Remarks on Riesz sets

By Hiroshi YAMAGUCHI (Received March 13, 1978; Revised March 28, 1978)

§ 1. Introduction.

Let \hat{G} be the dual group of a LCA group G. M(G) denotes the usual Banach algebra of all bounded regular Borel measures on G. $L^1(G)$ is the space of all integrable functions on G with respect to a Haal measure on G. For a $\mu \in M(G)$, its Fourier-Stieltjes transform $\hat{\mu}$ is defined as follows.

$$\hat{\mu}(\gamma) = \int_{g} (-x, \gamma) d\mu(x) \quad \text{for } \gamma \in \hat{G}.$$

For a subset E of \hat{G} , $M_E(G)$ denotes the subspace of M(G) consisting of measures whose Fourier-Stieltijes transforms vanish off E. Let $G=T^n$, and let P be a positive octant of $\hat{G}=Z^n$. That is $P=\{(m_1, \dots, m_n)\in Z^n;$ $m_i\geq 0$ $(i=1,\dots,n)\}$. The following theorem (A) is called the Bochner's theorem.

(A) For every $\mu \in M_P(T^n)$, μ is absolutely continuous with respect to a Lebesque measure on T^n . That is, $M_P(T^n) \subset L^1(T^n)$.

If we exchange T^n by R^n , the same result is established. The author proved in ([2]) the following theorem.

- (B) Let G be a LCA group such that \hat{G} is algebraically ordered. Let $M^{a}(G)$ denote the subspace of M(G) consisting of measures of analytic type. Suppose $M^{a}(G) \neq \{0\}$. If $M^{a}(G) \subset L^{1}(G)$, then G admits one of the following structures.
 - (a) G = R, (b) $G = R \oplus D$,
 - (c) G = T, (d) $G = T \oplus D$

for some discrete abelian group D. Moreover, let G be one of the above groups. P is a subsemigroup of \hat{G} such that (i) $P \cup (-P) = \hat{G}$ and $P \cap (-P) = \{0\}$. Set $M_P^a(G) = M^a(G)$. Then, $M_P^a(G) \subset L^1(G)$.

We start to consider whether an analogy of the Bochner's theorem is established if we exchange T by $T \oplus D$.

PROPOSITION 1. Let $H=T\oplus D$, where D is a discrete abelian group such that \hat{D} is torsion-free. Let P_H be a subsemigroup of $\hat{H}=Z\oplus \hat{G}$ such that (i) $P_H \cup (-P_H) = \hat{H}$ and (ii) $P_H \cap (-P_H) = \{0\}$. Let $G = H^n (= H \bigoplus_{i=1}^n \bigoplus_{i=1}^n H)$, then $M_{P_H^n}(G)$ is included in $L^1(G)$, where $P_H^n = P_H \times \cdots \times P_H = \{(\gamma_1, \dots, \gamma^n) \in \hat{G}; \gamma_i \in P_H, i = 1, 2, \dots, n\}$.

In order to prove this proposition, we need the following two lemmas. LEMMA 1. Let F be a compact torsion-free abelian group.

(1) Let P be a subsemigroup of $Z \oplus F$ such that (i) $P \cup (-P) = Z \oplus F$ and (ii) $P \cap (-P) = \{0\}$. If P is not dense in $Z \oplus F$, then

$$P = \left\{ (n, f) \in \mathbb{Z} \oplus F; n > 0, \text{ or } n = 0 \text{ and } f \ge_P 0 \right\}$$

or

$$= \left\{ (n,f) \in \mathbb{Z} \oplus F; n < 0, \text{ or } n = 0 \text{ and } f \ge_P 0 \right\}$$

(2) Let P be a subsemigroup of $R \oplus F$ such that (i) $P \cup (-P) = R \oplus F$ and (ii) $P \cap (-P) = \{0\}$. If P is not dense in $R \oplus F$, then

$$P = \left\{ (x, f) \in R \bigoplus F; x > 0, \text{ or } x = 0 \text{ and } f \ge_P 0 \right\}$$

or

$$= \left\{ (x,f) \in \mathbb{R} \oplus F; x < 0, \text{ or } x = 0 \text{ and } f \ge_P 0 \right\}$$

Where '<' denotes the usual order on Z and R, and ' \geq_P ' denotes the order on F induced by P.

PROOF. We prove only (2). Suppose P is not dense in $R \oplus F$. Since P is dense in F, $P \cap R$ is not dense in R. Hence, by proposition 2 of [3], $P \cap R = [0, \infty)$ or $(-\infty, 0]$. We consider only the case $P \cap R = [0, \infty)$. Suppose there exists an $x_0 > 0(x_0 \in R)$ such that $(x_0, f_0) \in (-P)$ for some $f_0 \in F$. Then $\{(x, f) \in R \oplus F; x \leq x_0, f \in F\}$ is included in (-P). Since (-P) is a semigroup, $(-P) = R \oplus F$. That is, P is dense in $R \oplus F$. This is a contradiction. Q. E. D.

DEFINITION 1. G is a LCA group. A subset E of \hat{G} is called the Riesz set if $M_E(G) \subset L^1(G)$.

LEMMA 2. Let G_1 be a LCA group, and let G_2 be a discrete abelian group. If $E(\subset \hat{G}_1)$ is a Riesz set of \hat{G}_1 , then $E \times \hat{G}_2$ is a Riesz set of $\hat{G}_1 \oplus \hat{G}_2$.

PROOF. For $\mu \in M_{E \times \hat{G}_2}(G_1 \oplus G_2)$, μ is represented as follows.

$$d\mu(x, y) = d\mu_{1,n}(x) \times d\delta_{y_n}(y) \left((x, y) \in G_1 \oplus G_2 \right)$$

H. Yamaguchi

, where $\mu_{1,n}$ belongs to $M(G_1)$ and δ_{y_n} is the Dirac measure at $y_n \in G_2$ $(n = 1, 2, \dots)$, and moreover $||\mu|| = \sum_{n=1}^{\infty} ||\mu_{1,n}||$ For $\gamma_1 \in E$, $(\gamma_1, \gamma_2) \in E \times \hat{G}_2$ for every $\gamma_2 \in \hat{G}_2$.

Hence,

$$\begin{split} & \sum_{n=1}^{\infty} \hat{\mu}_{1,n}(\gamma_1) \left(-y_n, \gamma_2\right) \\ & = \hat{\mu}(\gamma 1, \gamma_2) = 0 \qquad \text{for every } \gamma_2 \in \hat{G}_2. \end{split}$$

Since $\sum_{n=1}^{\infty} |\hat{\mu}_{1,n}(\gamma_1)| < \infty$, we can derive that $\hat{\mu}_{1,n}(\gamma_1) = 0$ $(n=1, 2, \cdots)$. That is, $\mu_{1,n} \in M_E(G_1)$ $(n=1, 2, \cdots)$. By the hypothesis, $\mu_{1,n}$ belongs to $L^1(G_1)$, and so μ is contained in $L^1(G_1 \oplus G_2)$. Q. E. D.

PROOF OF PROPOSITION 1. If P_H is dense in \hat{H} , then P_H^n is also dense in \hat{G} . Hence, $M_{P_H^n}(G) = \{0\} \subset L^1(G)$. If P_H is not dense in \hat{H} , then by lemma 1, $P_H \subset Z^+ \times \hat{D}$, where Z^+ is a subset of Z consisting of nonnegative integers.

Hence, $P_{H}^{n} \subset (Z^{+} \times \widehat{D}) \times \cdots \times (Z^{+} + \widehat{D}) \cong (Z^{+})^{n} \times \widehat{D}_{n}.$

By the Bochner's theorem, $(Z^+)^n$ is a Riesz set in Z^n , and \hat{D}^n is a compact abelian group. Hence, by lemma 1, we obtain that $M_{P_H^n}(G) \subset L^1(G)$.

Q. E. D.

ŧ

REMARK 1. The same result is established in proposition 1 even if we exchange $T \oplus D$ by $R \oplus D$.

Combing with theorem 1 and theorem 2 of [2], the following corollary is obtained.

COROLLARY 1. Let G be a LCA group. Let P be a subsemigroup of \hat{G} such that (i) $P \cup (-P) = \hat{G}$ and (ii) $P \cap (-P) = \{0\}$. Suppose P is not dense in \hat{G} . Then, the following are equivalent.

- (1) $M_{P^n}(G^n) \subset L^1(G^n).$
- (2) G admits one of the following structures.
 (a) G = R, (b) G = R⊕D, (c) G = T, (d) G = T⊕D for some discrete abelian group D.

\S 2. Small p sets

In this section, we shall prove that the direct product of a small p set and a compact set is a small p set.

DEFINITION 2. G is a LCA group. Let p be a positive integer. A subset E of \hat{G} is said to be a small p set if the following property is satisfied. (See [5]).

(*) For $\mu \in M_E(G)$, $\mu^p = \mu * \cdots * \mu$ belongs to $L^1(G)$. LEMMA 3. Let p be a positive integer. Then,

$$x_1 x_2 \cdots x_p = \sum_{j=1}^{C(p)} \alpha_j \{ \beta_j (x_1, x_2, \cdots, x_p) \}^p$$

for every complex numbers x_i $(i=1, 2, \dots, p)$, where β_j are linear forms of $x_1, x_2, \dots, and x_p, \alpha_j$ are real numbers $(j=1, 2, \dots, p)$ and C(p) is a positive integer.

Proof.

$$4x_1x_2 = (x_1 + x_2)^2 - (x_1 - x_2) \tag{1}$$

We integrate two side of (1) with respect to x_1 from x_1 to $2x_1$, then

$$x_1^2 x_2 = \frac{1}{9} \left\{ (2x_1 + x_2)^3 - (x_1 + x_2)^3 - (2x_1 - x_2)^3 + (x_1 - x_2)^3 \right\}$$
(2)

We integrate two sides of (2) with respect to x_1 from x_1 to $2x_1$ again, then

$$\begin{split} x_1^3 x_2 &= \frac{1}{168} \left\{ (4x_1 + x_2)^4 - (2x_1 + x_2)^4 - 2(2x_1 + x_2)^4 \\ &\quad + 2(x_1 + x_2)^4 - (4x_1 - x_2)^4 + (2x_1 - x_2)^4 \\ &\quad + 2(2x_1 - x_2)^4 - 2(x_1 - x_2)^4 \right\}. \end{split}$$

We continue this argument. Then, for each positive integer n, there exist linear forms $A_{n,i}(x_1, x_2)$ and real numbers $a_{n,i}$ $(i=1, 2, \dots, 2^n)$ such that

$$x_1^n x_2 = \sum_{i=1}^{2^n} a_{n,i} \{ A_{n,i}(x_1, x_2) \}^{n+1}$$

We define linear forms $B_{i_1,\dots,i_k}(x_1,\dots,x_k,x_{k+1})$ $(k=1,2,\dots; 1 \leq i_j \leq 2^j, j=1,2,\dots,k)$ as follows.

$$B_{i_1}(x_1, x_2) = A_{1,i_1}(x_1, x_2),$$

$$B_{i_1,i_2}(x_1, x_2, x_3) = A_{2,i_2} (B_{i_1}(x_1, x_2), x_3),$$

$$B_{i_1,i_2,i_3}(x_1, x_2, x_3, x_4) = A_{3,i_3} (B_{i_1,i_2}(x_1, x_2, x_3), x_4),$$

$$\dots$$

$$B_{i_1,i_2,i_3}(x_1, x_2, x_3, x_4) = A_{i_1,i_3} (B_{i_1,i_2}(x_1, x_2, x_3), x_4),$$

$$\dots$$

$$B_{i_1,\dots,i_k}(x_1,\dots,x_k,x_{k+1}) = A_{k+1,i_{k+1}} \Big(B_{i_1,\dots,i_{k-1}}(x_1,\dots,x_k),x_{k+1} \Big)$$

Then, we obtain the following equality.

H. Yamaguchi

$$x_1 x_2 \cdots x_p = \sum_{i_1=1}^2 \cdots \sum_{i_{p-1}=1}^{2^{p-1}} a_{1,i_1} \cdots a_{p-1,i_{p-1}} \{ B_{i_1,\cdots,i_{p-1}}(x_1, \cdots, x_p) \}^p.$$

Q. E. D.

LEMMA 4. Let G be a LCA group. Let E be a subset of \hat{G} . Then, the following are equivalent.

- (1) E is a small set,
- (2) $\mu_1 * \cdots * \mu_p$ belong to $L^1(G)$ for every $\mu_1, \cdots, \mu_0 \in M_E(G)$.

PROOF. $(2) \Rightarrow (1)$. trivial.

(1) \Rightarrow (2). For $\mu_1, \dots, \mu_p \in M_E(G)$, by lemma 3,

$$\mu_1 * \cdots * \mu_p = \sum_{j=1}^{C(P)} \alpha_j \beta_j(\mu_1, \cdots, \mu_p) * \cdots * \beta_j(\mu_1, \cdots, \mu_p).$$

Since $\beta_j(\mu_1, \dots, \mu_p) \in M_E(G)$, $\mu_1 * \dots * \mu_p$ belongs to $L^1(G)$. Q. E. D.

Lemma 2 of §1 can be generalized as follows.

PROPOSITION 5. Let G be a LCA group and F a compact subgroup of \hat{G} . Let π_F be a natural homomorphism from \hat{G} onto \hat{G}/F . If \check{E} is a small p subset of \hat{G}/F , then $\pi_F^{-1}(\check{E})$ is also a small p set in \hat{G} .

PROOF. Let H be an annihilator of F. Since F is compact, H is an open subgroup of G. Let $\mu_{H_{\alpha}}$ be a restriction of μ to each cosets H_{α} of H. Then, μ can be represented as follows.

$$\mu = \sum_{n=1}^{\infty} \mu_{H+x_n}$$

, where $H + x_n \neq H + x_m$ if $n \neq m$, and $||\mu|| = \sum_{n=1}^{\infty} ||\mu_{H+x_n}||$.

Set $\lambda_n = \mu_{H+x_n} * \delta_{-x_n}$ $(n=1, 2, \cdots)$, where δ_{-x_n} is the Dirac measure at $-x_n$. Then, $\lambda_n \in M(H)$, and $\mu = \sum_{n=1}^{\infty} \delta_{x_n} * \lambda_n$.

For $\gamma \in \pi_F^{-1}(\check{E})$, $\gamma + s \in \pi_F^{-1}(\check{E})$ for every $s \in F$. Hence,

$$\sum_{n=1}^{\infty} \hat{\lambda}_n \left(\pi_F(\gamma) \right) (-x_n, s)$$

=
$$\sum_{n=1}^{\infty} \hat{\lambda}_n (\gamma + s) (-x_n, \gamma + s)$$

=
$$\hat{\mu} (\gamma + s)$$

=
$$0 \quad \text{for every } s \in F.$$

Since $\sum_{n=1}^{\infty} |\hat{\lambda}_n(\pi_F(\gamma))| < \infty$ and F is dense in its Bohr compacti fication \overline{F}^B , $\hat{\lambda}_n(\pi_F(\gamma))(-x_n, \gamma) = 0$ $(n=1, 2, \cdots)$.

332

That is, $\lambda_n \in M^{\check{E}}(H)$ $(n=1, 2, \cdots)$. On the other hand,

$$\mu^p = \sum_{i_1=1}^{\infty} \cdots \sum_{i_p=1}^{\infty} (\lambda_{i_1} \ast \cdots \ast \lambda_{i_p}) \ast \delta_{x_{j_1} + \cdots + x_{i_p}}.$$

Hence, by lemma 4, μ^p belongs to $L^1(G)$. Q. E. D.

LEMMA 6. Let G be a LCA group, and let Λ be an open subgroup of \hat{G} . E is a subset of Λ . Then, E is a small p set in \hat{G} if and only if E is a small p set in Λ .

PROOF. Suppose E is a small p set in Λ . For a $\mu \in M_E(G)$, there exists a measure $\lambda \in M_E(G/\Lambda^{\perp})$ such that $\hat{\mu}|_{\lambda} = \hat{\lambda}$, where Λ^{\perp} is an annihilator of Λ .

Since $L^{1}(G)|_{A} = L^{1}(G/\Lambda^{\perp})$, there exists a function $g \in L^{1}(G)$ such that $\hat{g}|_{A} = \hat{\lambda}^{n}$. Let $m_{A^{\perp}}$ be a normalized Haar measure on Λ^{\perp} . Then, $\mu^{p} = m_{A^{\perp}} * g \in L^{1}(G)$.

Conversely, if E is a small p set in \hat{G} , for a $\lambda \in M_E(G/\Lambda^{\perp})$, there exists a measure $\mu \in M(G)$ such that $\hat{\mu}'|_{\Lambda} = \hat{\lambda}$.

Let $\mu = \mu' * m_{A^{\perp}}$. Then, μ belongs to $M_E(G)$, and so, by the hypothesis, μ^p is absolutely continuous with respect to a Haar measure on G. Hence, by Theorem 2.7.4 of [6], λ^p belongs to $L^1(G/\Lambda^{\perp})$. Q. E. D.

LEMMA 7. Let G_1 be a LCA group, and let G_2 be a compact abelian group. Let p be a positive integer. A subset E_1 of \hat{G}_1 is a small p set in \hat{G}_1 . E_2 is a compact subset. Then, $E_1 \times E_2$ is a small p set in $\hat{G_1} \oplus \hat{G_2}$.

PROOF. Set $E_2 = \{\gamma'_1, \gamma'_2, \dots, \gamma'_n\}$. Let μ be a measure belonging to $M_{E_1 \times E_2}(G_1 \oplus G_2)$. For each k $(k=1, 2, \dots, n)$, define a continuous function ϕ_k on \hat{G}_1 as follows.

$$\psi_k(\gamma) = \hat{\mu}(\gamma, \gamma'_k)$$
.

Then, by Theorem 1.9.1 of [6], there exists a measure $\mu_k \in M_{E_1}(G_1)$ such that $\hat{\mu}_k(\gamma) = \phi_k(\gamma)$. Hence, $\mu = \sum_{k=1}^n \mu_k \times (y, \gamma'_k) m_{G_2}$, where m_{G_2} is a normalized Haar measure on G_2 . Since E_1 is a small p set,

$$\widetilde{\mu^*\cdots^*}\mu = \sum_{k_1,\cdots,k_p=1}^n \mu_{k_1}^*\cdots^*\mu_{k_p}^*\times(\gamma'_{k_1}m_{G_2})^*\cdots^*(\gamma'_{k_p}m_{G_2})$$

$$= \sum_{k=1}^n \mu_k^p \times(\gamma'_k m_{G_2}) \in L^1(G_1 \oplus G_2). \qquad Q. E. D.$$

LEMMA 8. Let G be a LCA group and p be a positive intiger. Let E be a small p subset of \hat{G} , and let F be a compact subset of \mathbb{R}^n . Then, $E \times F$ is a small p set in $\widehat{G \oplus \mathbb{R}^n}$.

H. Yamaguchi

PROOF. For $\mu \in M_{E \times F}(G \oplus \mathbb{R}^n)$, let $(\mu^p)_s$ be a singular part of $\mu^p = \mu^p + \cdots + \mu$ with respect to aHaar measure on \hat{G} . Suppose $(\mu^p)_s \neq 0$. For a positive number c, we define a homeomorphism I_c on $G \oplus \mathbb{R}^n$ as follows.

 $I_C(x, y) = (x, cy)$ for $(x, y) \in G \oplus \mathbb{R}^n$

, where $y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ and $cy = (cy_1, cy_2, \dots, cy_n)$.

For a measure $\lambda \in M(G \oplus R^n)$, $I_C \circ \lambda$ denotes the continuous image of λ under I_C . Since $I_C \circ \mu^p = (I_C \circ \mu)^p$ and μ is regular, we may hypothesize that

$$|(\mu^p)_s|(G \times (-\pi, \pi]^n) > \frac{1}{2} ||\langle \mu^p \rangle_s||$$
.

Let ϕ be a natural homomorphism from $G \oplus \mathbb{R}^n$ onto $G \oplus \mathbb{T}^n$.

That is, $\psi(x, y) = (x, e^{iy})$ for $(x, y) \in G \oplus R^n$. Then, $\psi \circ (\mu^p)_s$ is also a singular measure on $G \oplus T^n$. And, since $|(\mu^p)_s|(G \times (-\pi, \pi]^n) > \frac{1}{2}||(\mu^p)_s||$, $\psi \circ (\mu^p)_s \neq 0$. Hence, $\psi \circ (\mu^p)_s$ (image of $(\mu^p)_s$ under ψ) is a nonzero singular part of $\psi \circ (\mu^p)$ with respect to a Haar measure on $G \oplus T^n$.

On the other hand, since F is a compact subset of \mathbb{R}^n , there exists a positive integer m_0 such that $F \subset \mathbb{C}_{m_0}$,

$$C_{m_0} = \left\{ x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n ; |x_i| \leq m_0, \quad i = 1, 2, \dots, n \right\}.$$

For $s \in \hat{G}$ and $k = (k_1, \dots, k_n) \in \mathbb{Z}^n$, $\widehat{\phi \circ (\mu^p)}(s, k) = \widehat{\mu}^p(s, k)$.

That is, $\operatorname{supp}(\widehat{\psi}\circ(\mu^p))$ is included in $E \times (Z^n \cap C_{m_o})$. Hence, by lemma 7, $\psi \circ (\mu^p)$ belongs to $L^1(G \oplus T^n)$. This is a contradiction. Q. E. D.

THEOREM 9. Let G_1 and G_2 be LCA groups. Let p be a positive integer. If E is a small p subset of \hat{G}_1 and F is a compact subset of \hat{G}_2 , then $E \times F$ is a small p set in $\widehat{G_1 \oplus G_2}$.

PROOF. Let F_1 be a compact symmetric neighbourhood of 0 including *F*. Let F_0 be an open subgroup of \hat{G}_2 generated by F_1 . That is, $F_0 = \bigcup_{n=1}^{\infty} (F_1 + \cdots + F_1)$. Then, by Theorem 9.8 of [1], $F_0 \cong R^m \bigoplus Z^n \bigoplus F^*$, where *m* and *n* are nonnegative integers, and F^* is a compact abelian group. By lemma 6, we may show that $E \times F$ is a small *p* set in $\hat{G}_1 \bigoplus F_0 = \hat{G}_1 \bigoplus R^m \bigoplus Z^n \bigoplus F^*$.

Let K_1 be a projection of F to R_m , and let K_2 be a projection of F to Z^n . Then, K_1 and K_2 are compact subsets. Hence, by lemma 8, $E \times K_1$ is a small p set in $\hat{G}_1 \oplus R^m$, and so, by lemma 7, $E \times K_1 \times K_2$ is a small p set in $\hat{G}_1 \oplus R^m \oplus Z^n$.

Therefore, by proposition 5, $E \times K_1 \times K_2 \times F^*$ is a small p set in $\hat{G}_1 \oplus F_0$. Since $E \times F$ is included in $E \times K_1 \times K_2 \times F^*$, $E \times F$ is a small p set in $\hat{G}_1 \oplus F_0$. Q. E. D.

DEFINITION 3. Let G be a LCA group, and let E be a subset of \hat{G} . E is called a strong Riesz set if its closure with respect to the relative topology of Bohr compactification of \hat{G} . (See [3]).

COROLLARY 2. Let G_i be LCA groups (i=1,2). If E_1 is a strong Riesz set of \hat{G}_1 and E_2 is a compact subset of \hat{G}_2 . Then, $E_1 \times E_2$ is a strong Riesz in $\widehat{G_1 \oplus G_2}$.

PROOF. Since E_2 is compact, $\overline{E_1 \times E_2^{\mathscr{F}}}$ is included in $\overline{E_1^{\mathscr{F}} \times E_2}$, where ' $-\mathscr{F}$ ' denotes the closure with respect to the relative topology induced by the topology of the Bohr compactification.

Hence, by theorem 9, the conclusion is obtained. Q. E. D.

References

- E. HEWITT and K. A. ROSS: Abstract Harmonic Analysis Vol. 1, Springer-Verlag (1963).
- [2] S. KOSHI and H. YAMAGUCHI: The F. and M. Riesz theorem on LCA groups (to appear).
- [3] Y. MEYER: Spectres des measures et measures absolument continues, Studia Math 30 87-99 (1968).
- [4] H. OTAKI: A relation between the F. and M. Riesz theorem and the structures of LCA groups, Hokkaido Math Journal, Vol. VI, 306-312 (1977).
- [5] L. PIGNO and S. SAEKI: Fourier-Stieltjes transforms which vanish at infinity, Math. Z 141, 83-91 (1975).
- [6] W. RUDIN: Fourier Analysis on Groups, New York Interscience (1962).

Department of Mathematics, Hokkaido University