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Abstract

In this paper, we introduce Matlis flat modules as a generalization of copure flat modules and
give their characterizations. We prove that if R is a commutative Artinian ring and S ⊂ R is a
multiplicative set, then S−1M is a Matlis flat S−1R-module for any Matlis flat R-module M .
Also we prove that every module has Matlis flat preenvelope over commutative Artinian rings.
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1 Introduction

Throughout this paper, R denotes an associative ring with identity and all modules are unitary.
Denote by R-Mod the category of left R-modules and by Mod-R the category of right R-modules.
As usual, pdR(M), idR(M), and fdR(M) will denote the projective, injective and flat dimensions of
a left R-module M , respectively. The character module HomZ(M,Q/Z) is denoted by M+ and for
a class of R-modules C, we denote by C+ = {C+ | C ∈ C}. For unexplained concepts and notations,
we refer the reader to [4], [15] and [19].

We first recall some known notions and facts needed in the sequel.
Let C be a class of left R-modules and M a left R-module. Following [4], we say that a map

f ∈ HomR(C,M) with C ∈ C is a C-precover of M , if the group homomorphism HomR(C ′, f) :
HomR(C ′, C)→ HomR(C ′,M) is surjective for each C ′ ∈ C. A C-precover f ∈ HomR(C,M) of M
is called a C-cover of M if f is right minimal, that is, if fg = f implies that g is an automorphism
for each g ∈ EndR(C). C ⊆ R-Mod is a precovering class (covering class) provided that each
module has a C-precover (C-cover). Dually, we have the definition of C-preenvelope (C-envelope).
In general, C-covers (C-envelopes) may not exist, if exists, they are unique up to isomorphism.

Given a class C of left R-modules, we write

C⊥ =
{
M ∈ R-Mod | Ext1R(C,M) = 0, ∀ C ∈ C

}
⊥C =

{
M ∈ R-Mod | Ext1R(M,C) = 0, ∀ C ∈ C

}
.

A pair (F , C) of classes of right R-modules is called a cotorsion theory [4] if F⊥ = C and ⊥C = F .
A cotorsion theory (F , C) is called perfect [5] if every right R-module has a C-envelope and an F-
cover. A cotorsion theory (F , C) is called hereditary [5] if whenever 0→ L′ → L→ L′′ → 0 is exact
with L,L′′ ∈ F , then L′ is also in F . By [5, Proposition 1.2], (F , C) is hereditary if and only if
whenever 0→ C ′ → C → C ′′ → 0 is exact with C,C ′ ∈ C, then C ′′ is also in C.

For a positive integer n, a left R-module A is called an n-syzygy module (of a left R-module
M) if there exists an exact sequence 0 → A → Pn−1 → · · · → P1 → P0 → M → 0 with all Pi
projective; a left R-module B is said to be an n-cosyzygy module (of M) if there exists an exact
sequence 0→M → E0 → E1 → · · · → En−1 → B → 0 with all Ei injective.
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Let R be a ring. A submodule T of a left R-module N is called a pure submodule [4] if
0 → A ⊗ T → A ⊗ N is exact for all right R-modules A, or equivalently, if Hom(A,N) →
Hom(A,N/T ) → 0 is exact for all finitely presented left R-modules A. An exact sequence 0 →
T → N → N/T → 0 is called pure exact if T is a pure submodule of N . A left R-module M is said
to be pure injective [2] if for every pure exact sequence 0→ T → N → N/T → 0 of left R-modules,
0→ Hom(N/T,M)→ Hom(N,M)→ Hom(T,M)→ 0 is exact.

Recall that a left R-module M is called copure injective [2] if Ext1R(E,M) = 0 for all injective
left R-modules E. A right R-module M is said to be copure flat [3] if TorR1 (M,E) = 0 for all
injective left R-modules E. These modules were introduced and studied by Enochs and Jenda
[2, 3].

In [20], Yan, introduced the notion of Matlis injective modules as a generalization of copure
injective modules and he proved that every module has Matis injective envelope over Noetherian
rings. Recall that an R-module M is said to be Matlis injective if Ext1R(E(R),M) = 0, where E(R)
denotes the injective envelope of R. Inspired by [3, 20], in this paper, we will introduce a concept
of Matlis flat modules and investigate the existence of Matlis flat preenvelopes.

By [19, Lemma 5.1.1 and Proposition 5.1.2], every Gorenstein ring has flat injective hull. So,
the rings with flat injective hulls may be generalization of Gorenstein rings. Also there exists a ring
with flat injective hull which is not Gorenstein(see [6, Example 4.6]). Many authors characterized
these rings (see for example [4, Theorem 9.3.3] and [8, Theorem 2.2]). Recently, Khosh-Ahang [9]
extend these results and gather together 42 equivalent conditions for the commutative Noetherian
rings with flat injective hull. In this paper, we give some more equivalent conditions for the injective
envelope of commutative Artinian rings to be flat.

In Section 2, we give the definition of Matlis flat modules and present some of their general
properties. An example is given to show that in general the class of all Matlis flat right R-modules
properly contains the class of all copure flat right R-modules. We prove that if R is a commutative
Artinian ring and S ⊂ R is a multiplicative set, then S−1M is a Matlis flat S−1R-module for any
Matlis flat R-module M . Also we give some equivalent conditions for the injective envelopes of
rings to be flat.

In Section 3, we prove that if R is a commutative Artinian ring, then every R-module has
Matlis flat preenvelope and we give some equivalent conditions for every right R-module has a
monic Matlis flat preenvelopes. Also we give some equivalent conditions for the injective envelope
of commutative Artinian rings to be flat.

2 Matlis flat modules

We begin with the following definitions.

Definition 2.1. [20] Let R be a ring and M a left R-module. M is said to be Matlis injective
if Ext1R(E(R),M) = 0. A left R-module N is said to be Matlis projective if Ext1R(E(R), C) = 0
implies Ext1R(N,C) = 0 for any left R-module C. R is said to be a left Matlis ring if E(R) is flat
and pdR(E(R)) ≤ 1.

Definition 2.2. Let R be a ring. A right R-module M is said to be Matlis flat if TorR1 (M,E(R)) =
0, where E(R) denotes the injective envelope of R.

In what follows, we denote by MF the class of all Matlis flat right R-modules.
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Remark 2.3. We note that MF is closed under extensions and if (Mi)i∈I is a family of right
R-modules, then

⊕
i∈IMi is Matlis flat if and only if each Mi is Matlis flat.

Proposition 2.4. The following are hold for a ring R:

1. MF = Mod-R if and only if E(R) is flat.
2. A right R-module M is Matlis flat if and only if M+ is Matlis injective.

Proof. The assertion (1) follows by Definition 2.2 and the assertion (2) holds by the isomorphism:
Ext1R(E(R),M+) ∼= TorR1 (M,E(R))+. q.e.d.

We note that every copure flat right R-module is Matlis flat, but the converse is not true in
general. The following example shows that there exist Matlis flat right R-modules which are not
copure flat. Before that, we recall that a ring R is said to be IF ring if every injective left R-module
is flat.

Example 2.5. Consider a commutative non IF ring R for which E(R) is flat, for example, let
R = Z the ring of integers. Then, there exists an R-module which is not copure flat by [1, Corollary
4.3]. Let M be an R-module, but not copure flat. Since E(R) is flat, M is Matlis flat by Proposition
2.4.

Proposition 2.6. The following are equivalent for a ring R:

1. The flat dimension of E(R) is at most 1;
2. Every submodule of a Matlis flat right R-module is Matlis flat;
3. Every submodule of a flat right R-module is Matlis flat;
4. Every submodule of a projective right R-module is Matlis flat.

Proof. (1)⇒ (2). Let N be a submodule of a Matlis flat right R-module M . Then there exists an
exact sequence 0→ N →M →M/N → 0. Now applying the functor TorR1 (−, E(R)) to this exact
sequence, we have the exactness of

TorR2 (M/N,E(R))→ TorR1 (N,E(R))→ TorR1 (M,E(R)).

The first term is zero by (1), and the last term is zero since M is Matlis flat. Consequently,
TorR1 (N,E(R)) = 0, and hence (2) holds.

(2)⇒ (3)⇒ (4) is trivial.
(4)⇒ (1). For any right R-module M , there is an exact sequence 0→ K → P →M → 0 with

P projective. Thus we get the exactness of 0→ TorR2 (M,E(R))→ TorR1 (K,E(R)). The last term
is zero by (4). Therefore TorR2 (M,E(R)) = 0, which implies that the flat dimension of E(R) is at
most 1. q.e.d.

Proposition 2.7. Let R be a commutative Artinian ring and S ⊂ R be a multiplicative set. If M
is a Matlis flat R-module, then S−1M is a Matlis flat S−1R-module.

Proof. By [4, Theorem 2.1.11], we have the isomorphism

S−1TorR1 (M,ER(R)) ∼= TorS
−1R

1 (S−1M,S−1ER(R)).

But S−1ER(R) ∼= ES−1R(S−1R) by [4, Theorem 3.3.3] and R is a Noetherian ring. Thus S−1M is
a Matlis flat S−1R-module, when M is a Matlis flat R-module. q.e.d.
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Proposition 2.8. Every pure submodule of a Matlis flat right R-module is Matlis flat.

Proof. Let M be a Matlis flat right R-module and N a pure submodule of M . The pure exact
sequence 0→ N →M →M/N → 0 induces a split exact sequence 0→ (M/N)+ →M+ → N+ →
0. By Proposition 2.4, M+ is Matlis injective. Since N+ is isomorphic to a direct summand of M+,
N+ is Matlis injective by Remark 2.3. Therefore, N is Matlis flat by Proposition 2.4 again. q.e.d.

Proposition 2.9. The following are true for a commutative Artinian ring R:

1. An R-module M is Matlis injective if and only if M+ is Matlis flat.
2. An R-module M is Matlis injective if and only if M++ is Matlis injective.
3. An R-module M is Matlis flat if and only if M++ is Matlis flat.
4. MF is closed under direct products.

Proof. (1). SinceR is a commutative Artinian ring, TorR1 (M+, E(R)) = 0 if and only if Ext1R(E(R),M)+ =
0 for any R-module M by the proof of [3, Lemma 3.6]. Hence the desired result follows.

(2). Let M be a Matlis injective left R-module. Then M+ is Matlis flat by (1). Thus M++ is
Matlis injective by Proposition 2.4. Conversely, if M++ is a Matlis injective left R-module, then
M , as a pure submodule of M++, is Matlis injective by [20, Proposition 3.13].

(3). If M is a Matlis flat right R-module, then M+ is a Matlis injective left R-module, whence
M+++ is Matlis injective by (2). Thus M++ is Matlis flat by Proposition 2.4. Conversely, if
M++ is a Matlis flat right R-module, then M , being a pure submodule of M++, is Matlis flat by
Proposition 2.8.

(4). By hypothesis and [10, Theorem 3.64], E(R) is finitely presented. Then MF is closed
under direct products by [4, Theorem 3.2.26]. q.e.d.

Proposition 2.10. Let R be a ring. If TorRi (M,E(R)) = 0 for any i with 1 ≤ i ≤ n + 1, then
every kth syzygy of M is Matlis flat for 0 ≤ k ≤ n.

Proof. Let k be an integer with 0 ≤ k ≤ n, and Ck a kth syzygy of M . Then there exists an exact
sequence

0→ Ck → Pk−1 → · · · → P1 → P0 →M → 0,

where each Pi (0 ≤ i ≤ k − 1) is projective. Then we have the isomorphism TorR1 (Ck, E(R)) ∼=
TorRk+1(M,E(R)). Note that TorRk+1(M,E(R)) = 0 by the hypothesis, it follows that TorR1 (Ck, E(R)) =
0, and so Ck is Matlis flat. q.e.d.

Proposition 2.11. Let R be a ring. Then (MF ,MF⊥) is a perfect cotorsion theory. Moreover
the following are equivalent:

1. (MF ,MF⊥) is a hereditary cotorsion theory;
2. TorR2 (F,E(R)) = 0 for any F ∈MF ;
3. TorRj (F,E(R)) = 0 for any F ∈MF and any j ≥ 1.

Proof. By [18, Lemma 1.11 and Theorem 2.8] (MF ,MF⊥) is a perfect cotorsion theory.
(1) ⇒ (2). For any Matlis flat module F , there is an exact sequence 0 → K → P → F → 0

with P projective. Then K is Matlis flat by (1), and so TorR2 (F,E(R)) ∼= TorR1 (K,E(R)) = 0.
(2) ⇒ (3). Let F be a Matlis flat module. Then TorR1 (F,E(R)) = 0 by definition and

TorRj (F,E(R)) = 0 for any j ≥ 2 by induction.
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(3)⇒ (1) is easy. q.e.d.

Recall that a ring R is called right semi-artinian[17] if every non-zero right R module has
non-zero socle.

Theorem 2.12. The following are equivalent for a ring R:

1. Every right R-module is Matlis flat;
2. E(R) is flat;
3. Every cotorsion left R-module is Matlis injective;
4. Every pure injective left R-module is Matlis injective;
5. Every finitely presented right R-module is Matlis flat;
6. Every right R-module M with M ∈MF⊥ is injective.

If R is right semi-artinian, then the above conditions are equivalent to:
7. Every simple right R-module is Matlis flat.

Proof. (1)⇔ (2) follows from Proposition 2.4.
(2) ⇒ (3). Let M be a cotorsion left R-module. Then Ext1R(E(R),M) = 0, since E(R) is flat

by (2). Hence M is Matlis injective.
(3)⇒ (4). It follows from the fact that every pure injective left R-module is cotorsion.
(4) ⇒ (1). Let M be a right R module. Then M+ is pure injective, and so M+ is Matlis

injective by (4). It follows that M is Matlis flat by Proposition 2.4.
(1)⇒ (5), (7) are trivial.
(5) ⇒ (2). We have TorR1 (M,E(R)) = 0 for any finitely presented right R-module M by (5).

Therefore E(R) is flat, as desired.
(1)⇔ (6) follows from Proposition 2.11.
(7) ⇒ (2). Let I be a maximal right ideal of R. Then we have TorR1 (R/I,E(R)) = 0 by

(7). Thus Ext1R(R/I,E(R)+) = 0 since Ext1R(R/I,E(R)+) = TorR1 (R/I,E(R))+. So E(R)+ is
injective with respect to any maximal right ideal of R. Hence E(R)+ is injetive by [16, Lemma 4]
since R is right semi-artinian. Thus E(R) is flat. q.e.d.

By Definition 2.1 and Theorem 2.12, we have the following corollary.

Corollary 2.13. Let R be a ring with pd(E(R)) ≤ 1. Then the following are equivalent:

1. R is a left Matlis ring;
2. Every right R-module is Matlis flat;
3. Every cotorsion left R-module is Matlis injective;
4. Every pure injective left R-module is Matlis injective;
5. Every finitely presented right R-module is Matlis flat;
6. Every right R-module M with M ∈MF⊥ is injective.

Proposition 2.14. Let R be a commutative ring and S a simple R-module. Then the following
are equivalent:

1. S is Matlis injective;
2. S is Matlis flat;
3. S+ is Matlis injective.

Proof. (1)⇔ (2). It follows from the proof of [13, Proposition 2.8].
(2)⇔ (3) follows from Proposition 2.4. q.e.d.
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3 Matlis flat (pre)envelopes and Matlis injective covers

For C = MF , C-(pre)envelopes and C-(pre)covers will simply be called Matlis flat (pre)envelopes
and Matlis flat (pre)covers.

Theorem 3.1. If R is a commutative Artinian ring, then every R-module has Matlis flat preenve-
lope.

Proof. Let M be an R-module. By [4, Lemma 5.3.12], there is an infinite cardinal number ℵα such
that for any homomorphism f : M → N with N Matlis flat, there is a pure submodule P of N such
that Card(P ) ≤ ℵα and f(M) ⊆ P . Note that P is Matlis flat by Proposition 2.8. By Proposition
2.9, the product of Matlis flat R-modules is Matlis flat and hence M has a Matlis flat preenvelope
by Enochs and Jenda [4, Proposition 6.2.1]. q.e.d.

Proposition 3.2. Let R be a commutative Artinian ring.

1. If f : C → D is a Matlis flat preenvelope of a module C in Mod-R, then f+ : D+ → C+ is a
Matlis injective precover of C+ in R-Mod.

2. If f : C → D is a Matlis injective preenvelope of a module C in R-Mod, then f+ : D+ → C+

is a Matlis flat precover of C+ in R-Mod.

Proof. By Proposition 2.4 and Proposition 2.9, we have MF+ ⊆ MI and MI+ ⊆ MF . Now
both the assertions follows immediately from [6, Theorem 3.1]. q.e.d.

In what follows, we discuss when every right R-module has a monic Matlis flat preenvelope.

Theorem 3.3. The following are equivalent for a commutative Artinian ring R:

1. R is Matlis injective as an R-module;
2. Every R-module has a monic Matlis flat preenvelope;
3. Every injective R-module is Matlis flat;
4. Every flat R-module is Matlis injective;
5. Every R-module has an epic Matlis injective cover;
6. Every R-module is a submodule of a Matlis flat R-module.

Proof. (1) ⇒ (2). Let M be an R-module. By Theorem 3.1, M has a Matlis flat preenvelope
f : M → F . Since R+ is a cogenerator in the category of R-modules, there is an exact sequence
0 → M →

∏
R+. Note that R+ is a Matlis flat R-module by assumption and Proposition 2.9. It

follows that
∏
R+ is Matlis flat by Proposition 2.9. Thus f is monic, and so (2) follows.

(2) ⇒ (3). Let E be an injective R-module. By (2), there exists an exact sequence 0 → E →
F → N → 0, where E → F is a Matlis flat preenvelope with F Matlis flat. Then this short exact
sequence is split since E is injective. Thus E is Matlis flat as a direct summand of F by Remark
2.3. Hence (3) holds.

(3) ⇒ (4). Let M be a flat R-module. Then M+ is injective, and so M+ is Matlis flat by
assumption. So M is Matlis injective by Proposition 2.9, as desired.

(4)⇒ (1) is trivial.
(1) ⇒ (5). Let M be an R-module. Then M has a Matlis injective cover g : E → M by [20,

Remark 4.5]. On the other hand, there exists an exact sequence F → M → 0 with F free. Note
that F is Matlis injective by (1) and [20, Proposition 3.13], so g is an epimorphism.
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(5)⇒ (1). Because there exists an epic Matlis injective cover f : E → R by (5), R is isomorphic
to a direct summand of E. Thus R is Matlis injevtive by [20, Proposition 3.13].

(4)⇒ (6) is trivial.
(6)⇒ (4). By Theorem 3.1, every R-module has a Matlis flat preenvelope. Thus the assertion

holds by (6). q.e.d.

Recall that a C-envelope ϕ : M → C is said to have unique mapping property if for any
homomorphism f : M → C ′ with C ′ ∈ C, there is a unique homomorphism g : C → C ′ such that
gϕ = f . Dually we have the definition of C-cover with unique mapping property.

Theorem 3.4. The following are equivalent for a commutative Artinian ring R:

1. E(R) is flat;
2. The projective dimension of E(R) is at most 1;
3. The projective dimension of E(R) is at most 2;
4. Every R-module has an epic Matlis flat preenvelope;
5. Every cotorsion R-module has an epic Matlis flat preenvelope;
6. Every R-module has a monic Matlis injective cover;
7. Every R-module has a Matlis injective cover with the unique mapping property;
8. Every R-module has a Matlis flat envelope with the unique mapping property;
9. The cokernel of any Matlis injective preenvelope of an R-module is Matlis injective;

10. The cokernel of any Matlis flat precover of an R-module is Matlis flat.

Proof. (1)⇔ (2)⇔ (3) follows from [8, Theorem 2.2] and the fact that E(R) is finitely generated.
(2) ⇒ (4). By Theorem 3.1, every R-module M has a Matlis flat preenvelope f : M → N .

Note that im(f) is Matlis flat by Proposition 2.6, hence f : M → im(f) is an epic Matlis flat
preenvelope.

(4)⇒ (5) is trivial.
(5) ⇒ (2). By Proposition 2.6, it is enough to prove that any submodule N of any Matlis flat

R-module M is Matlis flat. Since M/N has a flat cover f : F → M/N , we get an exact sequence
0→ C → F →M/N → 0 with C cotorsion by Wakamatsu’s Lemma. By (5), C has an epic Matlis
flat preenvelope. Thus C is Matlis flat since C embeds in a flat R-module. So we get an induced
exact sequence

0 = TorR2 (F,E(R))→ TorR2 (M/N,E(R))→ TorR1 (C,E(R)) = 0.

Hence TorR2 (M/N,E(R)) = 0. On the other hand, the short exact sequence 0 → N → M →
M/N → 0 induces the exactness of the sequence

0 = TorR2 (M/N,E(R))→ TorR1 (N,E(R))→ TorR1 (M,E(R)) = 0.

Therefore TorR1 (N,E(R)) = 0, as desired.
(2)⇔ (6). By [20, Proposition 3.13], the class of all Matlis injective R-modules is closed under

direct sums. So (2)⇔ (6) follows from [20, Proposition 3.7] and [11, Proposition 4].
(3)⇒ (7). Let M be any R-module. Then M has a Matlis injective cover by [20, Remark 4.5].

It is enough to show that, for any Matlis injective R-module G and any homomorphism g : G→ F
such that fg = 0, we have g = 0. In fact, there exists β : F/im(g) → M such that βπ = f since
im(g) ⊆ ker(f), where π : F → F/im(g) is the natural map. Since projective dimension of E(R) is
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at most 2, ExtiR(E(R), ker(g)) = 0 for any i ≥ 3. It follows that F/im(g) is Matlis injective. Thus
there exists α : F/im(g)→ F such that β = fα, and so we get the exact commutative diagram.

M

0 // ker(g)
i // G

g //

0

>>

F
π //

f

OO

F/im(g) //
α

oo

β
dd

0.

Thus fαπ = f , and hence απ is an isomorphism. Therefore π is monic and so g = 0.
(7)⇒ (3). Let M be any R-module. Then we have the exact sequence

0→M → E0 ϕ→ E1 ψ→ N → 0,

where E0, E1 are injective. Let θ : H → N be a Matlis injective cover with unique mapping
property. Then there exists τ : E1 → H such that ψ = θτ . Thus θτϕ = ψϕ = 0 = θ0, and hence
τϕ = 0, which implies that ker(ψ) = im(ϕ) ⊆ ker(τ). Therefore there exists γ : N → H such that
γψ = τ , and so we get the exact commutative diagram:

H

θ
��

0 // M // E0 ϕ // E1 ψ //

τ

>>

N //

γ

OO

0.

Thus θγψ = ψ, and so θγ = 1N since ψ is epic. It follows that N is isomorphic to a direct summand
of H, and hence N is Matlis injective. Now applying the functor HomR(E(R),−) to the above
exact sequence, we get Ext3R(E(R),M) ∼= Ext1R(E(R), N) = 0. Consequently Ext3R(E(R),M) = 0
as desired.

(3)⇔ (8). It is similar to the proof of (3)⇔ (7).
(2)⇔ (9) is trivial.
(4)⇒ (10). Let g : M → F be a Matlis flat preenvelope of an R-module M with Coker(g) = L.

Since there exists an epic Matlis flat preenvelope g′ : M → F ′ by (4), we have L⊕ F ′ ∼= F by the
dual of [4, Lemma 8.6.3]. Hence by Remark 2.3, L is Matlis flat as desired.

(10) ⇒ (2). By Proposition 2.6, it is enough to prove that any submodule of a Matlis flat
R-module is Matlis flat. Let M be a submodule of a Matlis flat R-module M . Note that N has
a Matlis flat preenvelope f : N → F , it follows that f is a monomorphism. By (10), Coker(f)
is Matlis flat. So we have the exact sequence 0 → M → F → Coker(f) → 0. Applying the
functor TorR1 (−, E(R)) to this exact sequence we get TorR1 (N,E(R)) = 0 and hence N is Matlis
flat. q.e.d.

Theorem 3.5. Let R be a commutative Artinian ring and S ⊂ R be a multiplicative set. Then:

1. If ϕ : C → M is a Matlis injective cover of M as an S−1R-module, then ϕ : C → M is also a
Matlis injective cover of M as an R-module.
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2. If ψ : D →M is a Matlis flat cover of M as an S−1R-module, then ψ : D →M is also a Matlis
flat cover of M as an R-module.

Proof. (1). Let N be any Matlis injective R-module. Then S−1N is a Maltis injective S−1R-module
by [20, Proposition 3.14]. For any R-homomorphism f : N →M , there is an S−1R-homomorphism
g : S−1N → M such that gα = f by [14, Proposition 3.9], where α : N → S−1N is the canonical
map. Thus there exists β : S−1N → C such that g = ϕβ since ϕ is an Matlis injective precover
of M as an S−1R-module. Therefore, ϕ(βα) = (ϕβ)α = gα = f , and so ϕ is a Matlis injective
precover of M as an R-module. Let h : C → C be an R-homomorphism with ϕh = ϕ. Note that
h is also an S−1R-homomorphism by [15, Exercise 3.50] since C is an S−1R-module. Thus h is an
automorphism, and so ϕ is an Matlis injective cover of M as an R-module.

(2). The proof is similar to that of (1). q.e.d.

Theorem 3.6. The following are equivalent for a ring R:

1. The injective envelope E(M) is Matlis flat for any Matlis flat right R-module M ;
2. The Matlis flat cover F (I) is injective for any injective right R-module I.

Proof. (1)⇒ (2). Let I be an injective right R-module, f : F (I)→ I the Matlis flat cover of I, and
g : F (I) → E(F (I)) the injective envelope. Then there exists h : E(F (I)) → I such that hg = f .
On the other hand, since E(F (I)) is Matlis flat by (1), there exists j : E(F (I))→ F (I) such that
fj = h. Thus fjg = f , and hence jg is an isomorphism. This means that F (I) is a direct summand
of E(F (I)) and so it is injective.

(2)⇒ (1). Let M be a Matlis flat right R-module, α : M → E(M) the injective envelope, and
β : F (E(M)) → E(M) the Matlis flat cover of E(M). Then there exists γ : M → F (E(M)) such
that βγ = α. On the other hand, since F (E(M)) is injective by (2), there exists δ : E(M) →
F (E(M)) such that δα = γ. Thus βδα = α and so βδ is an isomorphism. It follows that E(M) is
Matlis flat. q.e.d.
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