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Abstract

n

In this paper we consider a class of polynomials p(z) = cp2™ + Y
all its zeros on |z| = k, k < 1. Using the notation M (p,t) =

M(p,t)
M(p,1)

S
of p by estimating { } from above for any ¢ > 1,
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1 Introduction and Stateme

For an arbitrary entire function f(z), mlax |f(2)]- As a consequence of maximum
=r

modulus principle [5, Vol. I, p. 1
degree n, then

M(p,R) < R"M(p,1)

Ankeny and Ri i ynomials not vanishing in the interior of the unit circle and
by proving that if p(z) # 0 in |z| < 1, then

R>1. (1.2)

uthors [2] proved the following result.
p(z) = 3 ¢;27 is a polynomial of degree n having all its zeros on |z| =k, k < 1,

Jj=0
very positive integer s

(k”—l(l + k) + (R™ - 1)

then

remy < (CUEREEE =D e, Rz (13)

By involving the coefficients of p(z), Dewan and Ahuja [2] in the same paper obtained the
following refinement of Theorem A.
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n .
Theorem B. If p(z) = > ¢;jz’ is a polynomial of degree n having all its zeros on |z| =k, k < 1,
§=0
then for every positive integer s

1 ( nlen {E"(1+k2)+k2(R™ = 1)} + |ep_1]|{2k" + R™ —1}

M(p,R)}* < —
{Mp, R < = 2lcn—1|+ nlen|(1+ k2)

>{M(p, 1

n
In this paper, we consider a class of polynomials p(z) = ¢,2" + ) cn— ;24
J=n
all its zeros on |z| = k, k < 1 and generalize Theorem A and Theorem

J=h
zeros on |z| =k, k < 1, then for every positive integer s

s kn—2u+1 + kn—u—i—l + RS — 1
orery < (M

Remark 1. If we choose p = 1 in Theorem 1,then in

{

For s = 1 in Theorem 1, we get the follovg

Corollary 1. If p(z) = ¢, 2" + Y ¢p—j2" 7
J=p

polynomial of degree n having all its

zeros on |z| =k, k <1, then
M) < (1), B>1 (16)

The following corol i lows from inequality (1.6) by taking k& = 1.

n .
I p(z) =cp2™ 4+ Y en—;2"7, 1 < < m, is a polynomial of degree n having all its
Jj=p
k, k <1, then for every positive integer s
nlen|[{k" (1 + k#*1) + k2 (R —1)}
{M(p,R)}* < 1 Fplen—pl{E" A+ BTN +RHRY - 1))
P = e T T len—ul (T BRT) e, [k T (14 ke T)

zeros on |

){M@A)}i R>1.
(1.8)
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To prove that the bound obtained in the above theorem is, in general, better than the bound
obtained in Theorem 1, we show that

nlen | {E™(1 4 k*FL) + B2 (R — 1)}
R e T Iy e M)\
FrT T ilen (L k1) e [l (14 ki)

kn72u+1 + kn7#+1 + Rrs — 1
— kn—Q,u,-‘,-l + kn—u+1

which is equivalent to

n|cn|(kn72,u+1 T kn7“+1)(/€n 4 kn+,u+1 4 k2;¢Rns _ k_Q,u)
+M‘Cn7u|(kn_2ﬂ+1 + k_n—,u—i—l)(k_n + kn—u+1 4 ku—an
< n|cn|(1€n + kn+u+1)(kn—2u+1 + kn—u—i—l =+
+,U‘Cn—p|(kn + kn7”+1)(kn72l‘+1 + L

which implies

n|cn|(K2n—20FL 4 g2n—p+2 4 pntlpns | pntl 4 g2
[ (e e e e A
< nlen| (K2 4 R g
+/$|Cnfu|(k2n72u+2+k2”73“+2+k”
plenp {E"TH(R™ — 1) — kRt

Hlenu k" < e, K",

"l kn+,u,+1Rns o kn+,u,+1)
k?n—2y+2 + kans _ kn)

n+2 4 k"+ﬂ+1R"S _ kn+u+1>
—+1 +k2n72u+1+k2n7u+1+kans_kn)’

{k RS 1) o kn+1(Rns o 1)}’

ﬂ'cn—p| < kP
nle,| ~ 7

which is always tru

If we choose s get the following result.

cn,jz"’j, 1 < p < n, is a polynomial of degree n having all its

LR (1 + kAL + B24 (R — 1)}
Hlen— W {EP T 4 BN H R (R 1))
Hlca— (1 + k#=T) - nlealkn =T (14 kitT)

)M(p,l),RZ 1. (1.9)

2. (i) If we choose =1 in Theorem 2,then inequality (1.8) reduces to Theorem B.

(ii) For ¥ = 1 in inequality (1.9), we get Corollary 2.

2 Lemmas

We need the following lemmas for the proof of these theorems. The first lemma is due to
Dewan and Hans [3].
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n .
Lemma 1. If p(z) = 2™ + > ¢cp—j2" 7, 1 < p < n, is a polynomial of degree n having all its
Jj=p
zeroson |z| =k, k<1

n
max Ip'(2)] < ey T e Ip(2)]- (2.1)

n .
Lemma 2. If p(z) = 2™ + > ¢cp—j2" 7, 1 < p < n, is a polynomial of degred@iihaving a¥ilks
Jj=p
zeros on |z| =k, k < 1, then

(2.2)

/ nlen K2 + plen—p [kP
<
max () S T Gon a0+ k1) + nlen bp 11+ RF )

The above lemma is due to Dewan and Hans [4].

n
Lemma 3. Let p(z) = co+ D ¢p2z¥, 1 < pu < n, be a pglgnomial o

v=p

ee n having no zero in
the disk |z| < k, k> 1,

W

n

Cu

Co

Kt <1.

(2.3)

The above lemma was given by Qazi [6,

Lemma 4. Let p(z) = c,2"+ . ¢
Jj=

n, be a polynomial of degree n having all its
zeros on |z| =k, k <1,

o

n

Sl < g
Cn |

(2.4)

k, k <1, therefore by Lemma 1, we have

n
S kn—2u+1 + k.n—u-‘rl

M(p,1) for |z| =1.

Now p'(z) is a polynomial of degree n — 1, therefore,it follows by (1.1) that for all » > 1 and
0<60<2m

nrt!

/ 0
[p'(re”)| < fn—2ut1 | fn—ptl

M(p,1). (3.1)
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Also for each 6,0 < 6 < 27 and R > 1, we obtain

R
) N i (R

R
/ s{p(te®)}s~1p (te'®)edt.
1

This implies

R
[{p(Re)}* — {p(e”)}?| < 8/ [p(te)[*~ ' (te™)|dt,
1
which on combining with inequalities (3.1) and (1.1), we get

PR~ (V| < gy gt

X

Therefore,

T o
ol (L4 R 4 palen (L k1)

)M(p,l) for |z| =1.

olynomial of degree n — 1, therefore, it follows by (1.1) that for all » > 1 and

A A
< M(p,1). 3.3
) < e (e o £ e ) D (33

Also for each 0, 0 < 6 < 27 and R > 1, we have

R
{p(RE)}* — (p(e)}*] < s / Ip(te™®)[*~ 1 (26?) dt,
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which on combining with inequalities (1.1) and (3.3), we get

{p(Re)}* — {p(e)}*|
R™ —1 n\cn\k2“+mcn_u|k”’1
<
= ket ) nfen [k#T (L + kRN + prfen—p| (14 B4

)1y,

which implies

R < )+ ()

nleal k2 + plenJk* 1
len [ T(L 4 RiF0) e (1 + Ri 1)

from which the proof of Theorem 2 follows.
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