
Hokkaido Mathematical Journal Vol. 47 (2018) p. 637–654

Rigidity of transversally biharmonic maps

between foliated Riemannian manifolds
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Abstract. On a smooth foliated map from a complete, possibly non-compact, fo-

liated Riemannian manifold into another foliated Riemannian manifold of which

transversal sectional curvature is non-positive, we will show that, if it is transver-

sally biharmonic and has the finite energy and finite bienergy, then it is transversally

harmonic.

Key words: foliation, divergence theorem, transversally harmonic, transversally bihar-

monic.

1. Introduction

Transversally biharmonic maps between two foliated Riemannian man-
ifolds introduced by Chiang and Wolak (cf. [4]) are generalizations of
transversally harmonic maps introduced by Konderak and Wolak (cf. [19],
[20]).

Among smooth foliated maps ϕ between two Riemannian foliated man-
ifolds, one can define the transversal energy and derive the Euler-Lagrange
equation, and transversally harmonic map as its critical points, which are by
definition the transversal tension field vanishes, τb(ϕ) ≡ 0. The transverse
bienergy can be also defined as E2(ϕ) = (1/2)

∫
M
|τb(ϕ)|2 vg whose Euler-

Lagrange equation is that the transversal bitension field τ2,b(ϕ) vanishes and
the transversally biharmonic maps which are, by definition, vanishing of the
transverse bitension field.

Recently, S. D. Jung studied extensively the transversally harmonic
maps and the transversally biharmonic maps on compact Riemannian fo-
liated manifolds (cf. [14], [15], [17], [18]).
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In this paper, we study transversally biharmonic maps of a complete
(possibly non-compact) Riemannian foliated manifold (M, g,F) into another
Riemannian foliated manifold (M ′, g′,F ′) of which transversal sectional cur-
vature is non-positive. Then, we will show that:

Theorem 1.1 (cf. Theorem 2.11) Let (M, g,F) and (M ′, g′,F ′) be two
foliated Riemannian manifolds. Assume that the foliation F is transversally
volume preserving (cf. Definition 2.1) and the transversal sectional curvature
of (M ′, g′,F ′) is non-positive. Let ϕ : (M, g,F) → (M ′, g′,F ′) be a C∞

foliated map satisfying the conservation law. If ϕ is transversally biharmonic
with the finite transversal energy E(ϕ) < ∞ and finite transversal bienergy
E2(ϕ) < ∞, then it is transversally harmonic.

This theorem can be regarded a natural analogue of B. Y. Chen’s con-
jecture and the generalized Chen’s conjecture (cf. [3], [12]).

B. Y. Chen’s conjecture: Every biharmonic submanifolds of the Eu-
clidean space Rn must be harmonic (minimal).

The generalized B. Y. Chen’s conjecture: Every biharmonic submani-
folds of a Riemannian manifold of non-positive curvature must be harmonic
(minimal).

Several authors has contributed to give partial answers to solve these
problems (cf. [1], [5], [8], [11], [9], [10], [22], [23], [24]). For the first and
second variational formula of the bienergy, see [13]. For the CR analogue of
biharmonic maps, see also [2], [6], [31].

2. Preliminaries

We prepare the materials for the first and second variational formulas
for the transversal energy of a smooth foliated map between two foliated
Riemannian manifolds following [17], [18] and [32].

2.1. The Green’s formula on a foliated Riemannian manifold
Let (M, g,F) be an n(= p + q)-dimensional foliated Riemannian mani-

fold with foliation F of codimension q and a bundle-like Riemannian metric
g with respect to F (cf. [29], [30]). Let TM be the tangent bundle of M ,
L, the tangent bundle of F , and Q = TM/L, the corresponding normal
bundle of F . We denote gQ the induced Riemannian metric on the normal
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bundle Q, and ∇Q, the transversal Levi-Civita connection on Q, RQ, the
transversal curvature tensor, and KQ, the transversal sectional curvature,
respectively. Notice that the bundle projection π : TM → Q is an element
of the space Ω1(M, Q) of Q-valued 1-forms on M . Then, one can obtain the
Q-valued bilinear form α on M , called the second fundamental form of F ,
defined by

α(X, Y ) = −(DXπ)(Y ) = π(∇Q
XY ), (X, Y ∈ Γ(L)),

where D is the torsion free connection on the bundle Q (cf. [32, p. 240,
Proposition 1]. See also Definition of α, (6) in Page 241 of [32]). The trace
τ of α, called the tension field of F is defined by

τ =
p∑

i,j=1

gij α(Xi, Xj),

where {Xi}p
i=1 spanns Γ(L|U) on a neighborhood U on M . The Green’s the-

orem, due to Yorozu and Tanemura([32]), of a foliated Riemannian manifold
(M, g,F) says that

∫

M

divD(ν) vg =
∫

M

gQ(τ, ν) vg (ν ∈ Γ(Q)), (2.1)

where divD(ν) denotes the transversal divergence of ν with respect to ∇Q

given by divD(ν) :=
∑q

a,b=1 gab gQ(DXa
ν, π(Xb)). Here {Xa}q

a=1 spanns
Γ(L⊥|U) where L⊥ is the orthogonal complement bundle of L with a natural
identification σ : Q

∼=→ L⊥.

Definition 2.1 A foliation F is transversally volume preserving if div(τ)
= 0.

Let us recall Gaffney’s theorem ([7], [24]):

Theorem 2.2 Let (M, g) be a non-compact complete Riemannian mani-
fold without boundary, If a C1 vector field X on M satisfies that

∫

M

|X| vg < ∞ and
∫

M

div(X) vg < ∞. (2.2)
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Then, it holds that
∫

M

div(X) vg = 0. (2.3)

Furthermore, if f ∈ C1(M) and a C1 vector field X on M satisfy div(X) =
0,

∫
M

Xf vg < ∞,
∫

M
|f |2 vg < ∞ and

∫
M
|X|2 vg < ∞, then it holds that

∫

M

Xf vg = 0. (2.4)

For the sake of completeness, we give a proof of Theorem 2.2 in the
appendix.

If F is transversally volume preserving, it holds by definition that
∫

M

τ gQ(ν, ν) vg = 0 (ν ∈ Γ(Q) with compact support). (2.5)

2.2. The first and second variational formulas
Let (M, g,F), and (M ′, g′,F ′) be two compact foliated Riemannian

manifolds. The transversal energy E(ϕ) among the totality of smooth foli-
ated maps from (M, g,F) into (M ′, g′,F ′) by

E(ϕ) =
1
2

∫

M

|dT ϕ|2 vg. (2.6)

Here, a smooth map ϕ is a foliated map is, by definition, for every leaf
` of F , there exists a leaf `′ of F ′ satisfying ϕ(`) ⊂ `′. Then, dT ϕ :=
π′ ◦ dϕ ◦σ; Q → Q′ can be regarded as a section of Q∗⊗ϕ−1Q′ where Q∗ is
a subspace of the cotangent bundle T ∗M . Here, π, π′ are the projections of
TM → Q = TM/L and TM ′ → Q′ = TM ′/L′. Notice that our definition
of the transversal energy is the same as the one of Jung’s definition (cf. [18,
p. 11, (3.4)]).

The first variational formula is given (cf. [17], the case f = 1 in The-
orem 4.1, (4.2)), for every smooth foliated variation {ϕt} with ϕ0 = ϕ and
dϕt/dt|t=0 = V in which V being a section ϕ−1Q′,
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d

dt

∣∣∣∣
t=0

E(ϕt) = −
∫

M

〈V, τb(ϕ)− dT ϕ(τ)〉 vg. (2.7)

Here, τb(ϕ) is the transversal tension field defined by

τb(ϕ) =
q∑

a=1

(∇̃Ea
dT ϕ)(Ea), (2.8)

where ∇̃ is the induced connection in Q∗ ⊗ ϕ−1Q′ from the Levi-Civita
connection of (M ′, g′), and {Ea}q

a=1 is a locally defined orthonormal frame
field on Q.

Definition 2.3 A smooth foliated map ϕ : (M, g,F) → (M ′, g′,F ′) is
said to be transversally harmonic if τb(ϕ) ≡ 0.

Then, for a transversally harmonic map ϕ : (M, g,F) → (M ′, g′,F ′),
the second variation formula of the transversal energy E(ϕ) is given as fol-
lows (cf. [18, p. 13], the case f = 1 in Theorem 4.1, (4.2)): let ϕs,t : M → M ′

(−ε < s, t < ε) be any two parameter smooth foliated variation of ϕ with
V = ∂ϕs,t/∂s|(s,t)=(0,0), W = ∂ϕs,t/∂t|(s,t)=(0,0) and ϕ0,0 = ϕ,

Hess(E)ϕ(V, W ) :=
∂2

∂s∂t

∣∣∣∣
(s,t)=(0,0)

E(ϕs,t)

=
∫

M

〈Jb, ϕ(V ),W 〉 vg +
∫

M

V 〈W,dT ϕ(τ)〉 vg, (2.9)

where Jb, ϕ is a second order semi-elliptic differential operator acting on the
space Γ(ϕ−1Q′) of sections of ϕ−1Q′ which is of the form:

Jb, ϕ(V ) := ∇̃∗∇̃V − ∇̃τV − traceQRQ′(V, dT ϕ)dT ϕ

= −
q∑

a=1

(∇̃Ea
∇̃Ea

− ∇̃∇Ea Ea

)
V

−
q∑

a=1

RQ′(V, dT ϕ(Ea))dT ϕ(Ea) (2.10)

for V ∈ Γ(ϕ−1Q′). Here, ∇ is the Levi-Civita connection of (M, g), and
recall also that:
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∇̃∗∇̃V = −
q∑

a=1

(∇̃Ea
∇̃Ea

− ∇̃∇Ea Ea
)V + ∇̃τV, (2.11)

traceQRQ′(V, dT ϕ)dT ϕ :=
q∑

a=1

RQ′(V, dT ϕ(Ea))dT ϕ(Ea). (2.12)

Here, ∇̃∗ is the adjoint of the connection ∇̃ which satisfies (cf. [14, Propo-
sition 3.1]) that

∫

M

〈∇̃∗V, W 〉 vg =
∫

M

〈V, ∇̃W 〉 vg (V, W ∈ Γ(ϕ−1Q′)),

and for all V, W ∈ Γ(ϕ−1Q′), it holds that

∫

M

〈∇̃∗∇̃V, W 〉 vg =
∫

M

〈∇̃V, ∇̃W 〉 vg =
∫

M

〈V, ∇̃∗∇̃W 〉 vg.

Definition 2.4 The transversal bitension field τ2,b(ϕ) of a smooth foliated
map ϕ is defined by

τ2,b(ϕ) := Jb,ϕ(τb(ϕ)). (2.13)

Definition 2.5 The transversal bienergy E2 of a smooth foliated map ϕ

is defined by

E2(ϕ) :=
1
2

∫

M

|τb(ϕ)|2 vg. (2.14)

Remark that this definition of the transversal bienergy is also the same
as the one of Jung (cf. Jung [18, p. 16], the case f = 1 in Definition 6.1,
(6.2)) because τb(ϕ) =

∑q
a=1(∇̃Ea

dT ϕ)(Ea) = −δ̃dT ϕ (cf. Jung [18, p. 11],
the case f = 1 in (3.3)). On the first variation formula of the transversal
bienergy is given as follows. For a smooth foliated map ϕ and a smooth
foliated variation {ϕt} of ϕ, it holds (cf. [18, p. 16], the case f = 1 in (6.3))
that

d

dt

∣∣∣∣
t=0

E2(ϕt) = −
∫

M

{〈V, τ2,b(ϕ)〉+ 〈∇̃τV, τb(ϕ)〉 − 〈V, ∇̃ττb(ϕ)〉} vg.

(2.15)
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Definition 2.6 A smooth foliated map ϕ : (M, g,F) → (M ′, g′,F ′) is
said to be transversally biharmonic if τ2,b(ϕ) ≡ 0.

Let us recall that

Definition 2.7 A smooth foliated map ϕ : (M, g,F) → (M ′, g′,F ′) sat-
isfies the conservation law if

dive∇S(ϕ)(X) = 0 (∀X ∈ Γ(Q)). (2.16)

Here, dive∇S(ϕ)(X) is defined by

dive∇S(ϕ)(X) :=
q∑

a=1

(∇̃EaS(ϕ))(Ea, X), (X ∈ Γ(Q)), (2.17)

and recall（cf. [18, p. 11]) the transversal stress-energy tensor S(ϕ) :=
(1/2)|dT ϕ|2 gQ − ϕ∗gQ′ , and Jung showed (cf. Jung, [18, p 11, Proposition
3.4]) that:

Proposition 2.8 For every a C∞ foliated map ϕ : (M, g,F) →
(M ′, g′,F ′), it holds that

dive∇S(ϕ)(X) = −〈τb(ϕ), dT ϕ(X)〉, (X ∈ Γ(Q)). (2.18)

Then, one can ask the following generalized B.Y. Chen’s conjecture:

The generalized Chen’s conjecture:
Let ϕ be a transversally biharmonic map from a foliated Riemannian

manifold (M, g,F) into another foliated Riemannian manifold (M ′, g′,F ′)
whose transversal sectional curvature KQ′ is non-positive. Then, ϕ must be
transversally harmonic.

To this conjecture, Jung showed (cf. [18, p. 19]) that

Theorem 2.9 (Jung) Assume that (M, g,F) is a compact foliated Rie-
mannian manifold whose transversal Ricci curvature is non-negative and
positive at some point, and (M ′, g′,F ′) has a positive constant transver-
sal sectional curvature: KQ′ = C > 0. Then, every transversally stable,
transversally biharmonic map ϕ : (M, g,F) → (M ′, g′,F ′) which satisfies
the conservation law must be transversally harmonic.
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Jung also showed (cf. [18, p. 5, Theorem 6.5]) that

Theorem 2.10 (Jung) Assume that (M, g,F) is a compact foliated Rie-
mannian manifold whose transversal Ricci curvature is non-negative and
positive at some point, and (M ′, g′,F ′) has non-positive transversal sec-
tional curvature KQ′ ≤ 0. Then, every transversally biharmonic map ϕ :
(M, g,F) → (M ′, g′,F ′) must be transversally harmonic.

Then, we can state our main theorem which gives an affirmative par-
tial answer to the above generalized Chen’s conjecture under the additional
assumption that ϕ has both the finite transversal energy and the finite
transversal bienergy:

Theorem 2.11 Let ϕ : (M, g,F) → (M ′, g′,F ′) a smooth foliated map
satisfying the conservation law. Assume that (M, g) is complete (possibly
non-compact), F is transversally volume preserving, i.e., div(τ) = 0, and the
transversal sectional curvature KQ′ of (M ′, g′,F ′) is non-positive: KQ′ ≤ 0.

If ϕ is transversally biharmonic having both the finite transversal energy
E(ϕ) < ∞ and the finite transversal bienergy E2(ϕ), then it is transversally
harmonic.

Remark that in the case that M is compact, Theorem 2.11 is true due
to Jung’s work (cf. [18, p. 17, Theorem 6.5]).

3. Proof of main theorem

In this section, we give a proof of Theorem 2.11.
(The first step) First, let us take a cut off function η from a fixed point

x0 ∈ M on (M, g), i.e.,





0 ≤ η(x) ≤ 1 (x ∈ M),

η(x) = 1 (x ∈ Br(x0)),

η(x) = 0 (x /∈ B2r(x0),

|∇gη| ≤ 2
r

(x ∈ M),

where Br(x0) := {x ∈ M |r(x) < r}, r(x) is a distance function from x0 on
(M, g), ∇g is the Levi-Civita connection of (M, g), respectively.

Assume that ϕ is a transversally biharmonic map of (M, g,F) into
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(M ′, g′,F ′), i.e.,

τ2,b(ϕ) = Jb,ϕ(τb(ϕ))

= ∇̃∗∇̃τb(ϕ)− ∇̃ττb(ϕ)− traceQRQ′(τb(ϕ), dT ϕ)dT ϕ)

= 0, (3.1)

where recall ∇̃ is the induced connection on ϕ−1Q′ ⊗ T ∗M .

(The second step) Since τb(ϕ) ∈ Γ(Q) satisfies that
∫

M
|τb(ϕ)|2 vg < ∞,

it holds that as r →∞,
∫

M

〈∇̃ττb(ϕ), η2 τb(ϕ)〉 vg =
1
2

∫

M

τ 〈τb(ϕ), τb(ϕ)〉 η2 vg

−→ 1
2

∫

M

τ 〈τb(ϕ), τb(ϕ) 〉 vg = 0 (3.2)

due to the completeness of (M, g), div(τ) = 0,
∫

M
|∇̃ττb(ϕ)|2 vg < ∞ and

Gaffney’s theorem (cf. Theorem 2.2).
Furthermore, by (3.1), we obtain that

∫

M

〈∇̃∗∇̃τb(ϕ), η2 τb(ϕ)〉 vg

=
∫

M

η2 〈traceQRQ′(τb(ϕ), dT ϕ)dT ϕ, τb(ϕ)〉 vg

=
∫

M

η2

q∑
a=1

〈RQ′(τb(ϕ), dT ϕ(Ea))dT ϕ(Ea), τb(ϕ)〉 vg

=
∫

M

η2

q∑
a=1

KQ′(Πϕ,a) vg

≤ 0, (3.3)

where the sectional curvature KQ′(Πϕ,a) of (M ′, g′,F ′) corresponding to
the plane spanned by τb(ϕ) and dT ϕ(Ea) is non-positive.

(The third step) On the other hand, by the properties of the adjoint
∇̃∗ of ∇̃, the left hand side of (3.3) is equal to
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∫

M

〈∇̃τb(ϕ), ∇̃(η2 τb(ϕ))〉 vg

=
∫

M

q∑
a=1

〈∇̃Ea
τb(ϕ), ∇̃Ea

(η2 τb(ϕ))〉 vg

=
∫

M

η2

q∑
a=1

|∇̃Ea
τb(ϕ)|2 vg + 2

∫

M

q∑
a=1

〈η ∇̃Ea
τb(ϕ), (Eaη) τb(ϕ)〉 vg

(3.4)

since

∇̃Ea
(η2 τb(ϕ)) = η2 ∇̃Ea

τb(ϕ) + 2 η (Eaη) τb(ϕ).

Together (3.3) and (3.4), we obtain

∫

M

η2

q∑
a=1

∣∣∇̃τb(ϕ)
∣∣2 vg ≤ −2

∫

M

q∑
a=1

〈η ∇̃Ea
τb(ϕ), (Eaη) τb(ϕ)〉 vg

≤ 1
2

∫

M

η2

q∑
a=1

∣∣∇̃Eaτb(ϕ)
∣∣2 vg + 2

∫

M

q∑
a=1

|Eaη|2 |τb(ϕ)|2 vg. (3.5)

Because, putting Va := η ∇̃Eaτb(ϕ), Wa := (Eaη) τb(η) (a = 1, . . . , q), we
have

0 ≤
∣∣∣∣
√

ε Va ± 1√
ε

Wa

∣∣∣∣
2

= ε |Va|2 ± 2 〈Va,Wa〉+
1
ε
|Wa|2

which is

∓2 〈Va,Wa〉 ≤ ε |Va|2 +
1
ε
|Wa|2. (3.6)

If we put ε = 1/2 in (3.6), then we obtain

∓2 〈Va,Wa〉 ≤ 1
2
|Va|2 + 2 |Wa|2 (a = 1, . . . , q). (3.7)

By (3.7), we have the second inequality of (3.5).
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(The fourth step) Noticing that η = 1 on Br(x0) and |Eaη|2 ≤ 2/r in
the inequality (3.5), we obtain

∫

Br(x0)

q∑
a=1

|∇̃Ea
τb(ϕ)|2 vg =

∫

Br(x0)

η2

q∑
a=1

∣∣∇̃Ea
τb(ϕ)

∣∣2 vg

≤
∫

M

η2

q∑
a=1

∣∣∇̃Eaτb(ϕ)
∣∣2 vg

≤ 4
∫

M

q∑
a=1

|Eaη|2 |τb(ϕ)|2 vg

≤ 16
r2

∫

M

|τb(ϕ)|2 vg. (3.8)

Letting r → ∞, the right hand side of (3.8) converges to zero since
E2(ϕ) = (1/2)

∫
M
|τb(ϕ)|2 vg < ∞. But due to (3.8), the left hand side of

(3.8) must converge to
∫

M

∑q
a=1 |∇̃Ea

τb(ϕ)|2 vg since Br(X0) tends to M

because (M, g) is complete. Therefore, we obtain that

0 ≤
∫

M

q∑
a=1

∣∣∇̃Ea
τb(ϕ)

∣∣2 vg ≤ 0,

which implies that

∇̃Eaτb(ϕ) = 0 (a = 1, . . . , q), i.e., ∇̃Xτb(ϕ) = 0 (∀X ∈ Γ(Q)). (3.9)

(The fifth step) Let us define a 1-form α on M by

α(X) := 〈dϕ(π(X)), τb(ϕ)〉, (X ∈ X(M)), (3.10)

and a canonical dual vector field α# ∈ X(M) on M by 〈α#, Y 〉 :=
α(Y ), (Y ∈ X(M)). Then, its divergence div(α#) written as div(α#) =∑p

i=1 g(∇g
Ei

α#, Ei)+
∑q

a=1 g(∇g
Ea

α#, Ea), can be given as follows. Here,
{Ei}p

i=1 and {Ea}q
a=1 are locally defined orthonormal frame fields on leaves

L of F and Q, respectively, (dimLx = p, dimQx = q, x ∈ M).
Then, we can calculate div(α#) as follows:
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div(α#) =
p∑

i=1

{
Ei(α(Ei))− α(∇g

Ei
Ei)

}

+
q∑

a=1

{
Ea(α(Ea))− α(∇g

EaEa)
}

=
〈

dϕ

(
π

(
−

p∑

i=1

∇g
Ei

Ei

))
, τb(ϕ)

〉

+
q∑

a=1

{
Ea 〈dϕ(Ea), τb(ϕ)〉 − 〈dϕ(π(∇g

EaEa)), τb(ϕ)
〉}

=
〈

dϕ

(
π

(
−

p∑

i=1

∇g
Ei

Ei

))
, τb(ϕ)

〉

+
q∑

a=1

{〈∇̃Ea(dϕ(Ea)), τb(ϕ)
〉

+
〈
dϕ(Ea), ∇̃Eaτb(ϕ)

〉

− 〈dϕ(π(∇g
Ea

Ea)), τb(ϕ)〉}

=
〈

dϕ

(
π

(
−

p∑

i=1

∇g
Ei

Ei

))

+
q∑

a=1

{∇̃Ea
(dϕ(Ea))− dϕ(π(∇g

Ea
Ea))

}
, τb(ϕ)

〉
. (3.11)

since ∇̃Ea
τb(ϕ) = 0 in the last equality of (3.11). Integrating the both hands

of (3.11) over M , we have

∫

M

〈
dϕ

(
π

( p∑

i=1

∇g
Ei

Ei

))
, τb(ϕ)

〉
vg

=
∫

M

〈 q∑
a=1

{∇̃Ea(dϕ(Ea))− dϕ(π(∇g
EaEa))

}
, τb(ϕ)

〉
vg. (3.12)

because of
∫

M
div(α#) vg = 0. Notice that the both hands in (3.12) are well

defined because of E(ϕ) < ∞ and E2(ϕ) < ∞.
Since κ# := π(

∑p
i=1∇g

Ei
Ei) is the second fundamental form of each

leaf L in (M, g) and
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τb(ϕ) =
q∑

a=1

{∇̃Ea
(dϕ(Ea))− dϕ(∇g

Ea
Ea)

}

=
q∑

a=1

{∇̃Ea(dϕ(Ea))− dϕ(π(∇g
EaEa))

}− dϕ

(( q∑
a=1

∇g
EaEa

)⊥)
,

(3.13)

the right hand side of (3.12) coincides with

∫

M

〈
τb(ϕ) + dϕ

(( q∑
a=1

∇g
Ea

Ea

)⊥)
, τb(ϕ)

〉
vg, (3.14)

(3.12) is equivalent to that

∫

M

〈dϕ(κ#), τb(ϕ)〉 vg

=
∫

M

〈τb(ϕ), τb(ϕ)〉 vg +
∫

M

〈
dϕ

(( q∑
a=1

∇g
Ea

Ea

)⊥)
, τb(ϕ

)〉
vg. (3.15)

Finally, ϕ : (M, g) → (M ′, g′) satisfies the conservation law, then it holds
due to Proposition 2.6 that 〈dϕx(Qx), τb(ϕ)〉 = 0. Furthermore, recall that
X⊥ (X ∈ X(M)) is the Q-component of X ∈ X(M) relative to the decompo-
sition TM = L⊕Q of the bundles. Therefore, these imply that both the left
hand side and the second term of the right hand side of (3.15) must vanish.
That is, we obtain that

∫
M
〈τb(ϕ), τb(ϕ)〉 vg = 0. Therefore τb(ϕ) ≡ 0. We

have Theorem 2.11. ¤

4. Appendix

Here, we give a proof of Theorem 2.2. For the first part of the proof,
see Appendix, Page 271 in [24]. We give a proof of the latter half.

Theorem 4.1 (cf. Theorem 2.2) Let (M, g) be a non-compact complete
Riemannian manifold without boundary, If a C1 vector field X on M satis-
fies that

∫

M

|X| vg < ∞ and
∫

M

div(X) vg < ∞. (4.1)
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Then, it holds that
∫

M

div(X) vg = 0. (4.2)

Furthermore, if f ∈ C1(M) and a C1 vector field X on M satisfy div(X) =
0,

∫
M

Xf vg < ∞,
∫

M
|f |2 vg < ∞ and

∫
M
|X|2 vg < ∞, then it holds that

∫

M

Xf vg = 0. (4.3)

Proof. (The first step) For f ∈ C2
c (M) (f ∈ C2(M) with compact su-

port) and a C1 vector field X on M satisfying div(X) = 0, let us define
m-form ω = f vg, (m = dimM). Then, the Lie derivative LXω of ω by X

is calculated as follows:
{

LXω = Xf vg + f LXvg = Xf vg + f div(X) vg = Xf vg,

LXω = iX dω + d iX ω = d iXω
(4.4)

due to div(X) = 0, the H. Cartan’s identity and dω = 0, where iXK is the
interior product of a tensor field K by X. By (4.1), we have

∫

M

Xf vg =
∫

M

LXω =
∫

M

d iXω =
∫

∂M

iXω = 0 (4.5)

because each integral is finite due to f ∈ C2
c (M), and ∂M = ∅.

(The second step) Let us take f ∈ C1(M) and a C1 vector field X on
M satisfying div(X) = 0 and

∫
M

Xf vg < ∞. Then there exists a sequence
fn ∈ C2(M) (n = 1, 2, . . . ) such that fn → f in the C1 topology in a
Riemannian manifold (M, g). Then, it holds that

∫

M

Xfn vg →
∫

M

Xf vg (4.6)

in the C0 topology in (M, g).
(The third step) Let us take a cutoff function µ from a fixed point

x0 ∈ M on (M, g) as in the first step of the proof of Theorem 2.11 in Section
Three.

Applying the first step to the functions fn µ ∈ C2
c (M), it holds that
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∫

M

X (fn µ) vg = 0. (4.7)

But, we have
∫

M

X (fn µ) vg =
∫

M

(X fn) µ vg +
∫

M

fn (Xµ) vg. (4.8)

By (4.4) and (4.5), we have,

∣∣∣∣
∫

M

(X fn) µ vg

∣∣∣∣ =
∣∣∣∣−

∫

M

fn (X µ) vg

∣∣∣∣ ≤
∫

M

|fn| |X µ| vg

≤
∫

M

|fn| |X||∇µ| vg

≤ 2
r

∫

M

|fn| |X| vg

≤ 2C

r

∫

M

|f | |X| vg ≤ 2C

r
‖f‖ ‖X‖ (4.9)

with ‖f‖2 =
∫

M
|f |2 vg < ∞ and ‖X‖2 =

∫
M
|X|2 vg < ∞ for a certain

positive constant C > 0. Tending r →∞ in (4.6), since the right hand side
of (4.6) goes to zero,

∫

M

(Xfn) µ vg −→ 0 (as r →∞). (4.10)

On the other hand, as r →∞,
∫

M

(Xfn) µ vg −→
∫

M

Xfn vg (4.11)

which implies that
∫

M

Xfn vg = 0. (4.12)

Due to (4.3), as n →∞, we have
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∫

M

Xf vg = 0 (4.13)

which is the desired. ¤

Acknowledgement The last author would like to express his gratitude
to Professor Seoung Dal Jung who invited him at Jeju National University
at January, 2016, and noticed to the authors the errors in the manuscripts
of [17] and [18]. This work has been started during the period of this period.
Finally not the least, the authors express their thanks to the referee who
pointed several errors in the first draft.

References

[ 1 ] Akutagawa K. and Maeta S., Biharmonic properly immersed submanifolds

in Euclidean spaces. Geom. Dedicata 164 (2013), 351–355.

[ 2 ] Barletta E., Dragomir S. and Urakawa H., Pseudoharmonic maps from a

nondegenerate CR manifold into a Riemannian manifold. Indiana Univ.

Math. J., no. 2 50 (2001), 719–746.

[ 3 ] Chen B. Y., Some open problems and conjectures on submanifolds of finite

type. Soochow J. Math. 17 (1991), 169–188.

[ 4 ] Chiang Y.-J. and Wolak R. A., Transversally biharmonic maps between

foliated Riemannian manifolds. Intern. J. Math. 19 (2008), 981–996.

[ 5 ] Defever F., Hypersurfaces in E4 with harmonic mean curvature vetor. Math.

Nachr. 196 (1998), 61–69.

[ 6 ] Dragomir S. and Montaldo S., Subelliptic biharmonic maps. J. Geom. Anal.

24 (2014), 223–245.

[ 7 ] Gaffney M. F., A special Stokes’ theorem for complete Riemannian mani-

fold. Ann. Math. 60 (1954), 140–145.

[ 8 ] Hasanis T. and Vlachos T., Hypersurfaces in E4 with harmonic mean cur-

vature vector field. Math. Nachr. 172 (1995), 145–169.

[ 9 ] Ichiyama T., Inoguchi J. and Urakawa H., Biharmonic maps and bi-Yang-

Mills fields. Note di Mat. 28 (2009), 233–275.

[10] Ichiyama T., Inoguchi J. and Urakawa H., Classifications and isolation

phenomena of biharmonic maps and bi-Yang-Mills fields. Note di Mat. 30

(2010), 15–48.

[11] Inoguchi J., Submanifolds with harmonic mean curvature vector filed in

contact 3-manifolds. Colloq. Math. 100 (2004), 163–179.

[12] Ishihara S. and Ishikawa S., Notes on relatively harmonic immersions.

Hokkaido Math. J. 4 (1975), 234–246.



Rigidity of transversally biharmonic maps 653

[13] Jiang G. Y., 2-harmonic maps and their first and second variational for-

mula. Chinese Ann. Math. 7A (1986), 388–402; Note di Mat. 28 (2009),

209–232.

[14] Jung S. D., The first eigenvalue of the transversal Dirac operator. J. Geom.

Phys. 39 (2001), 253–264.

[15] Jung S. D., Eigenvalue estimates for the basic Dirac operator on a Rie-

mannian foliation admitting a basic harmonic 1-form. J. Geom. Phys. 57

(2007), 1239–1246.

[16] Jung S. D., Kim B. H. and Pak J. S., Lower bounds for the eigenvalues

of the basic Dirac operator on a Riemannian foliation. J. Geom. Phys. 51

(2004), 166–182.

[17] Jung M. J. and Jung S. D., On transversally harmonic maps of foli-

ated Riemannian manifolds. J. Korean Math. Soc. 49 (2012), 977–991,

arXiv:1109.3932 v1.

[18] Jung S. D., Variation formulas for transversally harmonic and bi-harmonic

maps. J. Geometry Phys. 70 (2013), 9–20, arXiv:1205.3557 v1.

[19] Konderak J. J. and Wolak R., Transversally harmonic maps between man-

ifolds with Riemannian foliations. Quart. J. Math. 54 (2003), 335–354.

[20] Konderak J. J. and Wolak R., Some remarks on transversally harmonic

maps. Glasgow Math. J. 50 (2003), 1–16.
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