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Abstract

In the present manuscript, a cubic B-spline finite element collocation method has
been used to obtain numerical solutions of the nonlinear time fractional gas dynamics
equation. While the Caputo form is used for the time fractional derivative appearing
in the equation, the L1 discretization formula is applied to the equation in terms of
time. It has been seen that the results of the present study are in agreement with the
those of exact solution. Therefore, the present method can be used as an alternative
and efficient one to find out the numerical solutions of both linear and nonlinear
fractional differential equations available in the literature. In order to control the
accuracy and efficiency of the present method, the error norms L2 and L∞ have been
calculated. It is evident that the newly obtained numerical solutions by the present
method can be computed easily with the implementation and effectiveness of the
approach used in the article.
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1 Introduction

Fractional calculus has been an indispensable part of applied mathematics owing to its
capasity in dealing with derivatives and integrals of non-integer orders. Its application to
differentiation and integration having non-integer orders can be traced back to early in
history, thus it is obvious that it is not new by no means. To be more precise, interest
in the subject originates with almost with the ideas of the classical calculus [1]. But,
especially over the last a few years, many authors have recognized that derivatives and
integrals having non-integer order can be very suitable for the real description of many
physical phenomena in the universe. Because, it has been repeatedly demonstrated that
new fractional-order models are much better than previously used integer-order ones.
Again, the ever growing number of fractional derivative applications in such diverse fields
of science and engineering clearly shows the fact that there is a tremendous demand for a
better mathematical modelings of real objects, and that the fractional calculus is one of
the possible alternatives to provide more adequate mathematical modelings of real world
objects and processes. In fact, among others, they have already been widely utilized
for modelling problems encountered in such diverse fields as fluid mechanics, acoustics,
biology, electromagnetism, diffusion, signal processing, and many other physical processes,
one can look at [2, 3, 4] and references therein.
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The finite element method plays an important role in solving both ordinary and partial
differential equations. But, in the present paper, the method is going to be applied for
solving time fractional nonlinear differential equation, namely time fractional gas dynamics
equation. The main idea behind the finite element method is to discretize the entire region
of the problem domain into an equivalent system of finite elements having associated nodes
and to select the most suitable element type which will model most appropriately the real
physical behavior. Therefore, by the finite element method, a complicated equation is
turned into several solvable set of equations. The finite elements can be adjusted small
enough to result in usable sizes and yet large enough to decrease the computational load
[5].

In the literature, one can find a wide range of studies dealing with obtaining analytical
and numerical solutions of fractional differential equations with several different techniques
and methods. Even though there exist few analytical methods such as found by Refs.
[6, 7, 8, 9] providing exact solutions of the fractional equations, the numerical ones can
be found more commonly and as the most appropriate and even sometimes the only
alternative for dealing with most of the problems involving fractional equations. Because of
this fact, it is very important to find and implement effective, accurate and easy numerical
methods. Despite the fact that there still exist several methods applied for the solution
of fractional partial differential equations, it is again a well known fact that there is still
a long way to go in the area. There are several studies about fractional equations in
the literature. Among others, Esen et. al. [10, 11] have used Galerkin and collocation
finite element methods for solving fractional diffusion and diffusion-wave equations in the
Caputo form. Mohebbi et al. [12] have solved the time fractional nonlinear gas equation
arising in quantum mechanics by using of a meshless technique based on collocation and
radial basis functions. Hosseini et al. [13] have obtained numerical solution of fractional
telegraph equation by applying radial basis functions. Wei et. al. [14] have used fully
discrete local discontinuous Galerkin method to solve the fractional telegraph equation.

In this paper, we will use finite element collocation method to obtain the nu-
merical solutions of the time fractional gas dynamics equation with the usage of the L1
discretizaton formula for the fractional derivative as used by Ref. [15]. The equations
of gas dynamics are mathematical expressions based on the physical laws of conservation
namely, the laws of conservation of mass, conservation of momentum, conservation of en-
ergy etc [16]. The various forms of gas dynamics equations have been solved by many
authors using different methods and techniques. Among others, Liu [17] has taken some
partial differential equations related to gas dynamics and mechanics into consideration and
solved them numerically and Rasulov and Karaguler [18] have applied difference scheme
to solve some gas dynamics problems.

In the present study, we will take the homogenous nonlinear time fractional gas
dynamics equation into consideration as a model given as follows

∂γU

∂tγ
+ U

∂U

∂x
− U(1− U) = 0 (1)

where
∂γf(t)

∂tγ
=

1

Γ(1− γ)

ˆ t

0

(t− τ)−γf ′(τ)dτ 0 < γ ≤ 1
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is the fractional derivative given in the Caputo’s sense [6, 19]. In the present paper, for
the time fractional gas dynamics equation, we will take the boundary conditions of the
model problem (1) given in the interval 0 ≤ x ≤ 1 as

U(0, t) = Eγ(t
γ) , U(1, t) = e−1Eγ(t

γ) (2)

and the initial condition as
U(x, 0) = e−x. (3)

The exact solution of the problem is given as [16]

U(x, t) = e−xEγ(t
γ)

where Eγ is the Mittag-Leffler function [19].
In our numerical computations, in order to obtain a finite element scheme for

solving the fractional gas dynamics equation as Ref. [15] used in explicit finite difference
method, we are also going to discretize the Caputo derivative by means of the so-called
L1 formula [1]

∂γf(t)

∂tγ
|tm =

(∆t)−γ

Γ(2− γ)

m−1∑
k=0

bγk [f(tm−k)− f(tm−1−k)]

where
bγk = (k + 1)1−γ − k1−γ .

2 Cubic B-spline Finite Element Collocation Solutions

Firstly, we are going to define the cubic B-spline base functions for using in the solution
procedure of Eq. (1) with the boundary conditions (2) and the initial condition (3).
Regarding that the interval [a, b] is partitioned into N finite elements which have equal
length with the knots xm, m = 0, 1, 2, ..., N such that a = x0 < x1 · · · < xN = b and
h = xm+1 − xm. In [20], the cubic B-splines φm(x), (m = −1(1)N + 1), at the knots xm

are described over the interval [a, b] as

φm(x) = 1
h3


(x− xm−2)

3, x ∈ [xm−2, xm−1],
h3+3h2(x−xm−1)+3h(x−xm−1)

2−3(x−xm−1)
3, x ∈ [xm−1, xm],

h3+3h2(xm+1−x)+3h(xm+1−x)2−3(xm+1−x)3, x ∈ [xm, xm+1],
(xm+2 − x)3, x ∈ [xm+1, xm+2],
0 otherwise.

A basis is generated for the functions defined over [a, b] by the set of B-splines

{φ−1(x), φ0(x), . . . , φN+1(x)} . (4)

Thus, we can write an approximation solution UN (x, t) in terms of the cubic B-splines
trial functions as:

UN (x, t) =

N+1∑
m=−1

δm(t)φm(x) (5)
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where δm(t)’s are unknown, time dependent quantities to be determined from the initial,
boundary and cubic B-spline collocation conditions. Since a cubic B-spline covers four
consecutive elements, conversely a typical element [xm, xm+1] is covered by four cubic
B-splines. During the solution process of this problem, the finite elements are identified
with the interval [xm, xm+1] and the elements knots xm, xm+1. Using the nodal values Um

and U
′

m given in terms of the parameter δm(t)

Um = U(xm, t) = δm−1(t) + 4δm(t) + δm+1(t),
U ′
m = U ′(xm, t) = 3

h (−δm−1(t) + δm+1(t)),
(6)

the variation of UN (x, t) over the typical element [xm, xm+1] is given by

UN (x, t) =
m+2∑

j=m−1

δj(t)φj(x).

If we replace the global approximation (5) and its required derivatives (6) into Eq. (1),
and take U = zm, we easily obtain the following set of the γth order fractional differential
equations:

δ̇m−1(t)+4δ̇m(t)+δ̇m+1(t)+
3zm
h

(δm+1(t)−δm−1(t))+(zm−1)(δm−1(t)+4δm(t)+δm+1(t)) = 0

(7)
where ”˙” denotes γth fractional derivative with respect to time. If time parameters δm(t)’s
and its fractional time derivatives δ̇m(t)’s in Eq. (7) are discretized by the Crank-Nicolson
formula and L1 formula, respectively:

δ =
1

2
(δn + δn+1)

and

δ̇ =
dγδ

dtγ
=

(∆t)−γ

Γ(2− γ)

n−1∑
k=0

[
(k + 1)1−γ − k1−γ

] [
δn−k − δn−k−1

]
,

we obtain a recurrence relationship between successive time levels relating unknown pa-
rameters δn+1

m (t)

(1− 3αzm + αh(zm − 1)) δn+1
m−1 + (4 + 4αh(zm − 1)) δn+1

m + (1 + 3αzm + hα(zm − 1)) δn+1
m+1

= (1 + 3αzm − αh(zm − 1)) δnm−1 + (4− 4αh(zm − 1)) δnm + (1− 3αzm − αh(zm − 1)) δnm+1

−
n∑

k=1

[
(k + 1)1−γ − k1−γ

] [
(δn−k+1

m−1 − δn−k
m−1) + 4(δn−k+1

m − δn−k
m ) +(δn−k+1

m+1 − δn−k
m+1)

]
(8)

where
zm = δm−1(t) + 4δm(t) + δm+1(t)

and

α =
(∆t)γΓ(2− γ)

2h
.
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The newly obtained iterative system (8) is composed of N + 1 linear equations including
N+3 unknown parameters (δ−1, . . . , δN+1)

T . To obtain a unique solution for this system,
we are in need of finding two additional constraints. These are obtained from the boundary
conditions and their second derivatives and in turn they are used to remove δ−1 and δN+1

from the system (8) as follows:

δ−1(t) = −4δ0(t)− δ1(t) + U(x0, t),
δN+1(t) = −4δN (t)− δN−1(t) + U(xN , t).

Then, this system of equations becomes a matrix equation with N + 1 unknowns d =
(δ0, δ1, δ2, . . . , δN−2, δN−1, δN )T in the form

Adn+1 = Bdn.

2.1 Initial state

The initial vector d0 = (δ0, δ1, δ2, . . . , δN−2, δN−1, δN )T is determined from the ini-
tial and boundary conditions. Now, we have the right to write the approximation (5) for
the initial condition as

UN (x, 0) =

N+1∑
m=−1

δm(0)φm(x)

where the δm(0)’s are unknown parameters. We require the initial numerical approxima-
tion UN (x, 0) satisfy the following conditions:

UN (x, 0) = U(xm, 0), m = 0, 1, ..., N
(UN )xx(0, 0) = 1, (UN )xx(1, 0) = e−1.

Thus, using the these conditions leads to a three-diagonal system of matrix of the form

Wd0 = b

where

W =



6 0
1 4 1

1 4 1

. . .

1 4 1
0 6


and

b=(U(x0,0)− h2

6
U ′′(x0,0), U(x1,0), U(x2,0), . . . , U(xN−2,0), U(xN−1,0), U(xN ,0)− h2

6
U ′′(xN ,0))T.

3 Numerical examples and results

In table 1, we compare the analytical solutions with numerical solutions which are obtained
by collocation method using cubic B-spline base functions for the time fractional gas
dynamics equation. In this table comparisons are mode for the values of γ = 0.25, γ = 0.50
and γ = 0.75 for ∆t = 0.0001, tf = 0.1 and N = 40. As it is seen from the table, the
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analytical and numerical solutions are compatible with each other. Obviously, it is seen
that while the values of γ increases, the numerical results become more accurate. We can
clearly see this situation from the decreasing values of the error norms L2 and L∞. Also,
in table 2-4, we compare the analytical solutions and numerical solutions for values of
γ = 0.25, γ = 0.50 and γ = 0.75 for N = 80, tf = 1 and different values of ∆t. Obviously,
it is seen that from the tables analytical and numerical solutions are compatible with each
other. The tables show us that while the number of time steps decreases, the numerical
results are more certain. We can clearly see this situation from the decreasing values of
the error norms L2 and L∞. The error norms L2 and L∞ of the analytical solutions and
numerical solutions are given for different values of γ for N = 80, ∆t = 0.0005 and different
values of tf in Table 5. In figure 1, we give the graphs of the analytical solutions and the
numerical results for N = 40 and ∆t = 0.0001 at t = 0.1 (stars), t = 0.5 (squares), and
t = 1.0 (triangles) for different values of γ. Consequently, we give five tables to compare
our numerical solutions with exact ones. From the figures, it can be said that the numerical
and analytical solutions are in good agreement with each other. Additionally acceptable
value of error norms L2 and L∞ are obtained.

Table 1. Comparison of exact solutions with numerical solutions of the problem with
N = 40, ∆t = 0.0001 and tf = 0.1 at difference γ

x
γ = 0.25 γ = 0.50 γ = 0.75

Numerical Exact Numerical Exact Numerical Exact
0.0 2.364040 2.364040 1.486763 1.486763 1.219661 1.219661
0.1 2.139072 2.139072 1.345280 1.345279 1.103584 1.103595
0.2 1.935512 1.935512 1.217258 1.217259 0.998541 0.998574
0.3 1.751323 1.751324 1.101416 1.101421 0.903486 0.903547
0.4 1.584663 1.584663 0.996596 0.996607 0.817496 0.817563
0.5 1.433862 1.433863 0.901749 0.901768 0.739704 0.739762
0.6 1.297411 1.297412 0.815929 0.815953 0.669318 0.669364
0.7 1.173946 1.173947 0.738280 0.738305 0.605633 0.605666
0.8 1.062231 1.062232 0.668024 0.668046 0.548009 0.548029
0.9 0.961146 0.961147 0.604460 0.604473 0.495868 0.495877
1.0 0.869682 0.869682 0.546950 0.546950 0.448688 0.448688

L2 × 103 0.195059 0.106440 0.052890
L∞ × 103 0.317027 0.193832 0.077110
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Table 2. The comparison of the exact solutions with the numerical solutions for γ = 0.25,
N = 80, tf = 1 and different values of ∆t and the error norms L2 and L∞.

x ∆t = 0.01 ∆t = 0.005 ∆t = 0.001 ∆t = 0.0005 Exact
0.0 9.554107 9.554107 9.554107 9.554107 9.554107
0.1 8.650105 8.64671 8.644811 8.644914 8.644914
0.2 7.824748 7.823211 7.822400 7.822211 7.822242
0.3 7.076592 7.077950 7.077825 7.077824 7.077857
0.4 6.405434 6.402297 6.404204 6.404282 6.404310
0.5 5.792316 5.794983 5.794759 5.794835 5.794859
0.6 5.242689 5.244285 5.243373 5.243388 5.243405
0.7 4.745507 4.744555 4.744420 4.744421 4.744429
0.8 4.290192 4.292500 4.292966 4.292933 4.292937
0.9 3.885467 3.884501 3.884421 3.884408 3.884410
1.0 3.514760 3.514760 3.514760 3.514760 3.514760

L2 × 103 7.193496 3.498592 0.685024 0.340624
L∞ × 103 12.962180 6.218724 1.129466 0.548559

Table 3. The comparison of the exact solutions with the numerical solutions for γ = 0.50,
N = 80, tf = 1 and different values of ∆t and the error norms L2 and L∞.

x ∆t = 0.01 ∆t = 0.005 ∆t = 0.001 ∆t = 0.0005 Exact
0.0 5.008980 5.008980 5.008980 5.008980 5.008980
0.1 4.531930 4.532375 4.532313 4.532313 4.532313
0.2 4.101065 4.100949 4.101007 4.101006 4.101006
0.3 3.710578 3.710727 3.710745 3.710745 3.710744
0.4 3.357845 3.357644 3.357623 3.357621 3.357620
0.5 3.038187 3.038128 3.038104 3.038102 3.038100
0.6 2.749023 2.749013 2.748991 2.748989 2.748987
0.7 2.487359 2.487411 2.487391 2.487388 2.487386
0.8 2.250710 2.250701 2.250684 2.250682 2.250680
0.9 2.036550 2.036513 2.036502 2.036501 2.036499
1.0 1.842701 1.842701 1.842701 1.842701 1.842701

L2 × 103 7.407662 3.743424 0.760637 0.381826
L∞ × 103 11.781515 5.958210 1.210046 0.607343
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Table 4. The comparison of the exact solutions with the numerical solutions for γ = 0.75,
N = 80, tf = 1 and different values of ∆t and the error norms L2 and L∞.

x ∆t = 0.01 ∆t = 0.005 ∆t = 0.001 ∆t = 0.0005 Exact
0.0 3.485866 3.485866 3.485866 3.485866 3.485866
0.1 3.154202 3.154167 3.154148 3.154145 3.154142
0.2 2.854084 2.854034 2.853996 2.853991 2.853986
0.3 2.582519 2.582460 2.582408 2.582401 2.582393
0.4 2.336811 2.336728 2.336664 2.336655 2.336646
0.5 2.114462 2.114375 2.114304 2.114295 2.114285
0.6 1.913265 1.913176 1.913104 1.913094 1.913084
0.7 1.731196 1.731115 1.731048 1.731039 1.731030
0.8 1.566432 1.566368 1.566315 1.566308 1.566301
0.9 1.417323 1.417286 1.417256 1.417252 1.417247
1.0 1.282379 1.282379 1.282379 1.282379 1.282379

L2 × 103 6.545792 3.420635 0.737417 0.377396
L∞ × 103 10.356218 5.407458 1.164772 0.595996

Table 5. The numerical solutions with N = 80 and ∆t = 0.0005 for different values of
tf and the error norms L2 and L∞.

tf
γ = 0.25 γ = 0.50 γ = 0.75

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

0.2 0.699898 1.127687 0.502329 0.870746 0.256093 0.447387
0.4 0.500072 0.803301 0.467573 0.755646 0.312253 0.590927
0.6 0.415936 0.667972 0.438989 0.700142 0.359862 0.581380
0.8 0.369532 0.594400 0.409807 0.651525 0.369240 0.578283
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Figure 1. The comparison of the exact(lines) and numerical solutions for different values
of γ, N = 40 and ∆t = 0.0001 at t = 0.1 (stars), t = 0.5 (squares), and t = 1.0 (triangles).
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4 Conclusion

In the present study, a finite element collocation method has been successfully applied
to obtain the numerical solutions of the time fractional gas dynamics equation. In the
equation, the time fractional derivative has been taken into consideration in the form of
the Caputo sense. The fractional derivative appearing in the time fractional gas equation
has been approximated by means of the so-called L1 formulae. One can easily conclude
from the presented results that the applied method is a highly good one to obtain numerical
solutions of this kind fractional partial differential equations. The easy application and
programming of the method put it in a better position with respect to other methods.
Moreover, it can be used for a different problem with little manipulations on the scheme.
In conclusion, it can be said that the present method can also be used for a wide range of
fractional problems existing in various fields of science.
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