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Abstract

A proper coloring of a graph G is a function from the vertices of the graph to a set of colors
such that any two adjacent vertices have different colors, and the chromatic number of G is
the minimum number of colors needed in a proper coloring of a graph. In this paper, we will
find the chromatic number of the Harary graphs, which are the circulant graphs in some cases.
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1 Introduction

All graphs considered here are finite, undirected and simple. For standard graph theory terminology
not given here we refer to [3]. Let G = (V,E) be a graph with the vertex set V of order n and the
edge set E of size m.

A proper coloring of a graph G is a function from the vertices of the graph to a set of colors
such that any two adjacent vertices have different colors, and the chromatic number χ(G) of G is
the minimum number of colors needed in a proper coloring of a graph [3]. In a proper coloring of a
graph a color class is the independent set of all same colored vertices of the graph. If f is a proper
coloring of G with the color classes V1, V2, ..., Vl such that every vertex in Vi has color i, we simply
write f = (V1, V2, ..., Vl).

As you see in many references such as [3], the Harary graphs are defined as follows: given
2m < n, place n vertices around a circle, equally spaced. Form H2m,n by making each vertex
adjacent to the nearest m vertices in each direction around the circle. If n is even, form H2m+1,n

by making each vertex adjacent to the nearest m vertices in each direction and to the diametrically
opposite vertex. Both kinds are regular. When n is odd, index the vertices by the integers modulo
n. Construct H2m+1,n from H2m,n by adding the edges i ↔ i + n−1

2 for 1 ≤ i ≤ n+1
2 . Obviously,

H2,n = Cn and Hn−1,n = Kn which Cn and Kn denote the cycle and complete graph of order n,
respectively. These cases are not the subject of our study.

For [n] = {1, 2, ..., n} and a subset D of it, the circulant graph G(n,D) is a graph with the
vertex set [n], and ij is an edge if and only if i− j (to modulo n) belongs to D ∪ (−D). The study
of chromatic number of circulant graphs of small degree has been widely considered in many papers
such as [1, 2, 4].

Every one can see that the Harary graph H2m,n is the circulant graph G(n,D) with D =
{1, 2, ...,m}, and the Harary graph H2m+1,n is the circulant graph G(n,D) with D = {1, 2, ...,m}∪
{n/2} when n is even, while for odd n the Harary graph H2m+1,n is not a circulant graph. Here,
we will find the chromatic number of Harary graphs.
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Recall that for a graph G of order n, α(G) or simply α denotes the independence number of G,
which is the maximum cardinality of an independent set S in G. It can be easily verify that for
any Harary graph H,

α(H) =

{
b n
m+1c − 1 if H = H2m+1,n, n is even and n ≡ 0 (mod 2m+ 2),

b n
m+1c otherwise.

By considering this fact that each color class is an independent set, and every independent set has
cardinality at most α(G), we conclude

χ(G) ≥ d n

α(G)
e. (1.1)

Since the Harary graph Hm,n is a complete graph of order n if and only if n = m + 1, and so its
chromatic number is n, so in this paper, we always assume that n > m+ 1, and prove

χ(Hm,n) =

{
dnαe+ 1 if n = m+ 3 ≥ 10, and m ≡ 3 (mod 4),
dnαe otherwise.

Through this paper, we consider

n− t ≡ s (mod t− 1), (1.2)

where t = dnαe, and α denotes the independence number of a Harary graph.

2 The chromatic number of H2m,n

In the following theorem we prove χ(H2m,n) = dnαe.

Theorem 2.1. For any integers m > 1 and n ≥ 2m+ 2, χ(H2m,n) = dnαe.

Proof. Since α = b n
m+1c, we may assume that n = α(m + 1) + r, for some 0 ≤ r ≤ m. Let r = 0.

Since for each 1 ≤ i ≤ m + 1, the set Vi = {i + (m + 1)j | 0 ≤ j ≤ α − 1} is independent, we
conclude χ(H2m,n) = m+ 1 = dnαe, by (1.1). So, we may assume r 6= 0. Clearly, t > m+ 1, and we
continue our proof in the following two cases.

Case 1: n−m > (α− 1)t. Let f = (V1, V2, ..., Vt) be a coloring function of H2m,n in which

Vi = {i+ kt | 0 ≤ k ≤ α− 1}, for 1 ≤ i ≤ n− (α− 1)t,

and
Vi = {i+ kt | 0 ≤ k ≤ α− 2}, for n− (α− 1)t+ 1 ≤ i ≤ t.

The condition n−m > (α−1)t guarantees that each of the sets Vi is independent, and so χ(H2m,n) =
m+ 1 = dnαe, by (1.1).

Case 2: n−m ≤ (α− 1)t. Let f = (V1, V2, ..., Vt) be a coloring function of H2m,n in which

Vi = {i+ kt | 0 ≤ k ≤ s− 1} ∪ {i+ st+ k(t− 1) | 0 ≤ k ≤ α− s− 1},
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for 1 ≤ i ≤ t− 1, and Vt = {n} ∪ B, where

B =

{
∅ if s = 0
{kt | 1 ≤ k ≤ s} if s 6= 0.

Since |Vt| = s+ 1 and |Vi| = α for each 1 ≤ i ≤ t− 1, and n = α(t− 1) + s+ 1, we conclude that
the distance between every two vertices in each Vi is at least t − 1, ans so t − 1 ≥ m + 1 implies
that each of the sets Vi is independent. Hence χ(H2m,n) = m+ 1 = dnαe, by (1.1). q.e.d.

3 The chromatic number of H2m+1,n with even n

By considering this fact that

α(H2m+1,n) =

{
b n
m+1c − 1 if n is even and n ≡ 0 (mod 2m+ 2),

b n
m+1c otherwise,

we have n = α(m+ 1) + r or n = (α+ 1)(m+ 1) + r, for some 0 ≤ r ≤ m. Now, let r = 0. In the
first case, χ(H2m+1,n) = m + 1 = t and in the second case, t > m + 1. If r 6= 0, then 2m + 2 - n
and so n = α(m + 1) + r for some 1 ≤ r ≤ m which easily implies that t > m + 1. So in this
section, Without loss of generality, we may assume that t > m+ 1. Also, without loss of generality,
we may assume that s 6= 0 if n −m ≤ (α − 1)t. Because s = 0 implies 2t − 2 - n, and so the set
{1 + k(t− 1)|0 ≤ k ≤ α− s− 1} is independent for each 1 ≤ i ≤ t. Therefore χ(H2m+1,n) = t.

To find the chromatic number of the Harary graph H2m+1,n, with even n, we need the following
two lemmas.

Lemma 3.1. Let n−m ≤ (α− 1)t. If 2t | n, then n
2t > s.

Proof. Set n
2t := q. First, let n

2 −st = j(t−1)−it, for some 0 ≤ i ≤ s−1 and some 1 ≤ j ≤ α−s−1.
Then (i + q − s)t = j(t − 1). Since t and t − 1 are coprime, j is a multiple of t and i + q − s is a
multiple of t− 1. Specially, i+ q− s ≥ t− 1. Moreover, i− s ≤ −1 and so t− 1 ≤ i+ q− s ≤ q− 1
which implies that t ≤ q. Since q ≤ s implies t ≤ s, we have q > s.

Now, let n
2 − st 6= j(t− 1)− it, for each 0 ≤ i ≤ s− 1 and each 1 ≤ j ≤ α− s− 1. By knowing

n = α(t− 1) + s+ 1, since q ≤ s implies n
2 − st = j(t− 1)− it for i = q − 1 and j = α− s− 1, we

obtain q > s. q.e.d.

Let V ′i = {i+ kt | 0 ≤ k ≤ s− 1} and V ′′i = {i+ st+ k(t− 1) | 0 ≤ k ≤ α− s− 1}, for 1 ≤ i ≤ t,
be subsets of the vertex set of the Harary graph H2m+1,n. We note that V ′i ∩ V ′′i = ∅, and V ′i is
independent, by Lemma 3.1, because V ′i is independent if and only if either 2t - n or 2t | n and
n
2t > s. Also V ′′i is independent if and only if either 2t− 2 - n or 2t− 2 | n and n

2t−2 > α− s− 1. So
for each 0 ≤ i ≤ s− 1, the set Vi = V ′i ∪ V ′′i is independent if and only if the set V ′′i is independent
and n

2 −st 6= j(t−1)− it, for each 1 ≤ j ≤ α−s−1. Next lemma states that if n2 −st = j(t−1)− it
for some 0 ≤ i ≤ s− 1 and some 1 ≤ j ≤ α− s− 1, then the set V ′′i is again independent.

Lemma 3.2. Let n −m ≤ (α − 1)t. If n
2 − st = k(t − 1) − pt for some 0 ≤ p ≤ s − 1 and some

1 ≤ k ≤ α− s− 1, then the set V ′′i = {i+ st+ k(t− 1) | 0 ≤ k ≤ α− s− 1} is independent, where
1 ≤ i ≤ t.
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Proof. It is sufficient to prove 2t − 2 - n. Let 2t − 2 | n and n
2 − st = k(t − 1) − pt, for some

0 ≤ p ≤ s − 1 and some 1 ≤ k ≤ α − s − 1. Then (s − p)t = ( n
2t−2 − k)(t − 1). Since t and t − 1

are coprime, it follows that n
2t−2 − k is a multiple of t and s − p is a multiple of t − 1, specially

t − 1 ≤ s − p. On the other hand, we have s + 1 ≤ t − 1, which implies p ≤ −1, a contradiction.
Hence 2t− 2 - n, and so the set V ′′i is independent, where 1 ≤ i ≤ t. q.e.d.

Theorem 3.3. For each even n with n ≥ 2m+ 3,

χ(H2m+1,n) =

{
dnαe+ 1 if n = 2m+ 4 ≥ 10, and m ≡ 1 (mod 2),
dnαe otherwise.

Proof. First let n = 2m + 4 ≥ 10 and m ≡ 1 (mod 2). Let χ(H2m+1,n) = t = dnαe, and let f be a
proper coloring function of H2m+1n. Since the subgraph of the graph induced by the vertices 1, 2,
..., m + 1 is a clique, we may assume that f(i) = i for each 1 ≤ i ≤ m + 1. Then for each vertex
m+ 2 ≤ i ≤ 2m+ 4,

f(m+ 2) ∈ {1,m+ 2}, f(m+ 3) ∈ {2,m+ 2}, f(n) ∈ {m+ 1,m+ 2},

f(n− 1) ∈ {m,m+ 2}, f(m+ i) ∈ {i− 3, i− 1,m+ 2}, 4 ≤ i ≤ m+ 2.

Now we discuss on the following two cases.

Case 1. f(m+ 2) = m+ 2. Then f(n) = m+ 1, and f(m+ 2i+ 1) = 2i, for 1 ≤ i ≤ m+1
2 , which

implies f(n) = f(n− 2) = m+ 1, a contradiction. Because the distance between the vertices n and
n− 2 is less than m.

Case 2. f(m + 2) = 1. First, by a proof similar to Case 1, we have f(n) 6= m + 2. Hence
f(n) = m + 1. We also see that for at most one vertex m + 3 ≤ i ≤ n − 1, we may have
f(i) = m + 2. Let f(m + 3) = m + 2. Then f(n − 1) = m, which implies f(m + 2i) = 2i − 1,
for 2 ≤ i ≤ m+1

2 , a contradiction. Hence f(m + 3) = 2. Also, with a similar proof, we will have
f(n− 1) 6= m+ 2. If for each vertex m+ 3 ≤ i ≤ n− 1, f(i) 6= m+ 2, then f(n− 2i− 1) = m− 2i,
for 0 ≤ i ≤ m−1

2 , a contradiction (Because f(m + 4) = f(m + 2) = 1). Therefore, for only one
vertex m+ 3 ≤ i ≤ n− 2, f(i) = m+ 2. Then f(n− 1) = m and f(n− 3) ∈ {m+ 2,m− 2}.

Since f(n − 3) = m + 2 implies f(n − 2) = m + 1, which is a contradiction to f(n) = m + 1,
we have f(n − 3) = m − 2. Then f(n − 5) ∈ {m + 2,m − 4}. By continuing this method, we will
have f(m + 4) = m + 2. Hence f(n + 2i + 1) = 2i, for 2 ≤ i ≤ m+1

2 , a contradiction. Therefore
χ(H2m+1,n) > dnαe. Now since the coloring function f with criterion

f(i) = i, for 1 ≤ i ≤ m+ 2, f(m+ 3) = 2, f(m+ 4) = 3, f(m+ 5) = m+ 3,

f(m+ 2i) = 2i− 1, f(m+ 2i+ 1) = 2i− 2, for 3 ≤ i ≤ m+ 3

2

is a proper coloring of the graph with dnαe + 1 colors, we obtain χ(H2m+1,n) = dnαe + 1, where
n = 2m+ 4 and m is odd.

Now, in the second part of our proof, we may assume that if n = 2m + 4 ≥ 10, then m ≡ 0
(mod 2), and we continue our proof in the following four cases. We recall that t = dnαe.
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Case 1. n−m > (α− 1)t and 2t - n. Let f = (V1, V2, ..., Vt) be a coloring function of H2m+1,n

in which
Vi = {i+ kt | 0 ≤ k ≤ α− 1}, for 1 ≤ i ≤ n− (α− 1)t,

and
Vi = {i+ kt | 0 ≤ k ≤ α− 2}, for n− (α− 1)t+ 1 ≤ i ≤ t.

Since the given coloring function f = (V1, V2, ..., Vt) is a proper coloring of H2m+1,n, we obtain
χ(H2m+1,n) = dnαe.

Case 2. n−m > (α− 1)t and 2t | n. For even t, let

V2i−1 = {2i+ kt | 0 ≤ k ≤ n/2t− 1} ∪ {2i− 1 + kt | n/2t ≤ k ≤ α− 1},

V2i = {2i− 1 + kt | 0 ≤ k ≤ n/2t− 1} ∪ {2i+ kt | n/2t ≤ k ≤ α− 1},

where 1 ≤ i ≤ t/2, and for odd t, let

V2i−1 = {2i+ kt | 0 ≤ k ≤ n/2t− 1} ∪ {2i− 1 + kt | n/2t ≤ k ≤ α− 1},

V2i = {2i− 1 + kt | 0 ≤ k ≤ n/2t− 1} ∪ {2i+ kt | n/2t ≤ k ≤ α− 1},

where 1 ≤ i ≤ (t− 3)/2, and

Vt−2 = {kt− 1 | 1 ≤ k ≤ n/2t} ∪ {kt− 2 | n/2t+ 1 ≤ k ≤ α− 1} ∪ {n},

Vt−1 = {kt | 1 ≤ k ≤ n/2t} ∪ {kt− 1 | n/2t+ 1 ≤ k ≤ α− 1} ∪ {n− 2},

Vt = {kt− 2 | 1 ≤ k ≤ n/2t} ∪ {kt | n/2t+ 1 ≤ k ≤ α− 1} ∪ {n− 1}.

In each case, the given coloring function f = (V1, V2, ..., Vt) is a proper coloring of H2m+1,n, and
so χ(H2m+1,n) = dnαe.

Case 3. n−m ≤ (α−1)t and n
2−st 6= j(t−1)−it, for each 0 ≤ i ≤ s−1 and each 1 ≤ j ≤ α−s−1.

Let V ′i = {i + kt | 0 ≤ k ≤ s − 1} and V ′′i = {i + st + k(t − 1) | 0 ≤ k ≤ α − s − 1} be subsets of
the vertex set of the Harary graph H2m+1,n, where 1 ≤ i ≤ t. We note that V ′i ∩ V ′′i = ∅, and V ′i
is independent, by Lemma 3.2.

First let either 2t−2 - n or 2t−2 | n and n
2t−2 > α−s−1. Then the set V ′′i is independent, and

this condition that n
2−st 6= j(t−1)−it for each 0 ≤ i ≤ s−1 and each 1 ≤ j ≤ α−s−1, implies that

each of the sets Vi = V ′i ∪ V ′′i is independent. Therefore the coloring function f = (V1, V2, ..., Vt) is
a proper coloring of H2m+1,n, where

Vi = {i+ kt | 0 ≤ k ≤ s− 1} ∪ {i+ st+ k(t− 1) | 0 ≤ k ≤ α− s− 1},

for 1 ≤ i ≤ t− 1, and Vt = {kt|1 ≤ k ≤ s} ∪ {n}. Hence χ(H2m+1,n) = dnαe.

Now, let 2t − 2 | n and n
2t−2 ≤ α − s − 1. Then the given coloring function f = (V1, V2, ..., Vt)

is a proper coloring of H2m+1,n, where

Vi = {i+ kt | 0 ≤ k ≤ s}
∪ {i+ st+ k(t− 1) | 1 ≤ k ≤ n/(2t− 2)− 1}
∪ {i+ 1 + st+ k(t− 1) | n/(2t− 2) ≤ k ≤ α− s− 1},
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for each 1 ≤ i ≤ t− 1, and Vt = {kt|1 ≤ k ≤ s} ∪ {1 + st+ n
2 }. Hence χ(H2m+1,n) = dnαe.

Case 4. n − m ≤ (α − 1)t and n
2 − st = q(t − 1) − pt, for some 0 ≤ p ≤ s − 1 and some

1 ≤ q ≤ α− s−1. Then each of the sets V ′′i = {i+ st+k(t−1) | 0 ≤ k ≤ α− s−1} is independent,
by Lemma 3.2. Now we define for odd t,

V2l−1 = {2l − 1 + kt | 0 ≤ k ≤ p− 1}
∪ {2l + pt}
∪ {2l − 1 + kt | p+ 1 ≤ k ≤ s− 1}
∪ V ′′2l−1 ,

V2l = {2l + kt | 0 ≤ k ≤ p− 1}
∪ {2l − 1 + pt}
∪ {2l + kt | p+ 1 ≤ k ≤ s− 1}
∪ V ′′2l ,

Vt = {kt | 1 ≤ k ≤ s} ∪ {n},

while for even t,
V2l−1 = {2l − 1 + kt | 0 ≤ k ≤ p− 1}

∪ {2l + pt}
∪ {2l − 1 + kt | p+ 1 ≤ k ≤ s− 1}
∪ V ′′2l−1 ,

V2l = {2l + kt | 0 ≤ k ≤ p− 1}
∪ {2l − 1 + pt}
∪ {2l + kt | p+ 1 ≤ k ≤ s− 1}
∪ V ′′2l

where 1 ≤ l ≤ b t2c. Then the coloring function f = (V1, V2, ..., Vt) is a proper coloring of H2m+1,n,
and so χ(H2m+1,n) = dnαe. q.e.d.

4 The chromatic number of H2m+1,n with odd n

Since α(H2m+1,n) = b n
m+1c for odd n, we have n = α(m + 1) + r for some 0 ≤ r ≤ m. Without

loss of generality, we may assume that t > m + 1. A simple calculation shows that if s = 0, then
χ(H2m+1,n) = dnαe (we recall that n− t ≡ s (mod t− 1), and t = dnαe). So we assume s 6= 0.

Theorem 4.1. For each odd n with n ≥ 2m+ 3, χ(H2m+1,n) = dnαe.

Proof. We presend our proof in the following two cases.

Case 1. n −m > (α − 1)t. We first prove that 2t - n − 1. Assume on the contrary 2t | n − 1.
Then n = 1 + s + α(t − 1) implies that α − s = (α − n−1

t )t. The condition α 6= s implies that
α− s ≥ t and so t < α. On the other hand, since n = α(m+ 1) + r for some 0 ≤ r ≤ m, we obtain

n−m ≤ α(m+ 1)
≤ α(t− 1)
< (α− 1)t,
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which is a contradiction. Therefore 2t - n− 1. Now let f = (V1, V2, ..., Vt) be a coloring function of
H2m+1,n, in which

Vi = {i+ kt | 0 ≤ k ≤ α− 1}, where 1 ≤ i ≤ n− (α− 1)t,

and
Vi = {i+ kt | 0 ≤ k ≤ α− 2}, where n− (α− 1)t+ 1 ≤ i ≤ t.

Since the condition n − m > (α − 1)t guarantees that each of the sets Vi is independent, we
obtain χ(H2m+1,n) = dnαe.

Case 2. n − m ≤ (α − 1)t. For 1 ≤ i ≤ t, let V ′i = {i + kt | 0 ≤ k ≤ s − 1} and V ′′i =
{i + st + k(t − 1) | 0 ≤ k ≤ α − s − 1} be subsets of the vertex set of the Harary graph H2m+1,n.
Since V ′i is independent if and only if either 2t - n−1 or 2t | n−1 and n−1

2t > s, so to prove that V ′i is
independent, it is sufficient to show that if 2t | n−1, then n−1

2t > s. Since n = 1+st+(α−s)(t−1),
we obtain (n−1t − s)t = (α− s)(t− 1). Then n−1

t − s is a multiple of t− 1 and α− s is a multiple
of t. In particular, n−1t − s ≥ t− 1. Since by the definition of s, s < t− 1, we obtain n−1

2t > s.

Since also V ′′i is independent if and only if either 2t−2 - n−1 or 2t−2 | n−1 and n−1
2t−2 > α−s−1,

to prove that V ′′i is independent, it is sufficient to show that 2t − 2 - n − 1. For this aim, let
n− t = k(t− 1) + s for some integers k and 0 < s ≤ t− 2. Then n− 1 = (k + 1)(t− 1) + s implies
t− 1 - n− 1, and so 2t− 2 - n− 1.

Therefore Vi = V ′i ∪ V ′′i is independent if and only if n−1
2 − st 6= j(t − 1) − it, for every

0 ≤ i ≤ s − 1 and every 1 ≤ j ≤ α − s − 1. So, without loss of generality, we may assume that
n−1
2 − st = q(t− 1)− pt for some integers 0 ≤ p ≤ s− 1 and 1 ≤ q ≤ α− s− 1. Now we define for

odd t,
V2l−1 = {2l − 1 + kt | 0 ≤ k ≤ p− 1}

∪ {2l + pt}
∪ {2l − 1 + kt | p+ 1 ≤ k ≤ s− 1}
∪ V ′′2l−1 ,

V2l = {2l + kt | 0 ≤ k ≤ p− 1}
∪ {2l − 1 + pt}
∪ {2l + kt | p+ 1 ≤ k ≤ s− 1}
∪ V ′′2l ,

Vt = {kt|1 ≤ k ≤ s} ∪ {n},
where 1 ≤ l ≤ b t2c, while for even t,

V2l−1 = {2l − 1 + kt | 0 ≤ k ≤ p− 1}
∪ {2l + pt}
∪ {2l − 1 + kt | p+ 1 ≤ k ≤ s− 1}
∪ V ′′2l−1 ,

V2l = {2l + kt | 0 ≤ k ≤ p− 1}
∪ {2l − 1 + pt}
∪ {2l + kt | p+ 1 ≤ k ≤ s− 1}
∪ V ′′2l
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where 1 ≤ l ≤ b t2c. Then the coloring function f = (V1, V2, ..., Vt) is a proper coloring of H2m+1,n,
and so χ(H2m+1,n) = dnαe. q.e.d.
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