Chromatic number of Harary graphs

Adel P. Kazemi* and Parvin Jalilolghadr
College of Mathematical Sciences, University of Mohaghegh Ardabili, P.O.Box 5619911367, Ardabil, Iran
* Corresponding author
E-mail: adelpkazemi@yahoo.com, a.p.kazemi@uma.ac.ir, p_jalilolghadr@yahoo.com

Abstract

A proper coloring of a graph G is a function from the vertices of the graph to a set of colors such that any two adjacent vertices have different colors, and the chromatic number of G is the minimum number of colors needed in a proper coloring of a graph. In this paper, we will find the chromatic number of the Harary graphs, which are the circulant graphs in some cases.

2010 Mathematics Subject Classification. 05C15.
Keywords. Harary graph, circulant graph, chromatic number.

1 Introduction

All graphs considered here are finite, undirected and simple. For standard graph theory terminology not given here we refer to [3]. Let $G=(V, E)$ be a graph with the vertex set V of order n and the edge set E of size m.

A proper coloring of a graph G is a function from the vertices of the graph to a set of colors such that any two adjacent vertices have different colors, and the chromatic number $\chi(G)$ of G is the minimum number of colors needed in a proper coloring of a graph [3]. In a proper coloring of a graph a color class is the independent set of all same colored vertices of the graph. If f is a proper coloring of G with the color classes $V_{1}, V_{2}, \ldots, V_{l}$ such that every vertex in V_{i} has color i, we simply write $f=\left(V_{1}, V_{2}, \ldots, V_{l}\right)$.

As you see in many references such as [3], the Harary graphs are defined as follows: given $2 m<n$, place n vertices around a circle, equally spaced. Form $H_{2 m, n}$ by making each vertex adjacent to the nearest m vertices in each direction around the circle. If n is even, form $H_{2 m+1, n}$ by making each vertex adjacent to the nearest m vertices in each direction and to the diametrically opposite vertex. Both kinds are regular. When n is odd, index the vertices by the integers modulo n. Construct $H_{2 m+1, n}$ from $H_{2 m, n}$ by adding the edges $i \leftrightarrow i+\frac{n-1}{2}$ for $1 \leq i \leq \frac{n+1}{2}$. Obviously, $H_{2, n}=C_{n}$ and $H_{n-1, n}=K_{n}$ which C_{n} and K_{n} denote the cycle and complete graph of order n, respectively. These cases are not the subject of our study.

For $[n]=\{1,2, \ldots, n\}$ and a subset D of it, the circulant graph $G(n, D)$ is a graph with the vertex set $[n]$, and $i j$ is an edge if and only if $i-j$ (to modulo n) belongs to $D \cup(-D)$. The study of chromatic number of circulant graphs of small degree has been widely considered in many papers such as $[1,2,4]$.

Every one can see that the Harary graph $H_{2 m, n}$ is the circulant graph $G(n, D)$ with $D=$ $\{1,2, \ldots, m\}$, and the Harary graph $H_{2 m+1, n}$ is the circulant graph $G(n, D)$ with $D=\{1,2, \ldots, m\} \cup$ $\{n / 2\}$ when n is even, while for odd n the Harary graph $H_{2 m+1, n}$ is not a circulant graph. Here, we will find the chromatic number of Harary graphs.

Recall that for a graph G of order $n, \alpha(G)$ or simply α denotes the independence number of G, which is the maximum cardinality of an independent set S in G. It can be easily verify that for any Harary graph H,

$$
\alpha(H)= \begin{cases}\left\lfloor\frac{n}{m+1}\right\rfloor-1 & \text { if } H=H_{2 m+1, n}, n \text { is even and } n \equiv 0 \quad(\bmod 2 m+2) \\ \left\lfloor\frac{n}{m+1}\right\rfloor & \text { otherwise. }\end{cases}
$$

By considering this fact that each color class is an independent set, and every independent set has cardinality at most $\alpha(G)$, we conclude

$$
\begin{equation*}
\chi(G) \geq\left\lceil\frac{n}{\alpha(G)}\right\rceil \tag{1.1}
\end{equation*}
$$

Since the Harary graph $H_{m, n}$ is a complete graph of order n if and only if $n=m+1$, and so its chromatic number is n, so in this paper, we always assume that $n>m+1$, and prove

$$
\chi\left(H_{m, n}\right)= \begin{cases}\left\lceil\frac{n}{\alpha}\right\rceil+1 & \text { if } n=m+3 \geq 10, \text { and } m \equiv 3 \quad(\bmod 4) \\ \left\lceil\frac{n}{\alpha}\right\rceil & \text { otherwise }\end{cases}
$$

Through this paper, we consider

$$
\begin{equation*}
n-t \equiv s \quad(\bmod t-1) \tag{1.2}
\end{equation*}
$$

where $t=\left\lceil\frac{n}{\alpha}\right\rceil$, and α denotes the independence number of a Harary graph.

2 The chromatic number of $H_{2 m, n}$

In the following theorem we prove $\chi\left(H_{2 m, n}\right)=\left\lceil\frac{n}{\alpha}\right\rceil$.
Theorem 2.1. For any integers $m>1$ and $n \geq 2 m+2, \chi\left(H_{2 m, n}\right)=\left\lceil\frac{n}{\alpha}\right\rceil$.
Proof. Since $\alpha=\left\lfloor\frac{n}{m+1}\right\rfloor$, we may assume that $n=\alpha(m+1)+r$, for some $0 \leq r \leq m$. Let $r=0$. Since for each $1 \leq i \leq m+1$, the set $V_{i}=\{i+(m+1) j \mid 0 \leq j \leq \alpha-1\}$ is independent, we conclude $\chi\left(H_{2 m, n}\right)=m+1=\left\lceil\frac{n}{\alpha}\right\rceil$, by (1.1). So, we may assume $r \neq 0$. Clearly, $t>m+1$, and we continue our proof in the following two cases.

Case 1: $n-m>(\alpha-1) t$. Let $f=\left(V_{1}, V_{2}, \ldots, V_{t}\right)$ be a coloring function of $H_{2 m, n}$ in which

$$
V_{i}=\{i+k t \mid 0 \leq k \leq \alpha-1\}, \quad \text { for } 1 \leq i \leq n-(\alpha-1) t,
$$

and

$$
V_{i}=\{i+k t \mid 0 \leq k \leq \alpha-2\}, \quad \text { for } n-(\alpha-1) t+1 \leq i \leq t
$$

The condition $n-m>(\alpha-1) t$ guarantees that each of the sets V_{i} is independent, and so $\chi\left(H_{2 m, n}\right)=$ $m+1=\left\lceil\frac{n}{\alpha}\right\rceil$, by (1.1).

Case 2: $n-m \leq(\alpha-1) t$. Let $f=\left(V_{1}, V_{2}, \ldots, V_{t}\right)$ be a coloring function of $H_{2 m, n}$ in which

$$
V_{i}=\{i+k t \mid 0 \leq k \leq s-1\} \cup\{i+s t+k(t-1) \mid 0 \leq k \leq \alpha-s-1\}
$$

for $1 \leq i \leq t-1$, and $V_{t}=\{n\} \cup \mathcal{B}$, where

$$
\mathcal{B}=\left\{\begin{array}{lll}
\varnothing & \text { if } & s=0 \\
\{k t \mid 1 \leq k \leq s\} & \text { if } & s \neq 0
\end{array}\right.
$$

Since $\left|V_{t}\right|=s+1$ and $\left|V_{i}\right|=\alpha$ for each $1 \leq i \leq t-1$, and $n=\alpha(t-1)+s+1$, we conclude that the distance between every two vertices in each V_{i} is at least $t-1$, ans so $t-1 \geq m+1$ implies that each of the sets V_{i} is independent. Hence $\chi\left(H_{2 m, n}\right)=m+1=\lceil\underline{n}\rceil$, by (1.1). \quad Q.e.d.

3 The chromatic number of $H_{2 m+1, n}$ with even n

By considering this fact that

$$
\alpha\left(H_{2 m+1, n}\right)= \begin{cases}\left\lfloor\frac{n}{m+1}\right\rfloor-1 & \text { if } n \text { is even and } n \equiv 0 \quad(\bmod 2 m+2), \\ \left\lfloor\frac{n}{m+1}\right\rfloor & \text { otherwise },\end{cases}
$$

we have $n=\alpha(m+1)+r$ or $n=(\alpha+1)(m+1)+r$, for some $0 \leq r \leq m$. Now, let $r=0$. In the first case, $\chi\left(H_{2 m+1, n}\right)=m+1=t$ and in the second case, $t>m+1$. If $r \neq 0$, then $2 m+2 \nmid n$ and so $n=\alpha(m+1)+r$ for some $1 \leq r \leq m$ which easily implies that $t>m+1$. So in this section, Without loss of generality, we may assume that $t>m+1$. Also, without loss of generality, we may assume that $s \neq 0$ if $n-m \leq(\alpha-1) t$. Because $s=0$ implies $2 t-2 \nmid n$, and so the set $\{1+k(t-1) \mid 0 \leq k \leq \alpha-s-1\}$ is independent for each $1 \leq i \leq t$. Therefore $\chi\left(H_{2 m+1, n}\right)=t$.

To find the chromatic number of the Harary graph $H_{2 m+1, n}$, with even n, we need the following two lemmas.

Lemma 3.1. Let $n-m \leq(\alpha-1) t$. If $2 t \mid n$, then $\frac{n}{2 t}>s$.
Proof. Set $\frac{n}{2 t}:=q$. First, let $\frac{n}{2}-s t=j(t-1)-i t$, for some $0 \leq i \leq s-1$ and some $1 \leq j \leq \alpha-s-1$. Then $(i+q-s) t=j(t-1)$. Since t and $t-1$ are coprime, j is a multiple of t and $i+q-s$ is a multiple of $t-1$. Specially, $i+q-s \geq t-1$. Moreover, $i-s \leq-1$ and so $t-1 \leq i+q-s \leq q-1$ which implies that $t \leq q$. Since $q \leq s$ implies $t \leq s$, we have $q>s$.

Now, let $\frac{n}{2}-s t \neq j(t-1)-i t$, for each $0 \leq i \leq s-1$ and each $1 \leq j \leq \alpha-s-1$. By knowing $n=\alpha(t-1)+s+1$, since $q \leq s$ implies $\frac{n}{2}-s t=j(t-1)-i t$ for $i=q-1$ and $j=\alpha-s-1$, we obtain $q>s$.
Q.E.D.

Let $V_{i}^{\prime}=\{i+k t \mid 0 \leq k \leq s-1\}$ and $V_{i}^{\prime \prime}=\{i+s t+k(t-1) \mid 0 \leq k \leq \alpha-s-1\}$, for $1 \leq i \leq t$, be subsets of the vertex set of the Harary graph $H_{2 m+1, n}$. We note that $V_{i}^{\prime} \cap V_{i}^{\prime \prime}=\varnothing$, and V_{i}^{\prime} is independent, by Lemma 3.1, because V_{i}^{\prime} is independent if and only if either $2 t \nmid n$ or $2 t \mid n$ and $\frac{n}{2 t}>s$. Also $V_{i}^{\prime \prime}$ is independent if and only if either $2 t-2 \nmid n$ or $2 t-2 \mid n$ and $\frac{n}{2 t-2}>\alpha-s-1$. So for each $0 \leq i \leq s-1$, the set $V_{i}=V_{i}^{\prime} \cup V_{i}^{\prime \prime}$ is independent if and only if the set $V_{i}^{\prime \prime}$ is independent and $\frac{n}{2}-s t \neq j(t-1)-i t$, for each $1 \leq j \leq \alpha-s-1$. Next lemma states that if $\frac{n}{2}-s t=j(t-1)-i t$ for some $0 \leq i \leq s-1$ and some $1 \leq j \leq \alpha-s-1$, then the set $V_{i}^{\prime \prime}$ is again independent.

Lemma 3.2. Let $n-m \leq(\alpha-1) t$. If $\frac{n}{2}-s t=k(t-1)-p t$ for some $0 \leq p \leq s-1$ and some $1 \leq k \leq \alpha-s-1$, then the set $V_{i}^{\prime \prime}=\{i+s t+k(t-1) \mid 0 \leq k \leq \alpha-s-1\}$ is independent, where $1 \leq i \leq t$.

Proof. It is sufficient to prove $2 t-2 \nmid n$. Let $2 t-2 \mid n$ and $\frac{n}{2}-s t=k(t-1)-p t$, for some $0 \leq p \leq s-1$ and some $1 \leq k \leq \alpha-s-1$. Then $(s-p) t=\left(\frac{n}{2 t-2}-k\right)(t-1)$. Since t and $t-1$ are coprime, it follows that $\frac{n}{2 t-2}-k$ is a multiple of t and $s-p$ is a multiple of $t-1$, specially $t-1 \leq s-p$. On the other hand, we have $s+1 \leq t-1$, which implies $p \leq-1$, a contradiction. Hence $2 t-2 \nmid n$, and so the set $V_{i}^{\prime \prime}$ is independent, where $1 \leq i \leq t$.

Q.E.D.

Theorem 3.3. For each even n with $n \geq 2 m+3$,

$$
\chi\left(H_{2 m+1, n}\right)= \begin{cases}\left\lceil\frac{n}{\alpha}\right\rceil+1 & \text { if } n=2 m+4 \geq 10, \text { and } m \equiv 1 \quad(\bmod 2), \\ \left\lceil\frac{n}{\alpha}\right\rceil & \text { otherwise } .\end{cases}
$$

Proof. First let $n=2 m+4 \geq 10$ and $m \equiv 1(\bmod 2)$. Let $\chi\left(H_{2 m+1, n}\right)=t=\left\lceil\frac{n}{\alpha}\right\rceil$, and let f be a proper coloring function of $H_{2 m+1} n$. Since the subgraph of the graph induced by the vertices 1,2 , $\ldots, m+1$ is a clique, we may assume that $f(i)=i$ for each $1 \leq i \leq m+1$. Then for each vertex $m+2 \leq i \leq 2 m+4$,

$$
\begin{aligned}
& f(m+2) \in\{1, m+2\}, f(m+3) \in\{2, m+2\}, f(n) \in\{m+1, m+2\} \\
& f(n-1) \in\{m, m+2\}, f(m+i) \in\{i-3, i-1, m+2\}, 4 \leq i \leq m+2
\end{aligned}
$$

Now we discuss on the following two cases.
Case 1. $f(m+2)=m+2$. Then $f(n)=m+1$, and $f(m+2 i+1)=2 i$, for $1 \leq i \leq \frac{m+1}{2}$, which implies $f(n)=f(n-2)=m+1$, a contradiction. Because the distance between the vertices n and $n-2$ is less than m.

Case 2. $f(m+2)=1$. First, by a proof similar to Case 1, we have $f(n) \neq m+2$. Hence $f(n)=m+1$. We also see that for at most one vertex $m+3 \leq i \leq n-1$, we may have $f(i)=m+2$. Let $f(m+3)=m+2$. Then $f(n-1)=m$, which implies $f(m+2 i)=2 i-1$, for $2 \leq i \leq \frac{m+1}{2}$, a contradiction. Hence $f(m+3)=2$. Also, with a similar proof, we will have $f(n-1) \neq m+2$. If for each vertex $m+3 \leq i \leq n-1, f(i) \neq m+2$, then $f(n-2 i-1)=m-2 i$, for $0 \leq i \leq \frac{m-1}{2}$, a contradiction (Because $\left.f(m+4)=f(m+2)=1\right)$. Therefore, for only one vertex $m+3 \leq i \leq n-2, f(i)=m+2$. Then $f(n-1)=m$ and $f(n-3) \in\{m+2, m-2\}$.

Since $f(n-3)=m+2$ implies $f(n-2)=m+1$, which is a contradiction to $f(n)=m+1$, we have $f(n-3)=m-2$. Then $f(n-5) \in\{m+2, m-4\}$. By continuing this method, we will have $f(m+4)=m+2$. Hence $f(n+2 i+1)=2 i$, for $2 \leq i \leq \frac{m+1}{2}$, a contradiction. Therefore $\chi\left(H_{2 m+1, n}\right)>\left\lceil\frac{n}{\alpha}\right\rceil$. Now since the coloring function f with criterion

$$
\begin{gathered}
f(i)=i, \text { for } 1 \leq i \leq m+2, f(m+3)=2, f(m+4)=3, f(m+5)=m+3, \\
f(m+2 i)=2 i-1, f(m+2 i+1)=2 i-2, \text { for } 3 \leq i \leq \frac{m+3}{2}
\end{gathered}
$$

is a proper coloring of the graph with $\left\lceil\frac{n}{\alpha}\right\rceil+1$ colors, we obtain $\chi\left(H_{2 m+1, n}\right)=\left\lceil\frac{n}{\alpha}\right\rceil+1$, where $n=2 m+4$ and m is odd.

Now, in the second part of our proof, we may assume that if $n=2 m+4 \geq 10$, then $m \equiv 0$ $(\bmod 2)$, and we continue our proof in the following four cases. We recall that $t=\left\lceil\frac{n}{\alpha}\right\rceil$.

Case 1. $n-m>(\alpha-1) t$ and $2 t \nmid n$. Let $f=\left(V_{1}, V_{2}, \ldots, V_{t}\right)$ be a coloring function of $H_{2 m+1, n}$ in which

$$
V_{i}=\{i+k t \mid 0 \leq k \leq \alpha-1\}, \quad \text { for } 1 \leq i \leq n-(\alpha-1) t,
$$

and

$$
V_{i}=\{i+k t \mid 0 \leq k \leq \alpha-2\}, \quad \text { for } n-(\alpha-1) t+1 \leq i \leq t
$$

Since the given coloring function $f=\left(V_{1}, V_{2}, \ldots, V_{t}\right)$ is a proper coloring of $H_{2 m+1, n}$, we obtain $\chi\left(H_{2 m+1, n}\right)=\left\lceil\frac{n}{\alpha}\right\rceil$.

Case 2. $n-m>(\alpha-1) t$ and $2 t \mid n$. For even t, let

$$
\begin{gathered}
V_{2 i-1}=\{2 i+k t \mid 0 \leq k \leq n / 2 t-1\} \cup\{2 i-1+k t \mid n / 2 t \leq k \leq \alpha-1\}, \\
V_{2 i}=\{2 i-1+k t \mid 0 \leq k \leq n / 2 t-1\} \cup\{2 i+k t \mid n / 2 t \leq k \leq \alpha-1\},
\end{gathered}
$$

where $1 \leq i \leq t / 2$, and for odd t, let

$$
\begin{gathered}
V_{2 i-1}=\{2 i+k t \mid 0 \leq k \leq n / 2 t-1\} \cup\{2 i-1+k t \mid n / 2 t \leq k \leq \alpha-1\}, \\
V_{2 i}=\{2 i-1+k t \mid 0 \leq k \leq n / 2 t-1\} \cup\{2 i+k t \mid n / 2 t \leq k \leq \alpha-1\},
\end{gathered}
$$

where $1 \leq i \leq(t-3) / 2$, and

$$
\begin{gathered}
V_{t-2}=\{k t-1 \mid 1 \leq k \leq n / 2 t\} \cup\{k t-2 \mid n / 2 t+1 \leq k \leq \alpha-1\} \cup\{n\}, \\
V_{t-1}=\{k t \mid 1 \leq k \leq n / 2 t\} \cup\{k t-1 \mid n / 2 t+1 \leq k \leq \alpha-1\} \cup\{n-2\}, \\
V_{t}=\{k t-2 \mid 1 \leq k \leq n / 2 t\} \cup\{k t \mid n / 2 t+1 \leq k \leq \alpha-1\} \cup\{n-1\} .
\end{gathered}
$$

In each case, the given coloring function $f=\left(V_{1}, V_{2}, \ldots, V_{t}\right)$ is a proper coloring of $H_{2 m+1, n}$, and so $\chi\left(H_{2 m+1, n}\right)=\left\lceil\frac{n}{\alpha}\right\rceil$.

Case 3. $n-m \leq(\alpha-1) t$ and $\frac{n}{2}-s t \neq j(t-1)-i t$, for each $0 \leq i \leq s-1$ and each $1 \leq j \leq \alpha-s-1$. Let $V_{i}^{\prime}=\{i+k t \mid 0 \leq k \leq s-1\}$ and $V_{i}^{\prime \prime}=\{i+s t+k(t-1) \mid 0 \leq k \leq \alpha-s-1\}$ be subsets of the vertex set of the Harary graph $H_{2 m+1, n}$, where $1 \leq i \leq t$. We note that $V_{i}^{\prime} \cap V_{i}^{\prime \prime}=\varnothing$, and V_{i}^{\prime} is independent, by Lemma 3.2.

First let either $2 t-2 \nmid n$ or $2 t-2 \mid n$ and $\frac{n}{2 t-2}>\alpha-s-1$. Then the set $V_{i}^{\prime \prime}$ is independent, and this condition that $\frac{n}{2}-s t \neq j(t-1)-i t$ for each $0 \leq i \leq s-1$ and each $1 \leq j \leq \alpha-s-1$, implies that each of the sets $V_{i}=V_{i}^{\prime} \cup V_{i}^{\prime \prime}$ is independent. Therefore the coloring function $f=\left(V_{1}, V_{2}, \ldots, V_{t}\right)$ is a proper coloring of $H_{2 m+1, n}$, where

$$
V_{i}=\{i+k t \mid 0 \leq k \leq s-1\} \cup\{i+s t+k(t-1) \mid 0 \leq k \leq \alpha-s-1\},
$$

for $1 \leq i \leq t-1$, and $V_{t}=\{k t \mid 1 \leq k \leq s\} \cup\{n\}$. Hence $\chi\left(H_{2 m+1, n}\right)=\left\lceil\frac{n}{\alpha}\right\rceil$.
Now, let $2 t-2 \mid n$ and $\frac{n}{2 t-2} \leq \alpha-s-1$. Then the given coloring function $f=\left(V_{1}, V_{2}, \ldots, V_{t}\right)$ is a proper coloring of $H_{2 m+1, n}$, where

$$
\begin{aligned}
V_{i} & =\{i+k t \mid 0 \leq k \leq s\} \\
& \cup\{i+s t+k(t-1) \mid 1 \leq k \leq n /(2 t-2)-1\} \\
& \cup\{i+1+s t+k(t-1) \mid n /(2 t-2) \leq k \leq \alpha-s-1\},
\end{aligned}
$$

for each $1 \leq i \leq t-1$, and $V_{t}=\{k t \mid 1 \leq k \leq s\} \cup\left\{1+s t+\frac{n}{2}\right\}$. Hence $\chi\left(H_{2 m+1, n}\right)=\left\lceil\frac{n}{\alpha}\right\rceil$.
Case 4. $n-m \leq(\alpha-1) t$ and $\frac{n}{2}-s t=q(t-1)-p t$, for some $0 \leq p \leq s-1$ and some $1 \leq q \leq \alpha-s-1$. Then each of the sets $V_{i}^{\prime \prime}=\{i+s t+k(t-1) \mid 0 \leq k \leq \alpha-s-1\}$ is independent, by Lemma 3.2. Now we define for odd t,

$$
\begin{aligned}
V_{2 l-1} & =\{2 l-1+k t \mid 0 \leq k \leq p-1\} \\
& \cup\{2 l+p t\} \\
& \cup\{2 l-1+k t \mid p+1 \leq k \leq s-1\} \\
& \cup V_{2 l-1}^{\prime \prime}, \\
V_{2 l} & =\{2 l+k t \mid 0 \leq k \leq p-1\} \\
& \cup\{2 l-1+p t\} \\
& \cup\{2 l+k t \mid p+1 \leq k \leq s-1\} \\
& \cup V_{2 l}^{\prime \prime}, \\
& V_{t}
\end{aligned}=\{k t \mid 1 \leq k \leq s\} \cup\{n\}, \quad,
$$

while for even t,

$$
\begin{aligned}
V_{2 l-1} & =\{2 l-1+k t \mid 0 \leq k \leq p-1\} \\
& \cup\{2 l+p t\} \\
& \cup\{2 l-1+k t \mid p+1 \leq k \leq s-1\} \\
& \cup V_{2 l-1}^{\prime \prime}, \\
V_{2 l} & =\{2 l+k t \mid 0 \leq k \leq p-1\} \\
& \cup\{2 l-1+p t\} \\
& \cup\{2 l+k t \mid p+1 \leq k \leq s-1\} \\
& \cup V_{2 l}^{\prime \prime}
\end{aligned}
$$

where $1 \leq l \leq\left\lfloor\frac{t}{2}\right\rfloor$. Then the coloring function $f=\left(V_{1}, V_{2}, \ldots, V_{t}\right)$ is a proper coloring of $H_{2 m+1, n}$, and so $\chi\left(H_{2 m+1, n}\right)=\left\lceil\frac{n}{\alpha}\right\rceil$.
Q.E.D.

4 The chromatic number of $H_{2 m+1, n}$ with odd n

Since $\alpha\left(H_{2 m+1, n}\right)=\left\lfloor\frac{n}{m+1}\right\rfloor$ for odd n, we have $n=\alpha(m+1)+r$ for some $0 \leq r \leq m$. Without loss of generality, we may assume that $t>m+1$. A simple calculation shows that if $s=0$, then $\chi\left(H_{2 m+1, n}\right)=\left\lceil\frac{n}{\alpha}\right\rceil\left(\right.$ we recall that $n-t \equiv s(\bmod t-1)$, and $\left.t=\left\lceil\frac{n}{\alpha}\right\rceil\right)$. So we assume $s \neq 0$.
Theorem 4.1. For each odd n with $n \geq 2 m+3, \chi\left(H_{2 m+1, n}\right)=\left\lceil\frac{n}{\alpha}\right\rceil$.
Proof. We presend our proof in the following two cases.
Case 1. $n-m>(\alpha-1) t$. We first prove that $2 t \nmid n-1$. Assume on the contrary $2 t \mid n-1$. Then $n=1+s+\alpha(t-1)$ implies that $\alpha-s=\left(\alpha-\frac{n-1}{t}\right) t$. The condition $\alpha \neq s$ implies that $\alpha-s \geq t$ and so $t<\alpha$. On the other hand, since $n=\alpha(m+1)+r$ for some $0 \leq r \leq m$, we obtain

$$
\begin{aligned}
n-m & \leq \alpha(m+1) \\
& \leq \alpha(t-1) \\
& <(\alpha-1) t
\end{aligned}
$$

which is a contradiction. Therefore $2 t \nmid n-1$. Now let $f=\left(V_{1}, V_{2}, \ldots, V_{t}\right)$ be a coloring function of $H_{2 m+1, n}$, in which

$$
V_{i}=\{i+k t \mid 0 \leq k \leq \alpha-1\}, \quad \text { where } 1 \leq i \leq n-(\alpha-1) t,
$$

and

$$
V_{i}=\{i+k t \mid 0 \leq k \leq \alpha-2\}, \quad \text { where } n-(\alpha-1) t+1 \leq i \leq t
$$

Since the condition $n-m>(\alpha-1) t$ guarantees that each of the sets V_{i} is independent, we obtain $\chi\left(H_{2 m+1, n}\right)=\left\lceil\frac{n}{\alpha}\right\rceil$.

Case 2. $n-m \leq(\alpha-1) t$. For $1 \leq i \leq t$, let $V_{i}^{\prime}=\{i+k t \mid 0 \leq k \leq s-1\}$ and $V_{i}^{\prime \prime}=$ $\{i+s t+k(t-1) \mid 0 \leq k \leq \alpha-s-1\}$ be subsets of the vertex set of the Harary graph $H_{2 m+1, n}$. Since V_{i}^{\prime} is independent if and only if either $2 t \nmid n-1$ or $2 t \mid n-1$ and $\frac{n-1}{2 t}>s$, so to prove that V_{i}^{\prime} is independent, it is sufficient to show that if $2 t \mid n-1$, then $\frac{n-1}{2 t}>s$. Since $n=1+s t+(\alpha-s)(t-1)$, we obtain $\left(\frac{n-1}{t}-s\right) t=(\alpha-s)(t-1)$. Then $\frac{n-1}{t}-s$ is a multiple of $t-1$ and $\alpha-s$ is a multiple of t. In particular, $\frac{n-1}{t}-s \geq t-1$. Since by the definition of $s, s<t-1$, we obtain $\frac{n-1}{2 t}>s$.

Since also $V_{i}^{\prime \prime}$ is independent if and only if either $2 t-2 \nmid n-1$ or $2 t-2 \mid n-1$ and $\frac{n-1}{2 t-2}>\alpha-s-1$, to prove that $V_{i}^{\prime \prime}$ is independent, it is sufficient to show that $2 t-2 \nmid n-1$. For this aim, let $n-t=k(t-1)+s$ for some integers k and $0<s \leq t-2$. Then $n-1=(k+1)(t-1)+s$ implies $t-1 \nmid n-1$, and so $2 t-2 \nmid n-1$.

Therefore $V_{i}=V_{i}^{\prime} \cup V_{i}^{\prime \prime}$ is independent if and only if $\frac{n-1}{2}-s t \neq j(t-1)-i t$, for every $0 \leq i \leq s-1$ and every $1 \leq j \leq \alpha-s-1$. So, without loss of generality, we may assume that $\frac{n-1}{2}-s t=q(t-1)-p t$ for some integers $0 \leq p \leq s-1$ and $1 \leq q \leq \alpha-s-1$. Now we define for odd t,

$$
\begin{aligned}
V_{2 l-1} & =\{2 l-1+k t \mid 0 \leq k \leq p-1\} \\
& \cup\{2 l+p t\} \\
& \cup\{2 l-1+k t \mid p+1 \leq k \leq s-1\} \\
& \cup V_{2 l-1}^{\prime \prime}, \\
V_{2 l} & =\{2 l+k t \mid 0 \leq k \leq p-1\} \\
& \cup\{2 l-1+p t\} \\
& \cup\{2 l+k t \mid p+1 \leq k \leq s-1\} \\
& \cup V_{2 l}^{\prime \prime}, \\
& V_{t}=\{k t \mid 1 \leq k \leq s\} \cup\{n\},
\end{aligned}
$$

where $1 \leq l \leq\left\lfloor\frac{t}{2}\right\rfloor$, while for even t,

$$
\begin{aligned}
V_{2 l-1} & =\{2 l-1+k t \mid 0 \leq k \leq p-1\} \\
& \cup\{2 l+p t\} \\
& \cup\{2 l-1+k t \mid p+1 \leq k \leq s-1\} \\
& \cup V_{2 l-1}^{\prime \prime}, \\
V_{2 l} & =\{2 l+k t \mid 0 \leq k \leq p-1\} \\
& \cup\{2 l-1+p t\} \\
& \cup\{2 l+k t \mid p+1 \leq k \leq s-1\} \\
& \cup V_{2 l}^{\prime \prime}
\end{aligned}
$$

where $1 \leq l \leq\left\lfloor\frac{t}{2}\right\rfloor$. Then the coloring function $f=\left(V_{1}, V_{2}, \ldots, V_{t}\right)$ is a proper coloring of $H_{2 m+1, n}$, and so $\chi\left(H_{2 m+1, n}\right)=\left\lceil\frac{n}{\alpha}\right\rceil$.
Q.E.D.

References

[1] J. Barajas and O. Serra, On the chromatic number of circulant graphs, Discrete Math, 309 (2009), 5687-5696.
[2] C. Heuberger, On planarity and colorability of circulant graphs, Discrete Math, 268 (2003), 153-169.
[3] D. B. West, Introduction to Graph Theory, 2nd ed, prentice hall, USA, (2001).
[4] H. G. Yeh and X. Zhu, 4-colourable 6-regular toroidal graphs, Discrete Math. 273 (2003), 261274.

