can show that for α, β ∈ (0, 1), Hα,β0 (0, T ) is a Hilbert space. In

fact, let {un} be a Cauchy sequence in Hα,β0 (0, T ), then {un}, {0Dα
xun} and {xDβ

Tun} are Cauchy
sequences in L2(0, T ). Then

un → u, 0D
α
xun → u(α), xD

β
Tun → u(β) in L2(0, T ).

Following the same argument as in Remark 2.2, we obtain

un → 0I
α
x u

(α)(x), un → xI
β
Tu

(β)(x) in L2(0, T ).

Therefore, we have

u(x) = 0I
α
x u

(α)(x), u(x) = xI
β
Tu

(β)(x) a.e. in (0, T ). (2.6)

Furthermore, by Theorem 2.1 - 2, we immediately obtain that u(α)(x) = 0D
α
xu(x), u(β)(x) =

xD
β
Tu(x). On the other hand, from (2.6), we have

u(x) = 0I
α
x 0D

α
xu(x), u(x) = xI

β
T xD

β
Tu(x) a.e. in[0, T ].

Therefore, using Theorem 2.1 - 3, we deduce

lim
x→0+

0I
1−α
x u(x) = lim

x→T−
xI

1−β
T u(x) = 0.

Furthermore, we have the following compact embedding theorem.

Theorem 2.3. Let α, β ∈ (0, 1). Then Hα,β0 (0, T ) ↪→ L2(0, T ) is compact.

Remark 2.4. 1. We recall that, every Hilbert space H is uniformly convex, in fact, given x, y ∈
BH and 0 < ε ≤ 2 such that ‖x− y‖ ≥ ε, then by the parallelogram law, we obtain

‖x+ y

2
‖2 =

‖x‖2

2
+
‖y‖2

2
− ‖x− y‖

2

4
≤ 1− ε2

4
.

So, taking δ = 1− (1− ε2

4 )1/2 > 0 we conclude. Therefore, since Hα,β0 (0, T ) is a Hilbert space,

then it is uniformly convex. So by Theorem 1.21 in [1], Hα,β0 (0, T ) is a reflexive space.
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2. We claim that Hα,β0 (0, T ) is separable. In fact, since L2(0, T ) is separable, then the product
space

L2
2(0, T ) = L2(0, T )× L2(0, T )

is also separable space with respect to the norm

‖v‖L2
2

=

(
2∑
i=1

‖vi‖2L2

)1/2

, (2.7)

where v = (v1, v2) ∈ L2
2(0, T ). Now, consider the space Γ = {(0D

α
xu, xD

β
Tu) : ∀u ∈

Hα,β0 (0, T )}, which is a closed subset of L2
2(0, T ) as Hα,β0 (0, T ) is closed. So Γ is also sep-

arable space with respect to the norm (2.7) for v = (v1, v2) ∈ Γ. Consider the operator

B : Hα,β0 (0, T )→ Γ defined by

B : u→ (0D
α
xu, xD

β
Tu), ∀u ∈ Hα,β0 (0, T ).

Then
‖u‖α,β = ‖Bu‖L2

2
,

which means that the operator B is an isometric mapping and the space Hα,β0 (0, T ) is isometric

isomorphic to the space Γ. Therefore Hα,β0 (0, T ) is separable Hilbert space.

Now we introduce more notations and some necessary definitions. Let B be a real Banach space,
I ∈ C1(B,R) means that I is a continuously Fréchet differentiable functional defined on B.

Definition 2.5. I ∈ C1(B,R) is said to satisfy the (PS) condition if any sequence {uj}j∈N ⊂ B,
for which {I(uj)}j∈N is bounded and I ′(uj) → 0 as j → +∞, possesses a convergent subsequence
in B.

In order to find infinitely many solutions of (1.1), we will use the Krasnoselskii genus. Let us
denote by Σ the class of all closed subsets A ∈ B \ {0} that are symmetric with respect to the
origin, that is, u ∈ A implies −u ∈ A.

Definition 2.6. Let A ∈ Σ. The Krasnoselskii genus γ(A) of A is defined as being the least positive
integer k such that there is an odd mapping ϕ ∈ C(A,Rk) such that ϕ(x) 6= 0 for all x ∈ A. If such
a k does not exist we set γ(A) =∞. Furthermore, by definition, γ(∅) = 0.

In the sequel, we will state only the properties of the genus that will be used through this work.
More information on this subject may be found in [2].

Theorem 2.7. Let B = Rn and ∂Ω be the boundary of an open, symmetric and bounded subset
Ω ∈ Rn with 0 ∈ Ω. Then γ(∂Ω) = n.

Corollary 2.8. γ(Sn−1) = n.

As a consequence of this, if B is of infinite dimension and separable and S is the unit sphere in
B , then γ(S) =∞. We now state a result due to Clarke [9]
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Theorem 2.9. Let I ∈ C1(B,R) be a functional satisfying the (PS)-condition. Furthermore, let
us suppose that:

(i) I is bounded from below and even,

(ii) there is a compact set K ∈ Σ such that γ(K) = k and supu∈K I(u) < 0.

Then I possesses at least k pairs of distinct critical points and their corresponding critical values
are less than I(0).

3 Multiplicity result

In this section we are going to prove Theorem 1.1. We start our analysis with the following Lemma.

Lemma 3.1. Assume that (f1) hold. Then the functional I is well defined and of class C1(Hα,β0 (0, T ),R)
and

〈I ′(u), v〉 =

∫ T

0
0D

α
xu(x)0D

α
xv(x) + xD

β
Tu(x)xD

β
T v(x)dx−

∫ T

0

f(x, u(x))v(x)dx,

for all u, v ∈ Hα,β0 (0, T ), which yields that

〈I ′(u), u〉 =

∫ T

0

|0Dα
xu(x)|2 + |xDβ

Tu(x)|2dx−
∫ T

0

f(x, u(x))u(x)dx. (3.1)

Proof. Let

I1(u) :=
1

2

∫ T

0

[|0Dα
xu(x)|2 + |xDβ

Tu(x)|2]dx, I2(u) :=

∫ T

0

F (x, u(x))dx

It is easy to check that I1 ∈ C1(Hα,β0 (0, T ),R), and we have

〈I ′1(u), v〉 =

∫ T

0
0D

α
xu(x)0D

α
xv(x) + xD

β
Tu(x)xD

β
T v(x)dx.

Therefore, it is sufficient to show that this is the case for I2. By (f1), one has

|F (x, ξ)| ≤ b(x)|ξ|q, ∀(x, ξ) ∈ [0, T ]× R. (3.2)

For any u ∈ Hα,β0 (0, T ), it follows from Remark 2.2 and (3.2) that∫ T

0

|F (x, u(x))|dx ≤
∫ T

0

b(x)|u(x)|qdx ≤ ‖b‖∞‖u‖qLq

≤ T
2−q
2 Cq‖b‖∞‖u‖qα,β .

(3.3)

Therefore, I defined by (1.4) is well defined on Hα,β0 (0, T ).
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Now, for any function θ : [0, T ]→ (0, 1), by (f1), (2.5) and the Hölder inequality, we have∫ T

0

max
h∈[0,1]

|f(x, u(x) + θ(x)hv(x))v(x)|dx ≤
∫ T

0

max
h∈[0,1]

|f(x, u(x) + θ(x)hv(x))||v(x)|dx

≤ q‖b‖∞
∫ T

0

(|u(x)|+ |v(x)|)q−1|v(x)|dx

≤ 2q‖b‖∞

(∫ T

0

|u(x)|2dx

) q−1
2
(∫ T

0

|v(x)|
2

3−q dt

) 3−q
2

+ ‖v‖qLq


≤ 2q‖b‖∞T

2−q
2 Cq(‖u‖q−1

α,β + ‖v‖q−1
α,β )‖v‖α,β < +∞.

(3.4)

Let the functional H : Hα,β0 → R defined by

H(u) =

∫ T

0

F (x, u(x))dx.

Then, by the Mean Value Theorem, (3.4) and Lebesgue’s Dominated Convergence Theorem, we
have

lim
h→0+

H(u+ hv)−H(u)

h
= lim
h→0+

∫ T

0

f(x, u(x) + θ(x)hv(x))v(x)dx =

∫ T

0

f(x, u(x))v(x)dx. (3.5)

Let’s prove now that H ′ is continuous. Let {un}n∈N, u ∈ Hα,β0 such that un → u strongly in

Hα,β0 as n→∞. Then un → u in L2[0, T ], and so

lim
n→∞

un(x) = u(x), a.e. x ∈ R.

By (f1), for any bounded subinterval Ω ⊂ [0, T ],∫
Ω

|f(x, un(x))|q
′
dx ≤ qq

′
‖b‖q

′

∞

∫
Ω

|un(x)|(q−1)q′dx

≤ qq
′
Cq‖b‖q

′

∞‖un‖
q
α,β |Ω|

2−q
2 ≤ C|Ω|

2−q
2 .

(3.6)

It follows from (3.6) that the sequence {|f(t, un) − f(t, u)|q′} is uniformly bounded and equi-
integrable in L1(Ω). The Vitali Convergence Theorem implies

lim
n→∞

∫
Ω

|f(x, un(x))− f(x, u(x))|q
′
dx = 0

So, by Hölder inequality and (2.5) , we obtain

‖H ′(un)−H ′(u)‖(Hα,β0 )∗

= sup
v∈Hα,β0 (0,T ),‖v‖α,β=1

∣∣∣∣∣
∫ T

0

(f(x, un(x))− f(x, u(x)))v(x)dx

∣∣∣∣∣
≤ ‖f(x, un)− f(x, u)‖Lq′‖v‖Lq

≤ CT
2−q
2 ‖f(x, un)− f(x, u)‖Lq′ → 0
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as n→∞. Therefore by (3.5), I ∈ C1(Hα,β0 (0, T ),R) and

〈I ′(u), v〉 =

∫ T

0
0D

α
xu(x)0D

α
xv(x) + xD

β
Tu(x)xD

β
T v(x)dx−

∫ T

0

f(x, u(x))v(x)dx.

q.e.d.

Lemma 3.2. If (f1) and (f2) hold, then I satisfies (PS)-condition.

Proof. Let {un}n∈N ⊂ Hα,β0 (0, T ) such that {I(un)} is bounded and I ′(un) → 0 as n → ∞. Then
there exists a constant M > 0 such that

|I(un)| ≤M and ‖I ′(un)‖(Hα,β0 )∗ ≤M. (3.7)

Therefore (
1− µ

2

)
‖un‖2α,β = 〈I ′(un), un〉 − µI(un)

+

∫ T

0

f(t, un(t))un(t)− µF (t, un(t))dt

≤M‖un‖α,β + µM.

(3.8)

Since 1 < µ < 2, (3.8) shows that {un}n∈N is bounded in Hα,β0 (0, T ). Since Hα,β0 (0, T ) is a reflexive

space, up to a subsequence, still denote by {un}n∈N such that un ⇀ u weakly in Hα,β0 (0, T ). Then

〈I ′(un)− I ′(u), un − u〉 → 0. (3.9)

Moreover, by Theorem 2.3, up to a subsequence

un → u strongly in L2(0, T ) and a.e. in (0, T ).

Thus, f(x, un)(un − u) → 0 a.e. in (0, T ) as n → ∞. Following the ideas of Lemma 3.1, it is easy
to check that sequence {f(x, un)(un − u)} is uniformly bounded and equi-integrable in L1(0, T ).
Hence, the Vitali Convergence Theorem implies

lim
n→∞

∫ T

0

f(x, un)(un − u)dx = 0. (3.10)

Consequently, combining (3.9), (3.10) with the following equality

〈I ′(un)− I ′(u), un − u〉 = ‖un − u‖2α,β −
∫ T

0

(f(x, un)− f(x, u))(un − u)dx,

we deduce that ‖uk − u‖α,β → 0 as n→ +∞. That is, I satisfies the (PS)-condition. q.e.d.

Remark 3.3. In view of Lemma 3.1, I ∈ C1(Hα,β0 (0, T ),R) and by Lemma 3.2, I satisfies the
(PS)-condition. Furthermore, by (3.3) we have

I(u) =
1

2
‖u‖2α,β −

∫ T

0

F (t, u(t))dt

≥ 1

2
‖u‖2α,β − CqT

2−q
2 ‖u‖qα,β . (3.11)
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Since 1 < q < 2, (3.11) implies that I(u) → +∞ as ‖u‖α,β → +∞. Consequently, I is bounded
from bellow. Therefore, by use of a standard minimizing argument (see Theorem 2.7 in [19]),

c = infHα,β0 (0,T ) I(u) is a critical value of I, that is there exists a critical point u∗ ∈ Hα,β0 (0, T ) such

that
I(u∗) = c.

Furthermore, let ϕ ∈ C∞0 [0, T ] with ‖ϕ‖α,β = 1. Then, by (f1) we obtain that

I(σϕ) =
|σ|2

2
−
∫ T

0

F (t, σϕ(t))dt

≤ |σ|
2

2
− |σ|q

∫
suppϕ

a(t)|ϕ(t)|qdt,

which yields that I(σϕ) < 0 as |σ| small enough because 1 < q < 2. That is, the critical point u∗

is nontrivial.

The following result, whose proof can be seen Brezis [7], will play a key role in the proof of our
main result

Theorem 3.4. Let X be a separable and reflexive Banach space, then there exists {en}n∈N ⊂ X
and {e∗n}n∈N ⊂ X∗ such that

〈e∗n, em〉 = δn,m =

{
1 if n = m
0 if n 6= m,

and
X = span{en; 1, 2, · · · } and X∗ = span{e∗n; 1, 2, · · · }.

Proof of Theorem 1.1. We note that, by (f1), I(0) = 0 and by (f3), I is an even functional.
Denote by γ(A) the genus of A. Set

Σ = {A ⊂ Eα,p0 \ {0} : A is closed in Eα,p0 and symmetric with respect to 0},
Σk = {A ∈ Σ : γ(A) ≥ k}, k = 1, 2, · · · ,
ck = infA∈Σk supu∈A I(u), k = 1, 2, · · · ,

we have
−∞ < c1 ≤ c2 ≤ · · · ≤ ck ≤ ck+1 ≤ · · · .

Now, we will show that ck < 0 for every k ∈ N. Since Hα,β0 (0, T ) is a reflexive and separable

Hilbert space, consider {en}n∈N a Schauder basis of Hα,β0 (0, T ) given by Theorem 3.4, and for each

k ∈ N, consider Xk = span{e1, e2, · · · , ek}, the subspace of Hα,β0 (0, T ) generated by k vectors
e1, e2, · · · , ek. Since all norms of a finite dimensional normed space are equivalent, there exists a
positive constant C(k) which depends on k, such that

−C(k)‖u‖qα,β ≥ −
∫ T

0

|u(t)|qdt,



Fractional reaction-diffusion equations 125

for all u ∈ Xk. We now use (f1) to conclude that

I(u) =
1

2
‖u‖2α,β −

∫ T

0

F (t, u(t))dt

≤ 1

2
‖u‖2α,β −

∫ T

0

a(t)|u(t)|qdt

≤ ‖u‖qα,β(
1

2
‖u‖2−qα,β − ãC(k)),

where ã = inft∈[0,T ] a(t). Let R be a positive constant such that

1

2
R2−q < ãC(k).

So, for all 0 < r < R, and considering K = {u ∈ Xk : ‖u‖α,β = r}, we get

I(u) ≤ rq
(

1

2
r2−q − ãC(k)

)
< Rq

(
1

2
R2−q − ãC(k)

)
< 0 = I(0),

which implies
sup
K
I(u) < 0 = I(0)

Since Xk and Rk are isomorphic and K and Sk−1 are homeomorphic, we conclude that γ(K) = k.
Therefore, by the Clarke theorem, I has at least k pairs of different critical points. Since k is
arbitrary, we obtain infinitely many critical points of I. �
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