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Remarks on Riesz sets

By Hiroshi YAMAGUCHI
(Received March 13, 1978 ;Revised March 28, 1978)

\S 1. Introduction.

Let $G$ be the dual group of aLCA group G. $M(G)$ denotes the usual
Banach algebra of all bounded regular Borel measures on G. $L^{1}(G)$ is the
space of all integrable functions on $G$ with respect to aHaal measure on
$G$ . For a $\mu\in M(G)$ , its Fourier-Stieltjes transform $\hat{\mu}$ is defined as follows.

$\hat{\mu}(\gamma)=\int_{G}(-x, \gamma)d\mu(x)$ for $\gamma\in G$ .

For asubset $E$ of $G$, $M_{E}(G)$ denotes the subspace of $M(G)$ consisting
of measures whose Fourier-Stieltijes transforms vanish off $E$. Let $G=T^{n}$ ,
and let $P$ be apositive octant of $G=Z^{n}$ . Thar is $P=$ {$(m_{1}, \cdots, m_{n})\in Z^{n}$ ;
$m_{i}\geqq 0(i=1, \cdots, n)\}$ . The following theorem (A) is called the Bochner’s the0-
rem.

(A) For every $\mu\in M_{P}(T^{n})$ , $\mu$ is absolutely continuous with respect to
aLebesque measure on $T^{n}$ . That is, $M_{P}(T^{n})\subset L^{1}(T^{n})$ .

If we exchange $T^{n}$ by $R^{n}$ , the same result is established.
The author proved in ([2]) the following theorem.
(B) Let $G$ be aLCA group such that $G$ is algebraically ordered.

Let $M^{a}(G)$ denote the subspace of $M(G)$ consisting of measures
of analytic type. Suppose $M^{a}(G)\neq\{0\}$ . If $M^{a}(G)\subset L^{1}(G)$ , then
$G$ admits one of the following structures.

(a) $G=R$ , (b) $G=R\oplus D$ ,
(c) $G=T,\cdot$ (d) $G=T\oplus D$

for some discrete abelian group $D$. Moreover, let $G$ be one
of the above groups. $P$ is asubsemigroup of $G$ such that (i)
$P\cup(-P)=G$ and $P\cap(-P)=\{0\}$ . Set $M_{P}^{a}(G)=M^{a}(G)$ . Then,
$M_{P}^{a}(G)\subset L^{1}(G)$ .

We start to consider whether an analogy of the Bochner’s theorem is
established if we exchange $T$ by $T\oplus D$ .

PROPOSITION 1. Let $H=T\oplus D$, where $D$ is a discrete abelian group
such that $\hat{D}$ is torsion-free. Let $P_{H}$ be a subsemigroup of $H=Z\oplus G$ such that
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$\underline{n}-$

(i) $P_{H}\cup(-P_{H})=H$ and (ii) $P_{H}\cap(-P_{H})=\{0\}$ . Let $G=H^{n}(=H\oplus\cdots\oplus H)$ , then
$\underline{n}-$

$M_{P_{H}^{n}}(G)$ is included in $L^{1}(G)$ , where $P_{H}^{n}=P_{H}\cross\cdots\cross P_{H}=\{(\gamma_{1}, \cdots, \gamma^{n})\in G$ ;
$\gamma_{i}\in P_{H}$, $i=1,2$ , $\cdots$ , $n\}$ .

In order to prove this proposition, we need the following two lemmas.
LEMMA 1. Let $F$ be a compact torsion-free abelian group.
(1) Let $P$ be a subsemigroup of $Z\oplus F$ such that (i) $P\cup(-P)=Z\oplus F$

and (ii) $P\cap(-P)=\{0\}$ . If $P$ is riot dense in $Z\oplus F$, there

$P=\{(n,f)\in Z\oplus F;n>0$ , or $n=0$ and $f\geqq_{P}0\}$

or

$=\{(n,f)\in Z\oplus F;n<0$ , or $n=0$ and $f\geqq_{P}0\}$

(1) Let $P$ be a subsemigroup of $R\oplus F$ such that (i) $7\cup(-P)=R\oplus F$

and (ii) $7\cap(-P)=\{0\}$ . If $P$ is not dense in $R\oplus F$, then

$P=\{(x,f)\in R\oplus F;x>0$ , or $x=0$ and $f\geqq_{P}0\}$

or

$=\{(x,f)\in R\oplus F;x<0$ , or $x=0$ and $f\geqq_{P}0\}$

Where $‘<$ ’denotes the usual order on $Z$ and $R$, and $‘\geqq_{P}$’denotes the order
on $F$ induced by $P$.

PROOF. We prove only (2). Suppose $P$ is not dense in $R\oplus F$. Since
$P$ is dense in $F$, $P\cap R$ is not dense in $R$ . Hence, by proposition 2of [3],
$P\cap R=[0, \infty)$ or $(-\infty, 0]$ . We consider only the case $P\cap R=[0, \infty)$ . Sup-
pose there exists an $x_{0}>0(x_{0}\in R)$ such that $(x_{0},f_{0})\in(\overline{-P})$ for some $f_{0}\in F$.
Then $\{(x,f)\in R\oplus F;x\leqq x_{0}, f\in F\}$ is included in $(\overline{-P})$ . Since $(\overline{-P})$ is a
semigroup, $(\overline{-P})=R\oplus F$. That is, $P$ is dense in $R\oplus F$. This is acon-
tradiction. Q. E. D.

DEFINITION 1. $G$ is a $LCA$ group. A subset $E$ of $G$ is called the
Riesz set if $M_{E}(G)\subset L^{1}(G)$ .

LEMMA 2. Let $G_{1}$ be a $LCA$ group, and let $G_{2}$ be a discrete abelian
group. If $E(\subset G_{1})$ is a Riesz set of $G_{1}$ , then $E\cross G_{2}$ is a Riesz set of $G_{1}\oplus G_{2}$ .

PROOF. For $\mu\in M_{E\cross\hat{G}_{2}}(G_{1}\oplus G_{2})$ , $\mu$ is represented as follows.

$d\mu(x, y)=d\mu_{1,n}(x)\cross d\delta_{y_{n}}(y)((x, y)\in G_{1}\oplus G_{2})$
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, where $\mu_{1,n}$ belongs to $M(G_{1})$ and $\delta_{y_{n}}$ is the Dirac measure at $y_{n}\in G_{2}(n=$

$1,2$ , $\cdots)$ , and moreover $|| \mu||=\sum_{n=1}^{\infty}||\mu_{1,n}||$ For $\gamma_{1}\in E$, $(\gamma_{1}, \gamma_{2})\not\in E\cross G_{2}$ for every
$\gamma_{2}\in G_{2}$ .

Hence,

$\sum_{n=1}^{\infty}\hat{\mu}_{1,n}(\gamma_{1})(-y_{n}, \gamma_{2})$

$=\hat{\mu}(\gamma 1, \gamma_{2})=0$ for every $\gamma_{2}\in G_{2}$ .
Since $\sum_{n=1}^{\infty}|\hat{\mu}_{1,n}(\gamma_{1})|<\infty$ , we can derive that $\hat{\mu}_{1,n}(\gamma_{1})=0(n=1,2, \cdots)$ . That

is, $\mu_{1,n}\in M_{E}(G_{1})(n=1,2, \cdots)$ . By the hypothesis, $\mu_{1,n}$ belongs to $L^{1}(G_{1})$ , and
so $\mu$ is contained in $L^{1}(G_{1}\oplus G_{2})$ . Q. E. D.

PROOF OF PROPOSITION 1. If $P_{H}$ is dense in $H$, then $P_{H}^{n}$ is also dense
in $G$ . Hence, $M_{P_{H}^{n}}(G)=\{0\}\subset L^{1}(G)$ . If $P_{H}$ is not dense in $H$, then by
lemma 1, $P_{H}\subset Z^{+}\cross\hat{D}$, where $Z^{+}$ is asubset of $Z$ consisting of nonnegative
integers.

Hence, $P_{H}^{n} \subset(Z^{+}\cross\frac{n}{D)\cross\cdots\cross(Z}++\otimes\cong(Z^{+})^{n}\cross D_{n}$ .
By the Bochner’s theorem, $(Z^{+})^{n}$ is aRiesz set in $Z^{n}$ , and $D^{n}$ is acompact

abelian group. Hence, by lemma 1, we obtain that $M_{P_{E}^{n}}(G)\subset L^{1}(G)$ .
Q. E. D.

REMARK 1. The same result is established in proposition 1even if we
exchange $T\oplus D$ by $R\oplus D$.

Combing with theorem 1and theoren 2of [2], the following corollary
is obtained.

COROLLARY 1. Let $G$ be a $LCA$ group. Let $P$ be a subsemigroup of
$G$ such that (i) $P\cup(-P)=G$ and (ii) $7\cap(-P)=\{0\}$ . Suppose $P$ is riot dense
in G. There, the foll owing are equivalent.

(1) $M_{P^{n}}(G^{n})\subset L^{1}(G^{n})$ .
(2) $G$ admits one of the folloutirtg structures.

(a) $G=R$, (b) $G=R\oplus D$ , (c) $G=T$, (d) $G=T\oplus D$ for some
discrete abelian group $D$.

\S 2. Small p sets

In this section, we shall prove that the direct product of asmall $p$ set
and acompact set is asmall $p$ set.

DEFINITION 2. $G$ is a $LCA$ group. Let $p$ be a positive integer. $A$

subset $E$ of $G$ is said to be a small $p$ set if the following property is sat-
isfied. {See [5] $)$
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$-^{p}-$
$(^{*})$ For $\mu\in M_{E}(G)$ , $\mu^{p}=\mu*\cdots*\mu$ belongs to $L^{1}(G)$ .
LEMMA 3. Let $p$ be a positive integer. Then,

$x_{1}x_{2} \cdots x_{p}=\sum_{f=1}^{C(p)}\alpha_{j}\{\beta_{j}(x_{1}, x_{2}, \cdots, x_{p})\}^{p}$

for every complex numbers $x_{i}(i=1,2, \cdots,p)$ , where $\beta_{j}$ are linear forms of
$x_{1}$ , $x_{2}$, $\cdots$ , and $x_{p}$, $\alpha_{j}$ are real numbers $(j=1,2, \cdots, p)$ and $C(p)$ is a positive
integer.

$p_{ROOF}$ .
$4x_{1}x_{2}=(x_{1}+x_{2})^{2}-(x_{1}-x_{2})$ (1)

We integrate two side of (1) with respect to $x_{1}$ from $x_{1}$ to $2x_{1}$ , then

$x_{1}^{2}x_{2}= \frac{1}{9}\{(2x_{1}+x_{2})^{3}-(x_{1}+x_{2})^{\}-(2x_{1}-x_{2})^{3}+(x_{1}-x_{2})^{\theta}\}$ (2)

We integrate two sides of (2) with respect to $x_{1}$ from $x_{1}$ to $2x_{1}$ again,
then

$x_{1}^{3}x_{2}= \frac{1}{168}\{(4x_{1}+x_{2})^{4}-(2x_{1}+x_{2})^{4}-2(2x_{1}+x_{2})^{4}$

$+2(x_{1}+x_{2})^{4}-(4x_{1}-x_{2})^{4}+(2x_{1}-x_{2})^{4}$

+2 $(2x_{1}-x_{2})^{4}-2(x_{1}-x_{2})^{4}\}$

We continue this argument. Then, for each positive integer $n$ , there exist
linear forms $A_{n,i}(x_{1}, x_{2})$ and real numbers $a_{n,i}(i=1,2, \cdots, 2^{n})$ such that

$x_{1}^{n}x_{2}= \sum_{i=1}^{2^{n}}a_{n,i}\{A_{n,i}(x_{1}, x_{2})\}^{n+1}$

We define linear forms $B_{i_{1},\cdots,i_{k}}(x_{1}, \cdots, x_{k}, x_{k+1})(k=1,2,$ $\cdots$ ; $1\leqq i_{j}\leqq 2^{j}$ , $j=$

$1,2$ , $\cdots$ , $k.$) as follows.

$B_{i_{1}}(x_{1}, x_{2})=A_{1,i_{1}}(x_{1}, x_{2})j$

$B_{i_{1},i_{2}}(x_{1}, x_{2}, x_{3})=A_{2,i_{2}}(B_{i_{1}}(x_{1}, x_{2}),$ $x_{3}),\cdot$

$B_{i_{1},i_{2},i_{\delta}}(x_{1}, x_{2}, x_{3}, x_{4})=A_{3,i_{3}}(B_{i_{1},i_{2}}(x_{1}, x_{2}, x_{3}),$ $x_{4})j$

$B_{i_{1},\cdots,i_{k}}(x_{1}, \cdots, x_{k}, x_{k+1})=A_{k+1,i_{k+1}}(B_{i_{1’}\cdots i_{k-1}}(x_{1}, \cdots, x_{k})$ , $x_{k+1})$

Then, we obtain the following equality
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$x_{1}x_{2} \cdots x_{p}=\sum_{i_{1}=1}^{2}\cdots\sum_{i_{p-1}=1}^{2}a_{1,i_{1}}\cdots a_{p-1,i_{p-1}}\{B_{i_{1’}\cdots i_{p-1}}(x_{1}, \cdots, x_{p})\}^{p}p-1$

Q. E. D.

LEMMA 4. Let $G$ be a $LCA$ group. Let $E$ be a subset of G. Then,

the folloutirtg are equivalent.
(1) $E$ is a small set,
(2) $\mu_{1}*\cdots*\mu_{p}$ belong to $L^{1}(G)$ for every $\mu_{1}$ , $\cdots$ , $\mu_{0}\in M_{E}(G)$ .

PROOF. $(2)I\Rightarrow(1)$ . trivial.
$(1)\circ(2)$ . For $\mu_{1}$ , $\cdots$ , $\mu_{p}\in M_{E}(G)$ , by lemma 3,

$\mu_{1}*\cdots*\mu_{p}=\sum_{f=1}^{C(P)}\alpha_{f}\beta_{j}(\mu_{11}, \cdots,\mu_{p})\frac{P}{\mu_{p})*\cdots*\beta_{j}(\mu},\cdots$,

Since $\beta_{j}(\mu_{1}, \cdots, \mu_{p})\in M_{E}(G)$ , $\mu_{1}*\cdots*\mu_{p}$ belongs to $L^{1}(G)$ . Q. E. D.

Lemma 2of \S 1 can be generalized as follows.

PROPOSITION 5. Let $G$ be a $LCA$ group and $F$ a compact subgroup of
G. Let $\pi_{F}$ be a natural homomorphism from $G$ onto $G/F$ . If $\check{E}$ is a small
$p$ subset of $G/F$, then $\pi_{F}^{-1}(\check{E})$ is also a small $p$ set in $G$ .

PROOF. Let $H$ be an annihilator of $F$. Since $F$ is compact, $H$ is an
open subgroup of $G$ . Let $\mu_{H_{a}}$ be arestriction of $\mu$ to each cosets $H_{\alpha}$ of $H$.
Then, $\mu$ can be represented as follows.

$\mu=\sum_{n=1}\mu_{H+x_{n}}$

:where $H+x_{n}\neq H+x_{m}$ if $n\neq m$ , and $|| \mu||=\sum_{n=1}^{\infty}||\mu_{H+x_{n}}||$ .
Set $\lambda_{n}=\mu_{H+x_{n}}*\delta_{-x_{n}}(n=1,2, \cdots)$ , where $\delta_{-x_{n}}$ is the Dirac measure at $-x_{n}$ .

Then, $\lambda_{n}\in M(H)$ , and $\mu=\sum\delta_{x_{n}}*\lambda_{n}\infty$ .
For $\gamma\not\in\pi_{F}^{-1}(\check{E})$ , $\gamma+s\in\pi_{F}^{-1}(E)n=1$ for every $s\in F$.
Hence,

$\sum_{n=1}^{\infty}\hat{\lambda}_{n}(\pi_{F}(\gamma))(-x_{n}, s)$

$= \sum_{n=1}^{\infty}\hat{\lambda}_{n}(\gamma+s)(-x_{n}, \gamma+s)$

$=\hat{\mu}(\gamma+s)$

$=0$ for every $s\in F$

Since $\sum_{n=1}^{\infty}|\hat{\lambda}_{n}(\pi_{F}(\gamma))|<\infty$ and $F$ is dense in its Bohr compacti fication $\overline{F}^{B}$ ,

$\hat{\lambda}_{n}(\pi_{f}(\gamma))(-x_{n}, \gamma)=0(n=1,2, \cdots)$ .
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That is, $\lambda_{n}\in M^{r\check{r}}(H)(n=1,2, \cdots)$ . On the other hand,

$\mu^{p}=\sum_{i_{1}=1i}^{\infty}\cdots\sum_{p^{=1}}^{\infty}(\lambda_{i_{1}}*\cdots*\lambda_{i_{1\prime}})*\delta_{x}$

$1+\cdots+x_{\nu’ p}$
.

Hence, by lemma 4, $\mu^{p}$ belongs to $L^{1}(G)$ . Q. E. D.
LEMMA 6. Let $G$ be a $LCA$ group, and let $\Lambda$ be an open subgroup

of G. $E$ is a subset of $\Lambda$ . Then, $E$ is a small $p$ set in $G$ if and only if
$E$ is a small $p$ set in $\Lambda$ .

PROOF. Suppose $E$ is asmall $p$ set in $\Lambda$ . For a $\mu\in M_{E}(G)$ , there exists
ameasure $\lambda\in M_{E}(G/\Lambda^{\perp})$ such that $\hat{\mu}|_{A}=\hat{\lambda}$ , where $\Lambda^{\perp}$ is an annihilator of $\Lambda$ .

Since $L^{1}\hat{(}G$) $|_{A}=L^{1}\hat{(}G/\Lambda^{\perp}$), there exists afunction $g\in L^{1}(G)$ such that
$\hat{g}|_{A}=\hat{J^{n}.}$ . Let $m_{A}\perp$ be anormalized Haar measure on $\Lambda^{\perp}$ . Then, $\mu^{p}=$

$m_{A}\dagger*\perp g\in L^{1}(G)$ .
Conversely, if $E$ is asmall $p$ set in $G$ , for a $\lambda\in M_{E}(G/\Lambda^{\perp})$ , there exists

ameasure $’ 4\in M(G)$ such that $\hat{\mu}’|_{A}=\hat{R}$ .
Let $\mu=\mu’*m_{A^{\llcorner}}$ . Then, $\mu$ belongs to $M_{E}(G)$ , and so, by the hypothesis,

$\mu^{p}$ is absolutely continuous with respect to aHaar measure on $G$ . Hence,
by Theorem 2. 7. 4of [6], $\lambda^{p}$ belongs to $L^{1}(G/\Lambda^{\perp})$ . Q. E. D.

LEMMA 7. Let $G_{1}$ be a $LCA$ group, and let $G_{2}$ be a compact abelian
group. Let $p$ be a positive integer, A subset $E_{1}$ of $G_{1}$ is a small $p$ set in
$G_{1}$ . E2 is a compact subset. Then, $E_{1}\cross E_{2}$ is a small $p$ set in $G_{1}\hat{\oplus}G_{2}$.

PROOF. Set $E_{2}=\{\gamma_{1}’, \gamma_{2}’, \cdots, \gamma_{n}’\}$ . Let $\mu$ be ameasure belonging to
$M_{E_{1}\cross E_{2}}(G_{1}\oplus G_{2})$ . For each $k(k=1,2, \cdots, n)$ , define acontinuous function $\psi_{k}$

on $G_{1}$ a $s$ follows.
$\psi_{k}(\gamma)=\hat{\mu}(\gamma, \gamma_{k}’)$

Then, by Theorem 1. 9. 1of [6], there exists ameasure $\mu_{k}\in M_{E_{1}}(G_{1})$

such that $\hat{\mu}_{k}(\gamma)=\psi_{k}(\gamma)$ . Hence, $\mu=\sum_{k=1}^{n}\mu_{k}\cross(y, \gamma_{k}’)m_{G_{2}}$ , where $m_{G_{2}}$ is anormal
ized Haar measure on $G_{2}$ . Since $E_{1}$ is asmall $p$ set,

$\mu*\cdots\mu=\sum_{k_{1},\ldots,k_{p}=1}^{n}\mu_{k_{1}}*\cdots*\mu_{k_{p}}\cross(\gamma_{k_{1}}’m_{G_{2}})*\cdots*(\gamma_{k_{p}}’m_{G_{2}})-\frac{p}{\cdots*}$

$= \sum_{k=1}^{n}\mu_{k}^{p}\cross(\gamma_{k}’m_{G_{2}})\in L^{1}(G_{1}\oplus G_{2})$ . Q. E. D.

LEMMA 8. Let $G$ be a $LCA$ group and $p$ be a positive intiger.
Let $E$ be a small $p$ subset of $G$, and let $F$ be a compact subset of $R^{n}$.

$/\backslash$

Then, $E\cross F$ is a small $p$ set in $G\oplus R^{n}$ .
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PROOF. For $\mu\in M_{E\cross F}(G\oplus R^{n})$ , let $(\mu^{p})_{s}$ be asingular part of $\mu^{p}=$

$-^{p}-$

$\mu*\cdots*\mu$ with respect toa Haar measure on $G$ . Suppose $(\mu^{p})_{s}\neq 0$ . For a
positive number $c$ , we define ahomeomorphism $I_{C}$ on $G\oplus R^{n}$ as follows.

$I_{C}(x, y)=(x, cy)$ for $(x,y)\in G\oplus R^{n}$

., where $y=(y_{1}, y_{2}, \cdots, y_{n})\in R^{n}$ and $cy=(cy_{1}, cy_{2}, \cdots, cy_{n})$ .
For ameasure $\lambda\in M(G\oplus R^{n})$ , $I_{C^{\circ}}\lambda$ denotes the continuous image of 2

under $I_{C}$ . Since $I_{C}\circ\mu^{p}=(I_{C}\circ\mu)^{p}$ and $\mu$ is regular, we may hypothesize that

$|( \mu^{p})_{s}|(G\cross(-\pi, \pi]^{n})>\frac{1}{2}||(\mu^{p})_{s}||$

Let $\psi$ be anatural homomorphism from $G\oplus R^{n}$ onto $G\oplus T^{n}$ .
That is, $\psi(x, y)=(x, e^{iy})$ for $(x, y)\in G\oplus R^{n}$ . Then, $\psi\circ(\mu^{p})_{s}$ is also asin-

gular measure on $G\oplus T^{n}$ . And, since $|( \mu^{p})_{s}|(G\cross(-\pi, \pi]^{n})>\frac{1}{2}||(\mu^{p})_{s}||$ , $\psi\circ(\mu^{p})_{s}$

$\neq 0$ . Hence, $\psi\circ(\mu^{p})_{s}$ (image of $(\mu^{p})_{s}$ under $\psi$) is anonzero singular part of
$\psi\circ(\mu^{p})$ with respect to aHaar measure on $G\oplus T^{n}$ .

On the other hand, since $F$ is acompact subset of $R^{n}$ , there exists
apositive integer $m_{0}$ such that $F\subset C_{m_{0}}$ ,

$C_{m_{0}}=\{x=$ $(x_{1}, x_{2}, \cdots, x_{n})\in R^{n}$ ; $|x_{i}|\leqq m_{0}$ , $i=1,2$ , $\cdots$ , $n\}$
$\{$

For $s\in G$ and $k=(k_{1}, \cdots, k_{n})\in Z^{n}$ , $\psi\hat{\circ(\mu}^{p})$

$(s, k)=\hat{\mu}^{p}(s, k)$ .
That is, $supp(\psi\hat{\circ(\mu}^{p}))$ is included in $E\cross(Z^{n}\cap C_{m_{0}})$ . Hence, by lemma 7,

$\psi\circ(\mu^{p})$ belongs to $L^{1}(G\oplus T^{n})$ . This is acontradiction. Q. E. D.
THEOREM 9. Let $G_{1}$ and $G_{2}$ be $LCA$ groups. Let $p$ be a positive

integer. If $E$ is a small $p$ subset of $G_{1}$ and $F$ is a compact subset of $G_{2}$,

then $E\cross F$ is a small $p$ set in $G_{1}\hat{\oplus}G_{2}$.
PROOF. Let $F_{1}$ be acompact symmetric neighbourhood of 0including

$F$. Let $F_{0}$ be an open subgroup of $G_{2}$ generated by $F_{1}$ . That is, $F_{0}=$

$n$

$\bigcup_{n=1}(F_{1}+\cdots+F_{1})$ . Then, by Theorem 9. 8of [1], $F_{0}\cong R^{m}\oplus Z^{n}\oplus F^{*}$ , where $m$

and $n$ are nonnegative integers, and $p*is$ acompact abelian group. By
lemma 6, we may show that $E\cross F$ is asmall $p$ set in $G_{1}\oplus F_{0}=G_{1}\oplus R^{m}$

$\oplus Z^{n}\oplus F^{*}$ .
Let $K_{1}$ be aprojection of $F$ to $R_{m}$ , and let $K_{2}$ be aprojection of $F$ to

$Z^{n}$ . Then, $K_{1}$ and $K_{2}$ are compact subsets. Hence, by lemma 8, $E\cross K_{1}$ is
asmall $p$ set in $G_{1}\oplus R^{m}$, and so, by lemma 7, $E\cross K_{1}\cross K_{2}$ is asmall $p$ set
i $n$ $G_{1}\oplus R^{m}\oplus Z^{n}$ .
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Therefore, by proposition 5, $E\cross K_{1}\cross K_{2}\cross F^{*}$ is asmall $p$ set in $G_{1}\oplus F_{0}$.
Since $E\cross F$ is included in $E\cross K_{1}\cross K_{2}\cross F^{*}$ , $E\cross F$ is asmall $p$ set in $G_{1}\oplus F_{0}$.

Q. E. D.

DEFINITION 3. Let $G$ be a $LCA$ group, and let $E$ be a subset of $G$.
$E$ is called a strong Riesz set if its closure with respect to the relative t0-
pology of Bohr compactification of G. {See [3] $)$ .

COROLLARY 2. Let $G_{i}$ be $LCA$ groups $(i=1,2)$ . If $E_{1}$ is a strong
Riesz set of $G_{1}$ and $E_{2}$ is a compact subset of $G_{2}$ . Then, $E_{1}\cross E_{2}$ is a strong

Riesz in $G_{1}\hat{\oplus G}_{2}$ .
Proof. Since $E_{2}$ is compact, $\overline{E_{1}\cross E}_{2}^{\mathcal{F}}is$ included in $\overline{E}_{1}^{\mathscr{H}}\cross E_{2}$ , where $‘-\prime \mathscr{F}$

’

denotes the closure with respect to the relative topology induced by the
topology of the Bohr compactification.

Hence, by theorem 9, the conclusion is obtained. Q. E. D.
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