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Abstract

In the article, the authors introduce the new concepts “co-ordinated (α,QC)-, (α, JQC)-,
(α,CJ)- and (α, J)-convex functions”, establish some Hermite-Hadamard’s type integral in-
equalities for the co-ordinated (α,QC)-, (α, JQC)-, (α,CJ)- and (α, J)-convex functions.
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1 Introduction

The following definitions are well known in the literature.

Definition 1.1. A function f : I ⊆ R = (−∞,+∞)→ R is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (1.1)

holds for all x, y ∈ I and λ ∈ [0, 1].

Definition 1.2. A function f : I ⊆ R→ R is Jensen-convex(J), if

f

(
x+ y

2

)
≤ f(x) + f(y)

2
(1.2)

holds for all x, y ∈ I.

Definition 1.3. ([5, 6, 8]) A function f : I ⊆ R→ R is said to be quasi-convex(QC), if

f(λx+ (1− λ)y) ≤ max{f(x), f(y)} (1.3)

holds for all x, y ∈ I and λ ∈ [0, 1].

In [5], the authors introduced the class of real functions of JQ type, defined as follows.

Definition 1.4. ([5]) A function f : I ⊆ R→ R is Jensen- or J-quasi-convex(JQC) if

f

(
x+ y

2

)
≤ max{f(x), f(y)} (1.4)

holds for all x, y ∈ I.
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In [5], Dragomir and Pearce proved the following theorem:

Theorem 1.1 ([5, Theorem 2.2]). Suppose a, b ∈ I ⊆ R and a < b. If f ∈ JQC(I)∩L1([a, b]), then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx+ I(a, b), (1.5)

where

I(a, b) =

∫ 1

0

|f(ta+ (1− t)b)− f((1− t)a+ tb)|d t. (1.6)

In [3, 4], S.S. Dragomir considered the convexity on the co-ordinated.

Definition 1.5 ([3, 4]). A function f : ∆ = [a, b] × [c, d] ⊆ R2 → R is said to be convex on the
co-ordinates on ∆ with a < b and c < d if the partial mappings

fy : [a, b]→ R, fy(u) = fy(u, y) and fx : [c, d]→ R, fx(v) = fx(x, v) (1.7)

are convex where defined for all x ∈ (a, b), y ∈ (c, d).

A formal definition for co-ordinated convex functions may be stated as follows:

Definition 1.6. A function f : ∆ = [a, b]× [c, d] ⊆ R2 → R is said to be convex on the co-ordinates
on ∆ with a < b and c < d if the inequality

f(tx+ (1− t)z, λy + (1− λ)w)

≤ tλf(x, y) + t(1− λ)f(x,w) + (1− t)λf(z, y) + (1− t)(1− λ)f(z, w) (1.8)

holds for all t, λ ∈ [0, 1], (x, y), (z, w) ∈ ∆.

In [3, 4], S.S. Dragomir established the following theorem.

Theorem 1.2 ([3, Theorem 2.2]). Let f : ∆ = [a, b]× [c, d]→ R be convex on the co-ordinates on
∆ with a < b and c < d. Then, one has the inequalities:

f

(
a+ b

2
,
c+ d

2

)
≤1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
d y

]
≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) d y dx

≤1

4

[
1

b− a

(∫ b

a

f(x, c) dx+

∫ b

a

f(x, d) dx

)
+

1

d− c

(∫ d

c

f(a, y) d y +

∫ d

c

f(b, y) d y

)]
≤1

4
[f(a, c) + f(b, c) + f(a, d) + f(b, d)]. (1.9)

In this paper, we introduce the new concepts “(α,QC)-, (α, JQC)-, (α,CJ)- and (α, J)-convex
functions on the co-ordinates on the rectangle of the R2” and we establish some new integral
inequalities of Hermite-Hadamard type for the co-ordinated (α,QC)-, (α, JQC)-, (α,CJ)- and (α, J)-
convex functions.
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2 Some Definitions and Properties

We will start the following definition.

Definition 2.1. A mapping f : [a, b] × [c, d] → R will be called co-ordinated (α,QC)-convex on
[a, b]× [c, d] with a, b, c, d ∈ R and a < b, c < d, if the following inequality:

f(tx+ (1− t)z, λy + (1− λ)w)

≤ tα max{f(x, y), f(x,w)}+ (1− tα) max{f(z, y), f(z, w)} (2.1)

holds for all t, λ ∈ [0, 1], (x, y), (z, w) ∈ [a, b]× [c, d] and some α ∈ (0, 1].

Now we introduce the new concept “(α, JQC)-convex functions on the co-ordinates on the rect-
angle of the R2”.

Definition 2.2. A mapping f : [a, b] × [c, d] → R will be called co-ordinated (α, JQC)-convex on
[a, b]× [c, d] with a, b, c, d ∈ R and a < b, c < d, if the following inequality:

f

(
tx + (1 − t)z,

y + w

2

)
≤ tα max{f(x, y), f(x,w)} + (1 − tα) max{f(z, y), f(z, w)} (2.2)

holds for all t ∈ [0, 1], (x, y), (z, w) ∈ [a, b]× [c, d] and some α ∈ (0, 1].

We give the definitions of co-ordinated (α,CJ)- and (α, J)-convex functions.

Definition 2.3. For α ∈ (0, 1], a function f : [a, b]× [c, d]→ R is said co-ordinated (α,CJ)-convex
function on the co-ordinates on [a, b]× [c, d], if

f(tx + (1 − t)z, λy + (1 − λ)w) ≤ tα
f(x, y) + f(x,w)

2
+ (1 − tα)

f(z, y) + f(z, w)

2
(2.3)

holds for all t, λ ∈ [0, 1], (x, y), (z, w) ∈ [a, b]× [c, d].

Definition 2.4. For α ∈ (0, 1], a function f : [a, b] × [c, d] → R is said co-ordinated (α, J)-convex
function on the co-ordinates on [a, b]× [c, d], if

f

(
tx+ (1− t)z, y + w

2

)
≤ tα f(x, y) + f(x,w)

2
+ (1− tα)

f(z, y) + f(z, w)

2
(2.4)

holds for all t ∈ [0, 1] and (x, y), (z, w) ∈ [a, b]× [c, d].

Theorem 2.1. Let (α,QC), (α, JQC), (α,CJ) and (α, J) denote the class of (α,QC)-, (α, JQC)-,
(α,CJ)- and (α, J)-convex functions on [a, b]× [c, d] ⊆ R2 for some α ∈ (0, 1], respectively. Then

(α,QC) ⊆ (α,CJ) and (α, JQC) ⊆ (α, J).

Proof. Since

max{u, v} =
u+ v + |u− v|

2
≥ u+ v

2

for all u, v ∈ R, then (α,QC) ⊆ (α,CJ) and (α, JQC) ⊆ (α, J). Theorem 2.1 is proved. q.e.d.
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Theorem 2.2. Let (α,QC), (α, JQC), (α,CJ) and (α, J) denote the class of (α,QC)-, (α, JQC)-,
(α,CJ)- and (α, J)-convex functions on [a, b]× [c, d] ⊆ R2 for some α ∈ (0, 1], respectively. Then

(α,QC) ⊆ (α, JQC) and (α,CJ) ⊆ (α, J).

Proof. In (2.1) and (2.3), if λ = 1
2 , then (2.2) and (2.4) hold. So (α,QC) ⊆ (α, JQC) and (α,CJ) ⊆

(α, J). The proof of Theorem 2.2 is complete. q.e.d.

Corollary 2.2.1. Under the conditions of Theorem 2.1 and Theorem 2.2, then

(α,QC) ⊆ (α, JQC) ⊆ (α, J) and (α,QC) ⊆ (α,CJ) ⊆ (α, J).

3 Some integral inequalities of Hermite-Hadamard type

In this section, we establish Hermite-Hadamard integral inequality for co-ordinated (α,QC)-, (α, JQC)-
, (α,CJ)- and (α, J)-convex functions on rectangle from the R2.

Theorem 3.1. Let f : R2 → R be a integrable on [a, b] × [c, d] with a < b andc < d. If f is
co-ordinated (α, J)-convex on [a, b]× [c, d] for some α ∈ (0, 1], then

2f

(
a+ b

2
,
c+ d

2

)
≤1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

2

d− c

∫ d

c

f

(
a+ b

2
, y

)
d y

]
≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y

≤ 1

(α+ 1)(d− c)

∫ d

c

[
f(a, y) + αf(b, y)

]
d y. (3.1)

Proof. From the (α, J)-convexity of f , we have

f

(
a+ b

2
,
c+ d

2

)
=

∫ 1

0

f

(
ta+ (1− t)b+ (1− t)a+ tb

2
,

(c+ d)/2 + (c+ d)/2

2

)
d t

≤ 1

2α+1

∫ 1

0

[
f

(
ta+ (1− t)b, c+ d

2

)
+ (2α − 1)f

(
(1− t)a+ tb,

c+ d

2

)]
d t

=
1

2(b− a)

∫ b

a

f

(
x,
c+ d

2

)
dx. (3.2)
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By the (α, J)-convexity of f( with t = 1
2 in (2.4)), and using the (3.2), give

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2(b− a)

∫ b

a

f

(
x,
c+ d

2

)
dx =

1

2(b− a)

∫ 1

0

∫ b

a

f

(
x,
c+ d

2

)
dxdλ

≤ 1

4(b− a)

∫ 1

0

∫ b

a

[f(x, λc+ (1− λ)d) + f(x, (1− λ)c+ λd)] dx dλ

=
1

2(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dx d y (3.3)

Similarly, we obtain

f

(
a+ b

2
,
c+ d

2

)
≤1

2

∫ 1

0

[
f

(
a+ b

2
, λc+ (1− λ)d

)
+ f

(
a+ b

2
, (1− λ)c+ λd

)]
dλ

=
1

d− c

∫ d

c

f

(
a+ b

2
, y

)
d y

≤ 1

4(d− c)

∫ d

c

∫ 1

0

[
f(ta+ (1− t)b, y) + f((1− t)a+ tb, y)

]
d td y

=
1

2(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dx d y. (3.4)

By addition (3.3) and (3.4), the first inequality in (3.1) is proved.
On the other hand, letting x = ta+ (1− t)b, 0 ≤ t ≤ 1, by the (α, J)-convexity of f , then

1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y =
1

d− c

∫ d

c

∫ 1

0

f(ta+ (1− t)b, y) d td y

≤ 1

d− c

∫ d

c

∫ 1

0

[
tαf(a, y) + (1− tα)f(b, y)

]
d td y

=
1

(α+ 1)(d− c)

∫ d

c

[
f(a, y) + αf(b, y)

]
d y. (3.5)

The proof of Theorem 3.1 is complete. q.e.d.
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Corollary 3.1.1. Under the conditions of Theorem 3.1, if α = 1, then

2f

(
a+ b

2
,
c+ d

2

)
≤1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

2

d− c

∫ d

c

f

(
a+ b

2
, y

)
d y

]
≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y

≤ 1

2(d− c)

∫ d

c

[
f(a, y) + f(b, y)

]
d y.

Theorem 3.2. Let f : R2 → R be a integrable on [a, b] × [c, d] with a < b andc < d. If f is
co-ordinated (α,CJ)-convex on [a, b]× [c, d] for some α ∈ (0, 1], then

2f

(
a+ b

2
,
c+ d

2

)
≤1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

2

d− c

∫ d

c

f

(
a+ b

2
, y

)
d y

]
≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dx d y

≤1

2

[
1

2(b− a)

∫ b

a

[
f(x, c) + f(x, d)

]
dx+

1

(α+ 1)(d− c)

∫ d

c

[
f(a, y) + αf(b, y)

]
d y

]
≤ 1

2(α+ 1)

{
f(a, c) + f(a, d) + α

[
f(b, c) + f(b, d)

]}
. (3.6)

Proof. Using the (α,CJ)-convexity of f , similarly to the proof of Theorem 3.1, we obtain first
inequality in (3.6).

Putting y = λc+ (1− λ)d, 0 ≤ λ ≤ 1, by the (α,CJ)-convexity of f , then

1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y

≤ 1

(α+ 1)(d− c)

∫ d

c

[
f(a, y) + αf(b, y)

]
d y

=
1

α+ 1

∫ 1

0

{
[f(a, λc+ (1− λ)d) + αf(b, λc+ (1− λ)d)

}
dλ

≤ 1

2(α+ 1)

{
f(a, c) + f(a, d) + α

[
f(b, c) + f(b, d)

]}
(3.7)
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and setting x = ta+ (1− t)b, 0 ≤ t ≤ 1, by the (α,CJ)-convexity of f , we get

1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y =
1

b− a

∫ 1

0

∫ b

a

f(x, λc+ (1− λ)d) dxdλ

≤ 1

2(b− a)

∫ 1

0

∫ b

a

[
f(x, c) + f(x, d)

]
dxdλ =

1

2(b− a)

∫ b

a

[
f(x, c) + f(x, d)

]
dx

≤1

2

∫ 1

0

[
tαf(a, c) + (1− tα)f(b, c) + tαf(a, d) + (1− tα)f(b, d)

]
d t

=
1

2(α+ 1)

{
f(a, c) + f(a, d) + α

[
f(b, c) + f(b, d)

]}
(3.8)

The proof of Theorem 3.2 is complete. q.e.d.

Corollary 3.2.1. In Theorem 3.2, if α = 1, then

2f

(
a+ b

2
,
c+ d

2

)
≤1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

2

d− c

∫ d

c

f

(
a+ b

2
, y

)
d y

]
≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dx d y

≤1

4

[
1

b− a

∫ b

a

[
f(x, c) + f(x, d)

]
dx+

1

d− c

∫ d

c

[
f(a, y) + f(b, y)

]
d y

]
≤1

4

[
f(a, c) + f(a, d) + f(b, c) + f(b, d)

]
.

Theorem 3.3. Let f : R2 → R be a integrable on [a, b] × [c, d] with a < b andc < d. If f is
co-ordinated (α, JQC)-convex on [a, b]× [c, d] for some α ∈ (0, 1], then

f

(
a+ b

2
,
c+ d

2

)
≤1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)]
+

1

4
Ma,b(c, d)

≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y +
1

4
Ma,b(c, d) +

1

4
D(a, b; c, d) (3.9)

and

1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y ≤ 1

(α+ 1)(d− c)

∫ d

c

[
f(a, y) + αf(b, y)

]
d y, (3.10)

where

Ma,b(c, d) =
1

d− c

∫ d

c

∣∣∣∣f(a+ b

2
, y

)
− f

(
a+ b

2
, c+ d− y

)∣∣∣∣d y, (3.11)

D(a, b; c, d) =
1

(b− a)(d− c)

∫ d

c

∫ b

a

|f(x, y)− f(x, c+ d− y)|dx d y. (3.12)
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Proof. From the (α, JQC)-convexity of f , we have

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2α

[
f

(
ta+ (1− t)b, c+ d

2

)
+ (2α − 1)f

(
(1− t)a+ tb,

c+ d

2

)]
(3.13)

for all t ∈ [0, 1].
Integrating the inequality (3.13) on [0, 1] over t, we obtain

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2α

∫ 1

0

[
f

(
ta+ (1− t)b, c+ d

2

)
+ (2α − 1)f

(
(1− t)a+ tb,

c+ d

2

)]
d t

=
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx =

1

b− a

∫ 1

0

∫ b

a

f

(
x,
c+ d

2

)
dxdλ

≤ 1

b− a

∫ 1

0

∫ b

a

max{f(x, λc+ (1− λ)d), f(x, (1− λ)c+ λd)} dxdλ

=
1

(b− a)(d− c)

∫ d

c

∫ b

a

max{f(x, y), f(x, c+ d− y)}dx d y

=
1

2(b− a)(d− c)

∫ d

c

∫ b

a

[
2f(x, y) + |f(x, y)− f(x, c+ d− y)|

]
dxd y. (3.14)

Similarly to the proof of (3.14), we have

f

(
a+ b

2
,
c+ d

2

)
≤
∫ 1

0

max

{
f

(
a+ b

2
, λc+ (1− λ)d

)
, f

(
a+ b

2
, (1− λ)c+ λd

)}
dλ

=
1

(d− c)

∫ d

c

max

{
f

(
a+ b

2
, y

)
, f

(
a+ b

2
, c+ d− y

)}
d y

=
1

2(d− c)

∫ d

c

[
2f

(
a+ b

2
, y

)
+

∣∣∣∣f(a+ b

2
, y

)
− f

(
a+ b

2
, c+ d− y

)∣∣∣∣]d y. (3.15)

Here

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
d y =

1

d− c

∫ d

c

∫ 1

0

f

(
a+ b

2
, y

)
d td y

≤ 1

2α(d− c)

∫ d

c

∫ 1

0

[
f

(
ta+ (1− t)b, c+ d

2

)
+ (2α − 1)f

(
(1− t)a+ tb,

c+ d

2

)]
d td y

=
1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dx d y. (3.16)
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By the (3.16) into the inequality (3.15), then

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2(d− c)

∫ d

c

[
2f

(
a+ b

2
, y

)
+

∣∣∣∣f(a+ b

2
, y

)
− f

(
a+ b

2
, c+ d− y

)∣∣∣∣]d y

≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y

+
1

2(d− c)

∫ d

c

∣∣∣∣f(a+ b

2
, y

)
− f

(
a+ b

2
, c+ d− y

)∣∣∣∣ d y. (3.17)

Choose x = ta+ (1− t)b for 0 ≤ t ≤ 1, by the (α, JQC)-convexity of f( with 0 ≤ t ≤ 1, λ = 1
2 in

(2.2)), we can write

1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y

=
1

d− c

∫ d

c

∫ 1

0

f(ta+ (1− t)b, y) d td y

≤ 1

d− c

∫ d

c

∫ 1

0

[
tαf(a, y) + (1− tα)f(b, y)

]
d td y

=
1

(α+ 1)(d− c)

∫ d

c

[
f(a, y) + αf(b, y)

]
d y. (3.18)

The proof of Theorem 3.3 is complete. q.e.d.

Corollary 3.3.1. Under the conditions of Theorem 3.3, if fx(y) = fx(x, y) be symmetric to c+d
2

on [c, d] for all x ∈ [a, b], then

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)]
≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y ≤ 1

(α+ 1)(d− c)

∫ d

c

[
f(a, y) + αf(b, y)

]
d y.

By the Theorem 2.2 and the Theorem 3.3, we have

Theorem 3.4. Let f : R2 → R be a integrable on [a, b] × [c, d] with a < b andc < d. If f is
co-ordinated (α,QC)-convex on [a, b]× [c, d] for some α ∈ (0, 1], then

f

(
a+ b

2
,
c+ d

2

)
≤1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)]
+

1

4
Ma,b(c, d)

≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y +
1

4
Ma,b(c, d) +

1

4
D(a, b; c, d), (3.19)

where Ma,b(c, d) and D(a, b; c, d) are given by (3.11) and (3.12).
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Theorem 3.5. Let f : R2 → R be a integrable on [a, b] × [c, d] with a < b andc < d. If f is
co-ordinated (α,QC)-convex on [a, b]× [c, d] for some α ∈ (0, 1], then

1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dx d y

≤1

2

[
1

2(b− a)

∫ b

a

[
f(x, c) + f(x, d)

]
dx

+
1

(α+ 1)(d− c)

∫ d

c

[
f(a, y) + αf(b, y)

]
d y

]
+

1

4
Nc,d(a, b)

≤ 1

2(α+ 1)

{[
f(a, c) + f(a, d) + α

[
f(b, c) + f(b, d)

]}
+

1

4
Nc,d(a, b)

+
1

4(α+ 1)

{
|f(a, c)− f(a, d)|+ α|f(b, c)− f(b, d)|

}
, (3.20)

where

Nc,d(a, b) =
1

b− a

∫ b

a

|f(x, c)− f(x, d)|dx. (3.21)

Proof. Similarly to the proof of (3.7) and (3.8), and using the (α,QC)-convexity of f , we obtain

1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y

≤ 1

2(b− a)

∫ b

a

[
f(x, c) + f(x, d) + |f(x, c)− f(x, d)|

]
dx

≤1

2

∫ 1

0

{
tα
[
f(a, c) + f(a, d) + (1− tα)

[
f(b, c) + f(b, d)

]}
d t+

1

2
J(c, d)

=
1

2(α+ 1)

{
f(a, c) + f(a, d) + α

[
f(b, c) + f(b, d)

]}
+

1

2
J(c, d). (3.22)

By a similar argument and from (3.10), we observe that

1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y

≤ 1

(α+ 1)(d− c)

∫ d

c

[
f(a, y) + αf(b, y)

]
d y

≤ 1

2(α+ 1)

{
f(a, c) + f(a, d) + |f(a, c)− f(a, d)|

+ α
[
f(b, c) + f(b, d) + |f(b, c)− f(b, d)|

]}
. (3.23)

By (3.22) and (3.23), the inequality (3.20) is proved. q.e.d.
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Corollary 3.5.1. Under the conditions of Theorem 3.4 and Theorem 3.5, if fx(y) = fx(x, y) is
symmetric to c+d

2 on [c, d] for all x ∈ [a, b], then

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
d y

]
≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y

≤1

2

[
1

2(b− a)

∫ b

a

[
f(x, c) + f(x, d)

]
dx+

1

(α+ 1)(d− c)

∫ d

c

[
f(a, y) + αf(b, y)

]
d y

]
≤ 1

2(α+ 1)

{
f(a, c) + f(a, d) + α

[
f(b, c) + f(b, d)

]}
.

Furthermore, if α = 1, then

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
d y

]
≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y

≤1

4

[
1

b− a

∫ b

a

[
f(x, c) + f(x, d)

]
dx+

1

d− c

∫ d

c

[
f(a, y) + f(b, y)

]
d y

]
≤1

4

[
f(a, c) + f(a, d) + f(b, c) + f(b, d)

]
.

Acknowledgment

This work was partially supported by the National Natural Science Foundation of China under
Grant No. 11361038 and by the Foundation of the Research Program of Science and Technology at
Universities of Inner Mongolia Autonomous Region under Grant No. NJZY14192, and by the Science
Research Fund of the Inner Mongolia University for Nationalities under Grant No. NMD1302,
China.

References

[1] R.-F. Bai, F. Qi, and B.-Y. Xi, Hermite-Hadamard type inequalities for the m- and (α,m)-
logarithmically convex functions, Filomat 27 (2013), no. 1, 1–7.

[2] S.-P. Bai, S.-H. Wang, and F. Qi, Some Hermite-Hadamard type inequalities for n-time dif-
ferentiable (α,m)-convex functions, J. Inequal. Appl. 2012, 2012:267; Available online at
http://dx.doi.org/10.1186/1029-242X-2012-267.

[3] S. S. Dragomir, On the Hadamard’s inequality for convex functions on the co-ordinates in a
rectangle from the plane, Taiwanese J. Math. 5 (2001), no. 4, 775–788.

[4] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequali-
ties and Applications, RGMIA Monographs, Victoria University (2000). Available online at
http://www.staff.vu.edu.au/RGMIA/monographs/hermitehadamard.html.



86 B.-Y. Xi, J. Sun and S.-P. Bai

[5] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard’s inequality, Bull.
Austr. Math. Soc. 57 (1998), no 3, 377–385.
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[8] J. Pečarić, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings and Statistical
Applications, Academic Press (1992), Inc.

[9] F. Qi and B.-Y. Xi, Some integral inequalities of Simpson type for GA-ε-convex functions, Geor-
gian Math. J. 20 (2013), no. 4, 775–788; Available online at http://dx.doi.org/10.1515/gmj-
2013-0043.

[10] B.-Y. Xi, R.-F. Bai, and F. Qi, Hermite-Hadamard type inequalities for the m- and (α,m)-
geometrically convex functions, Aequationes Math. 84 (2012), no. 3, 261–269; Available online
at http://dx.doi.org/10.1007/s00010-011-0114-x.

[11] B.-Y. Xi, J. Hua, and F. Qi, Hermite-Hadamard type inequalities for extended s-convex func-
tions on the co-ordinates in a rectangle, Journal of Applied Analysis 20 (2014), no.1, 29-39;
Available online at http://dx.doi.org/10.1515/jaa-2014-0004.

[12] B.-Y. Xi and F. Qi, Integral inequalities of Simpson type for logarithmically convex functions,
Advanced Studies in Contemporary Mathematics 23 (2013), no. 4, 559–566.

[13] B.-Y. Xi and F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions
with applications to means, J. Funct. Spaces Appl. 2012 (2012), Article ID 980438, 14 pages;
Available online at http://dx.doi.org/10.1155/2012/980438.

[14] B.-Y. Xi and F. Qi, Some Hermite-Hadamard type inequalities for differentiable convex func-
tions and applications, Hacettepe Journal of Mathematics and Statistics 42 (2013), no. 3,
243–257..

[15] B.-Y. Xi and F. Qi, Hermite-Hadamard type inequalities for geometrically r-convex functions,
Studia Scientiarum Mathematicarum Hungarica, 51 (2014), no.4, 530-546; Available online at
http://dx.doi.org/10.1556/SScMath.51.2014.4.1294.

[16] B.-Y. Xi, S.-H. Wang, and F. Qi, Some inequalities for (h,m)-convex functions, Jour-
nal of Inequalities and Applications 2014, 2014:100, 12 pages; Available online at
http://dx.doi.org/10.1186/1029-242X-2014-100.

[17] B.-Y. Xi, S.-H. Wang, and F. Qi, Properties and inequalities for the h- and (h,m)-
logarithmically convex functions, Creative Mathematics and Informatics 23 (2014), no. 1, 123-
130.


	On some Hermite-Hadamard-type integral inequalities for co-ordinated bold0mu mumu (, QC)(, QC)(, QC)(, QC)(, QC)(, QC)- and bold0mu mumu (, CJ)(, CJ)(, CJ)(, CJ)(, CJ)(, CJ)-convex functions Bo-Yan Xi1, Jian Sun2 and Shu-Ping Bai3
	Introduction
	Some Definitions and Properties
	Some integral inequalities of Hermite-Hadamard type


