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Abstract

A double sequence {xk,l} is quasi-Cauchy if given an ε > 0 there exists an N ∈ N such that

max
r,s=1 and/or 0

{|xk,l − xk+r,l+s|} < ε.

We study continuity type properties of factorable double functions defined on a double subset
A × A of R2 into R, and obtain interesting results related to uniform continuity, sequential
continuity, continuity, and a newly introduced type of continuity of factorable double functions
defined on a double subset A×A of R2 into R.
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1 Introduction

In 1900, Pringsheim ([15]) introduced the concept of convergence of real double sequences. Four
years later, Hardy ([8]) introduced the notion of regular convergence for double sequences in the
sense that double sequence has a limit in Pringsheim’s sense and has one sided limits (see also
[16, 7]). A considerable number of papers which appeared in recent years study double sequences
from various points of view (see [1, 5, 9, 14, 13, 4, 11, 10]). Some results in the investigation are
generalizations of known results concerning simple sequences to certain classes of double sequences,
while other results reflect a specific nature of the Pringsheim convergence (e.g., the fact that a
double sequence may converge without being bounded).

The aim of this paper is to introduce quasi-Cauchy double sequences, and investigate newly
defined types of continuities for factorable double functions.

2 Priliminaries

Definition 2.1. ([15]) A double sequence x = {xk,l} is Cauchy provided that, given an ε > 0 there
exists an N ∈ N such that |xk,l − xs,t| < ε whenever k, l, s, t > N .

Definition 2.2. ([15]) A double sequence x = {xk,l} has a Pringsheim limit L (denoted by P-
limx = L) provided that, given an ε > 0 there exists an N ∈ N such that |xk,l − L| < ε whenever
k, l > N . Such an x is described more briefly as “P -convergent”.

If lim |x| = ∞ , (equivalently, for every ε > 0 there are n1, n2 ∈ N such that |xm,n| > M
whenever m > n1, n > n2), then x = {xm,n} is said to be definitely divergent. A double sequence
x = {xm,n} is bounded if there is an M > 0 such that |xm,n| < M for all m,n ∈ N. Notice that a
P -convergent double sequence need not be bounded.
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Definition 2.3. ([12]) A double sequence y is a double subsequence of x provided that there
exist increasing index sequences {nj} and {kj} such that, if {xj} = {xnj ,kj}, then y is formed by

x1 x2 x5 x10

x4 x3 x6 −
x9 x8 x7 −
− − − −.

3 Main Results

Definition 3.1. A double sequence x = {xk,l} is called quasi-Cauchy if given an ε > 0 there exists
an N ∈ N such that

max
r,s=1 and/or 0

{|xk,l − xk+r,l+s|} < ε

whenever k, l > N .

Any P -convergent double sequence is quasi-Cauchy, so any regularly convergent double sequence
is quasi-Cauchy. Any Cauchy double sequence is quasi-Cauchy. Any subsequence of a P -convergent
double sequence is P -convergent. Any subsequence of a Cauchy double sequence is Cauchy. But
situation is different for quasi-Cauchy double sequences. There are subsequences of a quasi-Cauchy
double sequence which are not quasi-Cauchy.

Example 3.2. Write sn =
∑n
k=1

1
k for each positive integer n. Then the double sequence defined

by
s1 s2 s3 s4 · · ·
s2 s2 s3 s4 · · ·
s3 s3 s3 s4 · · ·
s4 s4 s4 s4 · · ·
...

...
...

...
. . .

is not P -convergent nor Cauchy, however it is a quasi-Cauchy double sequence In addition this
double sequence has subsequences that are not quasi-Cauchy.

Definition 3.3. A factorable double function f defined on a double subset A × A of R2 into R
is called double sequentially continuous at a point L of A × A if f(x) is P -convergent to f(L)
whenever x = {xk,l} is a P -convergent double sequence of points in A× A with P-limit L. If f is
double sequentially continuous at every point of A×A, we say f is double sequentially continuous
on A×A.

We note that any continuous function at a point L of A×A is also double sequentially continuous
at L. The converse is also true:

Theorem 3.4. If a factorable double function f defined on a double subset A×A of R2 is double
sequentially continuous at L, then it is continuous.

Proof. Suppose that f is not continuous at L. Then there is an ε0 > 0 such that for any δ > 0
there exist an xδ so that |x1(δ)−L1| < δ and |x2(δ)−L2| < δ but |f(x1(δ), x2(δ))− f(L)| ≥ ε0. It
is not difficult to construct a convergent double sequence with limit L whose transformed sequence
is not convergent to f(L). Thus f is not double sequentially continuous at L. This contradiction
completes the proof of the theorem. q.e.d.
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Now we have obtained that a factorable double function f defined on a double subset A × A
of R2 is double sequentially continuous at a point L if and only if it is continuous. Using this
equivalence we prove the following theorem.

Theorem 3.5. If a factorable double function f defined on a double subset A×A of R2 preserves
factorable double quasi-Cauchy sequences from A×A, then it is continuous.

Proof. Suppose that f preserves factorable double quasi-Cauchy sequences from A × A. Let α =
{ai,j} be a double sequence defined by

a1,1 a1,2 a1,3 · · ·
a2,1 a2,2 a2,3 · · ·
a3,1 a3,2 a3,3 · · ·

...
...

...
...

...
...

. . .

be any P -convergent factorable double sequence with P-limit L. Then the sequence

a1,1 L a1,2 L a1,3 L ...
L L L L L L ...

a2,1 L a2,2 L a2,3 L · · ·
L L L L L L ...

a3,1 L a3,2 L a3,3 L · · ·
L L L L L L ...
...

...
...

...
...

...
. . .

is also P -convergent with P -limit L. Since any convergent double sequence is quasi-Cauchy this
sequence is quasi-Cauchy. So the transformed sequence f(α) = {f(ai,j)} of the sequence α is
quasi-Cauchy. Thus it follows that

f(a1,1) f(L) f(a1,2) f(L) f(a1,3) f(L) ...
f(L) f(L) f(L) f(L) f(L) f(L) ...

f(a2,1) f(L) f(a2,2) f(L) f(a2,3) f(L) · · ·
f(L) f(L) f(L) f(L) f(L) f(L) ...

f(a3,1) f(L) f(a3,2) f(L) f(a3,3) f(L) · · ·
f(L) f(L) f(L) L f(L) f(L) ...

...
...

...
...

...
...

. . .

is factorable quasi-Cauchy double sequence. Now it follows that {f(ai,j)} is a P -convergent fac-
torable double sequence with P -limit f(L). By Theorem 3.4, we get that the function f is contin-
uous. This completes the proof of the theorem. q.e.d.
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Theorem 3.6. Suppose that I × I is a two dimensional interval and

a1,1 b1,1 a1,2 b1,2 a1,3 b1,3 · · ·
d1,1 c1,1 d1,2 c1,2 d1,3 c1,3 · · ·
a2,1 b2,1 a2,2 b2,2 a2,3 b2,3 · · ·
d2,1 c2,1 d2,2 c2,2 d2,3 c2,3 · · ·
a3,1 b3,1 a3,2 b3,2 a3,3 b3,3 · · ·
d3,1 c3,1 d3,2 c3,2 d3,3 c1,3 · · ·

...
...

...
...

...
...

. . .

is a double sequence of ordered pairs in I × I with

lim
i
|ai,i − bi,i| = lim

i
|ai,i − ci,i| = lim

i
|ai,i − di,i| = 0.

Then there exists a double quasi-Cauchy sequence {xi,j} with the property that for any ordered
pair of integers (i, j); i, j > 1 there exists an ordered pair (̄i, j̄); ī, j̄ > 1 such that

(ai,j , bi,j) = (xī,j̄ , xī,j̄+1)

(ai,j , ci,j) = (xī,j̄ , xī+1,j̄+1)

and
(ai,j , di,j) = (xī,j̄ , xī+1,j̄).

Proof. For every (k, l); k, l ≥ 1, fix

yk,l0,0 yk,l0,1 · · · yk,l0,nl

yk,l1,0 yk,l1,1 · · · yk,l1,nl

...
...

...
...

yk,lmk,0
yk,lmk,1

· · · yk,lmk,nl

in I × I with
yk,lmk,0

= yk,l0,nl
= yk,lmk,nl

= ak+1,l+1,

yk,lmk,2
= yk+1,l+1

0,0 = yk,lmk,1
= bk+1,l+1,

yk+1,l+1
0,1 = yk+1,l+1

1,0 = yk+1,l+1
0,0 = ck+1,l+1,

and
yk,l1,nl

= yk+1,l+1
0,0 = yk,l2,nl

= dk+1,l+1.

for 1 ≤ i ≤ mk and 1 ≤ j ≤ nl with ∣∣∣yk,li,j − yk,li−1,j

∣∣∣ < 1

kl
,

∣∣∣yk,li,j − yk,li,j−1

∣∣∣ < 1

kl
,
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and ∣∣∣yk,li,j − yk,li−1,j−1

∣∣∣ < 1

kl
.

Now the double sequence

a1,1 b1,1 y1,1
0,0 · · · y1,1

0,n1
a1,1 b1,1 y1,1

0,0 · · · y1,1
0,n1

d1,1 c1,1 y1,1
1,0 · · · y1,1

1,n1
a1,1 b1,1 y1,1

1,0 · · · y1,1
1,n1

y1,1
0,0 y1,1

0,1 y1,1
0,0 · · · y1,1

0,n1
y1,1

0,0 y1,1
0,1 y1,1

0,0 · · · y1,1
0,n1

...
...

...
...

...
...

...
...

...
...

y1,1
m1,0

y1,1
m1,1

y1,1
m1,0

· · · y1,1
m1,n1

y1,1
m1,0

y1,1
m1,1

y1,1
m1,0

· · · y1,1
m1,n1

a1,1 b1,1 y1,1
0,0 · · · y1,1

0,n1
a2,2 b2,2 y2,2

0,0 · · · y2
0,n1

d1,1 c1,1 y1,1
1,0 · · · y1,1

1,n1
d2,2 c2,2 y2,2

1,0 · · · y2,2
1,n2

y1,1
0,0 y1,1

0,1 y1,1
0,0 · · · y1,1

0,n1
y2,2

0,0 y2,2
0,1 y2,2

0,0 · · · y2,2
0,n2

...
...

...
...

...
...

...
...

...
...

y1,1
m1,0

y1,1
m1,1

y1,1
m1,0

· · · ym1,1

...
...

...
...

...
...

...
...

...
... y2,2

m2,0
y2,2
m2,1

y2,2
m2,0

· · · y2,2
m2,n2

.

is clearly a double sequence that has the desired property. q.e.d.

Theorem 3.7. Suppose that I × I is any two dimensional interval. Then a two dimensional
factorable real-valued function is uniformly continuous on I × I if and only if it is defined on I × I
and preserves factorable double quasi-Cauchy sequences from I × I.

Proof. It is clear that two dimensional uniformly continuous functions preserve double quasi-Cauchy
sequence.

Conversely, suppose that f defined on I × I in not uniformly continuous. Then there exists
an ε > 0 such that for any δ > 0 there exist (a, b), (ā, b̄) ∈ I × I with

√
(a− ā)2 + (b− b̄)2 < δ

but |f(a, b)− f(ā, b)| ≥ ε,
∣∣f(a, b)− f(a, b̄)

∣∣ ≥ ε, and
∣∣f(a, b)− f(ā, b̄)

∣∣ ≥ ε, respectively. Then by
Theorem 3.6 there exists a double factorable quasi-Cauchy sequence x= {xkxl} such that for any
ordered pair (i, j) with i ≥ 1 and j ≥ 1, there exist ordered pairs integers (̄i, j̄) with ai,j = xī,j̄ and
bi,j = xī+1,j̄+1. This implies that ∣∣f(xī, xj̄)− f(xī+1, xj̄)

∣∣ ≥ ε,∣∣f(xī, xj̄)− f(xī, xj̄+1)
∣∣ ≥ ε,

and ∣∣f(xī, xj̄)− f(xī+1, xj̄+1)
∣∣ ≥ ε.

Thus {f(xi, xj)} is not quasi-Cauchy. Thus f does not preserve double quasi-Cauchy sequence.
q.e.d.

Theorem 3.8. Suppose that f is a factorable double function defined on the bounded double
interval I × I. Then f is uniformly continuous on I × I if and only if the image under f of any
Cauchy double sequence in I × I is quasi-Cauchy.



216 R. F. Patterson & H. Cakalli

Proof. By Theorem 3.7 if f is a factorable uniformly continuous on I × I then the image of
any quasi-Cauchy double sequence in I × I is quasi-Cauchy. Therefore the image of any dou-
ble Cauchy under factorable function is quasi-Cauchy. Now let us establish the converse, to that
end, suppose that the image of every Cauchy double sequence is quasi-Cauchy but the factorable
to be uniformly continuous. Then there exists an ε > 0 such that for any δ > 0 there exist
(x, y), (x̄, ȳ) ∈ I × I with

√
(x− x̄)2 + (y − ȳ)2 < δ but |f(x, y)− f(x̄, y)| ≥ ε, |f(x, y)− f(x, ȳ)| ≥

ε, and |f(x, y)− f(x̄, ȳ)| ≥ ε, respectively. For each (m,n); m,n ≥ 1, for fix double sequence
(xm, yn) and (x̄m, ȳn) in I × I with

√
(xm − x̄m)2 + (yn − ȳn)2 < 1

mn but

|f(xm, yn)− f(x̄m, yn)| ≥ ε,

|f(xm, yn)− f(xm, ȳn)| ≥ ε,

and
|f(xm, yn)− f(x̄m, ȳn)| ≥ ε,

respectively. Since I × I is bounded there exists a P -convergent subsequence by a simple extension
of Bolzano-Weierstrass theorem, say {xk,l}. The following double sequence

x1,1 y1,2 x1,3 y1,4 x1,5 y1,6 · · ·
y2,1 x2,2 y2,3 x2,4 y2,5 x2,6 · · ·
x3,1 y3,2 x3,3 y3,4 x3,5 y3,6 · · ·
y4,1 x4,2 y4,3 x4,4 y4,5 x4,6 · · ·
x5,1 y5,2 x5,3 y5,4 x5,5 x5,6 · · ·

...
...

...
...

...
...

. . .

is P -convergent. Thus Cauchy, however the image

f(x1, x1) f(y1, y2) f(x1, x3) f(y1, y4) f(x1, x5) f(y1, y6) · · ·
f(y2, y1) f(x2, x2) f(y2, y3) f(x2, f4) f(y2, y5) f(x2, x6) · · ·
f(x3, x1) f(y3, y2) f(x3, x3) f(y3, y4) f(x3, x5) f(y3, y6) · · ·
f(y4, y1) f(x4, x2) f(y4, y3) f(x4, x4) f(y4, y5) f(x4, x6) · · ·
f(x5, x1) f(y5, x2) f(x5, x3) f(y5, y4) f(x5, x5) f(x5, x6) · · ·

...
...

...
...

...
...

. . .

is no quasi-Cauchy. Thus we have a contradiction. q.e.d.

4 General Metric Space

First we state the definitions of a pseudometric and a metric ([6]).

Definition 4.1. Suppose that X ∈ R2 is a set and d : X ×X → [0,∞) is a function.

1. d is called a pseudometric if it satisfies the following:

(a) d(x,x) = 0 (i.e. d((x1, y1), (x1, y1)) = 0)

(b) d(x,y) = d(y,x) and

(c) d(x,y) ≤ d(x, z) + d(z,y) for all x,y and z ∈ X
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2. d is called a metric if d also satisfies the following for all x,y ∈ X

(a) d(x,y) <∞
(b) d(x,y) = 0 implies that x = y

Definition 4.2. A metric space (X, d) is called double non-incremental if every quasi-Cauchy
double sequence on X is Cauchy double.

Now recalling that an ultrametric space is a metric space (X, d) which satisfies the following
strengthening of the triangle inequality

d(x,y) ≤ sup {d(x, z), d(y, z)}

for all x,y, z ∈ X, we give the following theorem.

Theorem 4.3. Ultrametric spaces are double non-incremental.

Proof. Suppose that (X, d) is an ultrametric space. Suppose that {xi,j} is a factorable quasi-Cauchy
double sequence in X. Suppose ε > 0 is given then for fix K > 0 such that m,n > K implies

d((xm, yn), (xm+r, yn+s)) < ε

where r and s are 1 and/ or 0. Suppose that m,n < K with m ≤ n. Then repeated application of
the ultrametric inequality yields

d(x,y) = sup



d((xm, yn), (xm+1, yn)) d((xm, yn), (xm, yn+1)) · · ·
0 d((xm, yn), (xm+1, yn+1)) · · ·

d((xm+1, yn), (xm+2, yn)) d((xm+1, yn), (xm+1, yn+1)) · · ·
0 d((xm+1, yn), (xm+2, yn+1)) · · ·

d((xm+2, yn), (xm+3, yn)) d((xm+2, yn), (xm+2, yn+1)) · · ·

0 d((xm+2, yn), (xm+3, yn+1))
. . .

...
...

...



= sup



ε ε ε ε · · ·
0 ε 0 ε · · ·
ε ε ε ε · · ·
0 ε 0 ε · · ·
ε ε ε ε · · ·
...

...
...

...
. . . .


≤ ε.

Thus the factorable double sequence {xk,l} is also Cauchy double. q.e.d.

5 Conclusion

It is easy to see that double Cauchy sequences are double quasi-Cauchy. The converse is easily
seen to be false as in the single dimensional case ([2], [3]). One should also note that the single
dimensional subsequences of an ordinary Cauchy sequence are also Cauchy sequence. However the
subsequence of quasi-Cauchy sequence is not quasi-Cauchy. But not just that, the subsequence of
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an ordinary Cauchy sequence is quasi-Cauchy. Now for double sequence the picture is very similar.
Every subsequence of a double Cauchy sequence is also double quasi-Cauchy. The converse is also
easily seen to be false. Similar to ordinary sequences the subsequence of a double quasi-Cauchy
sequence is arbitrary to say the least. That brings us to the starting point of this analysis. We
illustrate this fact through Theorem 3.3. One should also note that are nice connections between
double quasi-Cauchy sequences and uniform continuity of two-dimensional real-valued functions.
This is illustrated through the following theorem. Suppose that I × I is any two dimensional
interval. Then a two dimensional factorable real-valued functions is uniformly continuous on I × I
if and only if it is defined on I × I and preserves factorable double quasi-Cauchy sequences from
I × I. Extensions and variations of the above theorems was also presented. We note that the class
of factorable functions is a very large class and any double function can be considered as a limit of
a sequence of factorable functions so that investigating the factorable double functions covers very
large class of double functions.
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