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1. Introduction

The main purpose of this paper is to investigate the behavior of Poisson
bracket under mappings in terms of differential geometry. The formalism
of Poisson bracket relates with the problem in quantizing of dynamical
systems. Hence this formalism plays an important role in quantum physical
theory. The basic concepts in this paper are given in the literatures by
R. Hermann [1], [2].

2. The Poisson bracket defined by a closed
2-differential form

Let M be a differentiable manifold, \omega a given closed 2-differential form
on M, i.e. ,

(2. 1) d\omega=0 ,

where d denotes the exterior derivative.
Let M_{p} be the tangent space to M at p, then a vector v\in M_{p} is said

to be a characteristic vector of \omega if

(2. 2) v\lrcorner\omega=0 i.e. , \omega(v, M_{p})=0

The set C_{p}(\omega) of all these characteristic vectors forms a subspace of M_{p} .
The following theorem is shown by R. Hermann ([1], 122-123).

THEOREM 2. 1. Let v_{1} , \cdots , 7J_{m} be a basis for M_{p} such that v_{1} , \cdots , v_{n}

form a basis for C_{p}(\omega);\omega_{1} , \cdots , \omega_{m} the dual basis of v_{1} , \cdots , v_{m}i.e. ,

(2. 3) \omega_{i}(v_{f})=\delta_{if} for 1\leq i, j\leq m ,

then \omega is written at p as follows:
(2. 4) \omega=\sum_{i,f>n}a^{ij}\omega_{i}\Lambda\omega_{f} , n<i,f\leq m\det(a^{if})\neq 0 .

Let F(M) be the ring of C^{\infty} real valued functions on M, then a func-
tion f\in F(M) is said to be an integral of the characteristics of \omega if
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(2. 5) v(f)=0 for all v\in C_{p}(\omega),\cdot all p\in M_{l}

The set F(\omega) of all these integrals forms a subring of F(M).
THEOREM 2. 2. A function f\in F(M) is an integral of the characteristics

of \omega, i.e. , f\in F(\omega) if and only if there exists a vector v_{f} determined in a
unique manner up to modulo C_{p}(\omega) such that
(2. 6) df=v_{f}\lrcorner\omega .

PROOF. Let us assume (2. 6), then for any vector v\in C_{x)}(\omega) we see
(2. 7) v(f)=v\lrcorner df=v\lrcorner v_{f}\lrcorner\omega=-v_{f}\lrcorner(v\lrcorner\omega)=0 ,

i.e. , f\in F(\omega) .
The converse is already stated by R. Hermann without precise proof

([2], 34). This can be shown as follows. For the basis choosen as in
theorem 2. 1, set

(2. 8)
v_{f}= \sum_{n<k\leq m}\xi^{k}v_{k} ,

then by theorem 2. 1 we have

(v_{f} \lrcorner\omega)(v_{l})=\sum_{i,j>n}a^{if}\omega_{i}\Lambda\omega_{f}(\xi^{k}v_{k}, v_{l})

(2. 9)
= \downarrow\int 2\sum_{n<l\leq m}a^{il}\xi^{i}0,r

’

ifif n<l\leq m1\leq l\leq r\iota-,.
On the other hand, since v_{l}\in C_{p}(\omega) for 1\leq l\leq n , we see

(2.10) (df)(v_{l})=.v_{l}(f)=\{
0, if 1\leq l\leq n ,
v_{l}(f) , if n<l\leq m .

Since n<_{\dot{f}},l\leq m\det(a^{il})\neq 0 , the following linear equations

(2. 11) 2 \sum_{n<i\leq m}a^{il}\xi^{i}=v_{l}(f) , n<l\leq m ,

can be solved with respect to variables \xi^{i}(n<i\leq m) ; hence the existence of
v_{f} is proved. The rest part of this theorem is clear. Hence the theorem
is proved.

For two functions f, g\in F(\omega) , the Poisson bracket operation \{f, g\} is
defined by the following :

(2. 12) \{f, g\}(p)=v_{f}(g) , p\in M ,

and by this operation F(\omega) makes into Lie algebra ([1], 176-177; [2], 34-35).
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3. Behavior of Poisson bracket defined by a closed
2-differential form under mappings

The set C_{p}(\omega) of all characteristics forms a subspace of M_{p} . The
number dim M-dim C_{p}(\omega) is called the rank of \omega at p\in M ; and if its rank
is the same at every point of M, \omega is said to be of constant rank on M.

THEOREM 3. 1. Let \omega be a closed 2-differential form on M of constant

rank on M, then for each point p\in M a vector v\in M_{p} is a characteristic
vector of \omega , i.e. , v\in C_{p}(\omega) , if and only if
(3. 1) v(f)=0 for all f\in F(\omega) .

PROOF. As well known ([1], 124-125), each point p\in M has a neigh-
borhood U with coordinate system (x_{1}, \cdots, x_{m}) such that \omega takes the following
canonical form in U :

(3. 2) \omega=\sum_{n<i<f\leq m}dx_{i}\Lambda d_{X_{j}c}

Hence at any point q \in U;(\frac{\partial}{\partial x_{1}})_{q}q, \cdots\backslash

,
( \frac{\partial}{\partial x_{n}})_{q} becomes a basis of C_{q}(\omega) .

Moreover we know that there exist a neighborhood V\subset U and C^{\infty} real valued
functions f_{i} such as f_{i}=x_{i} on V and f_{i}=0 on M\backslash U. We see these for
functions f_{i} are integrals of characteristics of \omega for n<i\leq m, i.e. , f_{i}\in F(\omega)

n<i\leq m . Let assume (3. 1) and set

(3. 3) v= \sum_{1\leq f\leq m}\xi^{f}(\frac{\partial}{\partial x_{f}})_{p}

then we have

(3. 4) v(f_{i})=( df_{i})_{p}(v)=(dx_{i})_{p}(\xi^{f}(\frac{\partial}{\partial x_{f}})_{p})=\xi^{i} .

Since f_{i}(n<i\leq m) belong to F(\omega), we see v(f_{i})=0 for n<i\leq m ; hence we
have \xi^{t}=0 for n<i\leq mi.e. , v\in C_{p}(\omega) .

The converse is clear from the definition of F(\omega) . Thus the theorem
is proved.

Let M, M’ be two manifolds with C^{\infty} map \phi:Marrow M’ , \omega
’ a closed 2-

differential form on M’. Define a form \omega such as.
(3. 5) \omega=\phi^{*}(\omega’)’.
where \phi^{*} denotes the pull-back map induced from \phi . Of course \omega becomes
a closed 2-differential form on M. By this definition it can be seen that
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(3. 6) \phi_{*}^{-1}(C_{\phi(p)}(\omega’))\subset C_{p}(a)) .

THEOREM 3. 2. Let \omega’ be of constant rank on M’, then the relation

(3. 7) C_{p}(\omega)=\phi_{*}^{-1}(C_{\phi(p(}(\omega’)) for all p\in M

holds, if and only if
\phi^{*}F(\omega’)\subset F(\omega) .

PROOF. Lt assume (3.8). For any f’\in F(\omega’) and any v\in C_{p}(\omega), since \phi^{*}f’\in

F(\omega) we see

(3. 9) (\phi_{*}(v))(f’)=v(\phi^{*}f’)=0 .
Hence by theorem 3. 1 we have

(3. 10) \phi_{*}(v)\in C_{\phi(p)}(\omega’) i.e. , C_{p}(\omega)\subset\phi_{*}^{-1}(C_{\phi(p)}(\omega’)) .
Therefore by (3. 6) and (3. 10) we get (3. 7).

The converse of this theorem (the assumption of constant rank is not
necessary) is the result of R. Hermann ([2], 37). Thus the theorem is proved.

The following theorem is shown by R. Hermann ([2], 37-40).

THEOREM 3. 3. Suppose f’ , g’\in F(\omega’) , and set

(3. 11) f=\phi^{*}(f’) . g=\phi^{*}(g’)\tau

And if a map \phi:Marrow M’ satisfies (3. 7) and the map
(3. 12) M_{p}arrow M_{\phi(p)}’/C_{\phi(p)}(\omega’)

is onto, then \phi^{*}: F(\omega’)arrow F(\omega) defines a Poisson bracket homomorphism, i.e. ,

(3. 13) \phi^{*}(\{f’, g’\})=\{\phi^{*}(f’) , \phi^{*}(g’)\} .
In the following, suppose M=M’ and \phi is a diffeomorphism on M. For

the given closed 2-differential form \omega on M we set \omega’=\phi^{*}(\omega) .
THEOREM 3. 4. Suppose \phi is a diffeomorphism on M, thm we have

(3. 14) \phi^{*}(F(\omega))=F(\omega’) .

PROOF. Since \phi is a diffeomorphism we see \phi_{*}(M_{p})=M_{\phi(p)} , hence it
follows that ([2], 36)

(3. 15) \phi_{*}^{-1}(C_{\phi\langle p)}(\omega))=C_{p}(\omega’) for all p\in M .
therefore we have ([2], 37)
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(3. 16) \phi^{*}(F(\omega))\subset F(\omega’) .

By the same way, \phi^{-1} is a diffeomorphism we get

(3. 17) F(\omega’)\subset\phi^{*}(F(\omega)) ,

and hence (3. 16) and (3. 17) imply (3. 14). Thus the theorem is proved.

THEOREM 3. 5. Suppose \phi is a diffeomorphism on M and \omega is of con-
stant rank on M, then the relation

(3. 18) C_{p}(\omega)=C_{p}(\omega’) for all p\in M ,

holds if and only if
(3. 19) F(\omega)=\phi^{*}(F(\omega)) .

PROOF. Let assume (3. 18), then we see

(3. 20) F(\omega)=F(\omega’) ,

and hence by theorem 3. 4 we have (3. 19).
Conversely assume (3. 19), by theorem 3.4 we have (3.20). On the other

hand, for any f\in F(\omega) and any v’\in C_{p}(\omega’) , since f\in F(\omega’) we see v’(f)=0.
Hence by theorem 3. 1 we have v’\in C_{p}(\omega)i.e. ,

(3. 21) C_{p}(\omega’)\subset C_{p}(\omega) .
By the same method as the above it follows that

(3. 22) C_{p}(\omega)\subset C_{p}(\omega’) ,

and hence (3. 21) and (3.22) imply (3. 18). Thus the theorem is proved.

THEOREM 3. 6. The relation (3. 18) holds, if and only if
(3. 23) \overline{\omega}(C_{p}(\omega), M_{p}^{1})=\overline{\omega}(C_{p}(\omega’) , M_{p})=0 for all p\in M ,

where

(3. 24) \phi^{*}(\omega)=\omega’=\omega+\overline{\omega} .

PROOF. Suppose (3. 18), then it follows that

(3. 25) \omega^{*}(C_{p}(\omega), M_{p})=\omega’(C_{p}(\omega) , M_{p})=0 ,

and hence we see

(3. 26) (\omega-\omega’)(C_{p}(\omega), M_{p})=0 ,

therefore we have (3. 23).
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Conversely suppose (3. 23), then we see

(3. 27) \omega’(C_{p}(\omega), M_{p})=\omega(C_{p}(\omega) , M_{p})+\overline{\omega}(C_{p}(\omega) , M_{p})=0 ,

and hence we have
(3. 22) C_{p}(\omega)\subset C_{p}(\omega’) .

On the other hand, it follows that

(3. 28) \omega’(C_{p}(\omega’), M_{p})=\omega(C_{p}(\omega’) , M_{p})+\overline{\omega}(C_{p}(\omega),M_{p}) ,

hence we have \omega(C_{p}(\omega’), M_{p})=0 , i.e. ,

(3. 21) C_{p}(\omega’)\subset C_{p}(\omega) ,

therefore (3. 21) and (3. 22) imply (3. 18) \cdot. Thus the theorem is proved.

THEOREM 3. 7. Suppose \omega is of constant rank on M, thm the form \omega

is invariant under the mapping \phi^{*} , i.e. ,

(3. 29) \phi^{*}(\omega)=\omega .

if and anly if the Poisson bracket is invariant under the mapping \phi^{*} , i.e. ,

(3. 30) F(\omega)=\phi^{*}F(\omega),

(3. 31) \{f, g\}^{\omega}=\{f, g\}^{\omega’} for all f, g\in F(\omega) ,

where \{f, g\}^{\omega} means the Poisson bracket defined by the form \omega .
PROOF. Suppose (3. 30) and (3. 31). By (3. 30) and the theorem 3. 4 we

see F(\omega)=F(\omega’) ; hence for any f, g\in F(\omega), the Possion bracket \{f, g\}^{\omega’} can
be defined. Let

(3. 32) df=v_{f}^{\omega}.\lrcorner\omega , df=v_{f}^{\omega’}\underline{t}’\omega ,

at p\in M, then it follows that

(3. 33) \{f, g\}^{\omega}(p)=v_{f}^{\omega}(g) , \{f, g\}^{\omega’}(p)=v_{f}^{cv’}(g) ,

and hence we have

(3. 34) (v_{f}^{\omega’}-v_{f}^{\omega})(g)=0 for all g\in F(\omega) .

Hence by theorem 3. 1 we see

(3_{\nearrow}35) v_{f}^{p}\equiv v_{f}^{\omega’} (mod C_{p}(\omega)) .

Therefore from theorem 3.5 and theorem 3.6, it follows that
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(3. 36) v_{f}’’\lrcorner’\omega’=’(v_{f}^{\omega}+C_{p}(\omega))\lrcorner(\omega+\overline{\omega})

=v_{f}^{\omega}\lrcorner\omega+v_{f}^{\phi)}\lrcorner\overline{\omega} ,

hence we see
(3. 37) v_{f}^{\omega}\lrcorner\overline{\omega}=0 .
Now, choose the neighborhood U of p with coordinate system (x_{1}, \cdots, x_{m})

as in the proof of theorem 3. 1 such that \omega takes the canonical form (3. 2),

then ( \frac{\partial}{\partial x_{1}})_{p}\backslash \cdots , ( \frac{\partial}{\partial x_{n}})_{p} form a basis for C_{p}(\omega) and there exist functions
f_{i}\in F(\omega)(n<i\leq m) such that (df_{i})_{p}=(dx_{i})_{p} . Since f_{i}\in F(\omega) , there exist vectors

v_{f_{i}}^{p} such that

(3. 38) (df_{i})_{p}=v_{[mathring]_{i}_{f}}’\lrcorner\omega n<i\leq mt

Hence by (3. 37) we see

(3. 39) v_{f_{i}}^{\omega}\lrcorner\overline{\omega}=0 n<i\leq m ,

and since v_{f_{i}}^{\omega} are linearly independent vectors which are determined in a
unique manner up to modulo C_{p}(\omega) , the equation (3. 39) implies \omega=0 . Hence
we have (3. 29).

The converse of this theorem is clear, therefore the theorem is proved.
Let G be a group of diffeomorphism of M, then G is said to be a

group of symmetries with respect to \omega if the form \omega is invariant under
any element of G. The theorem 3.7 indicates that G becomes a group of
symmetries if and only if the Poisson bracket is invariant under any element
of G.

4. Behavior of Poisson bracket difined by an arbitrary
differential form under mappings

In the preceeding sections we defined the Poisson bracket by using of
a closed 2-differential form and discussed the behavior of it under mappings.
In this section we shall consider some probrems along the same line for a
closed (r+1)-differential form \omega on M.

Let F^{r}(M) be a space of r-differential forms on M, V(M) be a space
of vector fields on M. Set

(4. 1) A^{r-1}(\omega)=\{\theta\in F^{r-1}(M):d\theta\in V(M)\lrcorner\omega\} ,

then for two forms \theta, \rho\in A^{r-1}(\omega) the Poisson bracket operation \{\theta, \rho\} is
defined by the following ([2], 167-171) :
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(4. 2) \{\theta, \rho\}=[X(\rho)] ,

where X is a vector field such as
(4. 3) d\theta=X\lrcorner\omega ,

and [X(\rho)] denote the1 class of X(\rho) modulo dF^{r-2}(M), i.e. , an element of
A^{r-1}(\omega)/dF^{r-2}(M).

Let C(\omega) denote a space of characteristic vector fields of \omega , i.e. , the
vector fields X\in V(M) such that

(4. 4) X\lrcorner\omega=0 .
Let M, M’ be manifolds with C^{\infty} map \phi:Marrow M’ , \omega

’ given closed
(r+1)-differential form on M’, and define a closed (r+1)-differential form on
M by

(4. 5) \omega=\phi^{*}(\omega’)’.
then we have

(4. 5) \phi_{*}^{-1}(C(\omega’))\subset C(\omega) .

The mapping \phi is said to be of maximal rank if

(4. 6) \phi_{*}(V(M))=V(M’) .

THEOREM 4. 1. Suppose \phi is of maximal rank, then it follows that

(4. 7) \phi_{*}^{-1}(C(\omega’))=C(\omega) .

PROOF. Let X\in C(\omega), then we see X\lrcorner\omega=0 . Let X_{1}’ , \cdots , X_{r}’ be vector
fields on M’ ; then since \phi is of maximal rank, there exist vector fields
X_{1} , \cdots , X_{r} on M such that
(4. 8) X_{1}’=\phi_{*}(X_{i}) 1\leq i\leq r,

hence we have

(\phi_{*}(X_{i})\lrcorner\omega’)(X_{1^{ }}’\neg,\cdots, X_{r}’)=\omega’(\phi_{*}(X) , \phi_{*}(X_{1}), \cdots , \phi_{*}(X,))

(4. 9) =\phi_{*}(\omega’)(X, X_{1}, \cdots, X_{r})

=(X\lrcorner\omega)(X_{1}, \cdots,X_{r})

=0 .
Therefore it follows that

(4. 10) \phi_{*}(X)\in C(\omega’) i.e. , C(\omega)\subset\phi_{*}^{-1}(C(\omega’)) .
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Relations (4. 5) and (4. 10) imply (4. 7). Hence the theorem is proved.
THEOREM 4. 2. Suppose \phi is of maximal rank, then it follows that

(4. 11) \phi^{*}(A^{r-1}(\omega’))\subset A^{r-1}(\omega) .

PROOF. Let \theta’\in A^{r-1}(\omega’), then since d\theta’=X’\underline{1}\omega’ , we see

(4. 12) d(\phi^{*}(\omega’))=\phi^{*}(X’\lrcorner\omega’) .

Since \phi is of maximal rank, there exist X\in V(M) such as \phi_{*}(X)=X’ ; hence
it follows that

\phi^{*}(X’\lrcorner\omega’)(X_{1}, \cdots, X_{r})=\omega’(X’, \phi_{*}(X_{1}) , \cdots , \phi_{*}(X,.))

(4. 13) =\omega’(\phi_{*}(X), \phi_{*}(X_{1}), \cdots , \phi_{*}(X,.))

=(X\lrcorner\omega)(X_{1}, \cdots, X_{r}) ,

where X_{1} , \cdots , X_{r} are vector fields on M.
Therefore by (4. 12) and (4. 13) we see

(4. 14) d(\phi^{*}(\theta))=X\lrcorner\omega i.e. , \phi^{*}(A^{r-1}(\omega’))\subset A^{r-1}(\omega) .
Hence the theorem is proved.

THEOREM 4. 3. Suppose \phi is of maximal rank, then \phi^{*} is a Poisson
bracket homomorphism, i.e. , for two forms \theta’ , \rho’\in A^{r-1}(\omega’),

(4. 15) \phi^{*}(\{\theta’, \rho’\})=\{\phi^{*}(\theta’) , \phi^{*}(\rho’)\} .
PROOF. Since

(4. 16) \phi^{*}(dF^{t-2}.(M))\subset dF^{r-2}(M’) ,

\phi^{*} may be induced to a map of quotient classes. Let
(4. 16) d\theta’=X’\lrcorner\omega’ , d\rho’=Y’\underline{\mathfrak{l}}\omega’ ,

then it follows that

(4. 17) \{\theta’, \rho’\}=[X’(\rho’)]=[X’\lrcorner d\rho’]=[X’\lrcorner Y’\lrcorner\omega’]

On the other hand as in the proof of theorem 4.2, we see

(4. 18) d(\phi^{*}(\theta’))=X\lrcorner\omega , d(\phi^{*}(\rho’))=Y\lrcorner\omega ,

where
(4. 19) \phi_{*}(X)=X’ , \phi_{*}(Y)=Y’’.
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hence we have

(4. 20) \{\phi^{*}(\theta’) , \phi^{*}(\rho’)\}=[X(\phi^{*}(\rho’))]=[X\lrcorner d(\phi^{*}(\rho’))]=[X_{-}\rfloor Y\underline{\mathfrak{l}}\omega]

Let X_{1} , \cdots , X_{r-1} be vector fields on M, then it follows that

\phi^{*}(X’\lrcorner Y’\lrcorner\omega’)(X_{1}, \cdots, X_{r-1})=\omega’(Y’, X’, \phi_{*}(X_{1}) , \cdots , \phi_{*}(X_{r-1}))

(4. 21) =\omega’(\phi_{*}(Y), \phi_{*}(X) , \phi_{*}(X_{1}), \cdots , \phi_{*}(X_{r-1})\}

=(X\lrcorner Y\lrcorner\omega)(X_{1}, \cdots, X_{r-1}) ,

hence we have
(4. 22) \phi^{*}(X’\lrcorner Y’\lrcorner\omega’)=X\lrcorner Y\lrcorner\omega ,

therefore by (4. 17), (4.20) and (4.22) we see \phi^{*} is a Poisson bracket hom0-
morphism. Thus the theorem is proved.

Suppose \phi is a diffeomorphism of M, then by theorem 4.2; for a given
closed (r+1)–differential form \omega, it follows that

(4. 23) \phi^{*}(A^{r-1}(\omega))=A^{r-1}(\omega’) ,

where \omega’=\phi^{*}(\omega) ; and hence by the above theorem, \phi becomes a Poisson
bracket automorphism.
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