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1. Let p^{\prime\ell} , p^{\nu} be two Green potentials on a hyperbolic Riemann surface
R. Let G be an open set in R. It is well-known that if p^{\prime\ell}=p^{\nu}+h on G for
some harmonic function h on G, then the restriction of \mu on G equals the
restriction of \nu on G.

In this paper, we shall prove a similar result to the above is also valid
for Kuramochi’s potentails and an open set in the Kuramochi compacti-
fication R_{N}^{*} of R (Theorem 1). As applications, we shall prove the followings:
(a) The support of the canonical measure associated with\tilde{.}q_{b} for a non-minimal
Kuramochi boundary point b is contained in the closure of the set of all
non-minimal Kuramochi boundary points (Theorem 2). As for a non-minimal
Martin boundary point, T. Ikegami [2] had obtained an analogous result to
(a). (b) Let K be a compact set in R_{0}^{*}=R_{N}^{*}-K_{0} (K_{0} is a closed disk in R)
and \overline{0_{J}} be the Kuramochi capacity on R_{0}^{*} . If we denote by Int (K) the set
of all interior points of K in R_{0}^{*} . then we have \overline{C}(K)=\tilde{C} (K- Int (K))
(Theorem 3).

2. Let R be a hyperbolic Riemann surface. We shall use the same
notation as in [1], for instance, .\overline{q}_{b} , \overline{p}^{\prime\ell} , f^{F}, R_{N}^{*} , \Delta_{N} etc. For a subset A of
R, we denote by \partial A the relative boundary of A in R and by \overline{A} the closure
of A in R_{N}^{*} . The Kuramochi boundary \Delta_{N} is decomposed into two mutually
disjoint parts: the minimal part \Delta_{1} and the non-minimal part \Delta_{0} . By a
measure \mu on R_{0}^{*} , we always mean a positive measure \mu on R_{N}^{*} such that
\mu(K_{0})=0 . For a measure \mu on R_{0}^{*} , we denote by S\mu the support of \mu and
by \mu|E the restriction of \mu on a Borel set E in R_{N}^{*} . If a measure \mu on
R_{0}^{*} satisfies \mu(\Delta_{0})=0 , then it is called canonical. It is known that if \mu is
a measure on R_{0}^{*} , then there exists a unique canonical measure \nu such that
\overline{p}^{u}.=\overline{p}^{\nu} . For a closed set F in R and measure \mu on R_{0\backslash }^{*}

, we denote by \mu_{F}

the canonical associated measure with \overline{p}_{\tilde{p}}^{\mu} . We note that S\mu_{F}\subset\overline{F} .

*) This was presented at a symposium “Maximum principles in a potential theory” held
at the Research Institute for Mathematical Sciences of Kyoto University, 1971.
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A subset A of R is called polar if there exists a positive superharmonic
function s on R such that s(a)=+\infty at every point a in A. It is known
that a polar set is locally of Lebesgue measure zero. We shall say that a
property hold q\cdot p . on a set E if it holds on E except for a polar set.

The following properties are known ([1]).
(a) Let F be a non-polar closed set in R and f be a Dirichlet function^{1)}

on R. If G is a component of R–F, then f^{F}=f^{\partial G} on G.
(b) Let F be a closed set in R. If s is a Dirichlet function on R, s=0

on K_{0} and s is a non-negative full-superharmonic function^{2)} on R_{0} , then
s_{\tilde{F}}=s^{K_{0}\cup F} on R_{0}-F .

(c) Let b be any point in R_{0}\cup\Delta_{1} . If F is a closed set in R such that
\overline{F} is a neighborhood of b in R_{N}^{*} , then (\tilde{\sigma}_{b})_{\tilde{F}}=\tilde{c/}_{b} .

(d) Let \mu be a measure on R_{0-}^{*} If F is a closed set in R, then

( \int\tilde{\sigma}_{b}d\mu(b))_{\tilde{F}}=\int(\tilde{q}_{b})_{\tilde{F}}d\mu(b) .

By the aid of (a) and (b), we shall prove
LEMMA. Let s be a non-negative full-superharmonic function on R_{0} .

If F is a closed subset of R_{0} , then
s_{\tilde{F}}=s_{\partial F}^{-} on R_{0}-F

PROOF. We can find an open disk D in R such that K_{0}\subset D and
(D\cup\partial D)\cap F=1/;. For each integer n>0 , we set s_{n}= \min(s_{\overline{R_{0}-D}}, n) . Since
s_{n} is bounded and the total mass of the associated measure with s_{n} is finite,
it follows from Satz 17. 3 in [1] that s_{n} is a Dirichlet function. Hence it
follows from (a) and (b) that

(s_{n})_{\tilde{F}}=(s_{n})_{\check{\partial F}} on R_{0}-F

Since s_{\overline{R_{0}-D}}=s on R_{0}-(D\cup\partial D) , by letting narrow\infty , we obtain that s_{\tilde{F}}=s_{\dot{\partial F}}^{-} on
R_{0}-F.

3. PROPOSITION. Let F be a closed subset of R_{0} and \mu be a canonical
measure on R_{0}^{*} . If we set \nu=\mu|\overline{R-F} and \lambda=\mu-\nu , thm\mu_{F}=\nu_{F}-\vdash\lambda and
S\nu_{f^{\gamma}}\subset\overline{F}\cap\overline{R-F}.

PROOF. ( i) First we shall prove that S\nu_{F}\subset\overline{F}\cap\overline{R-F}. Since S\nu_{F}\subset\overline{F} ,

it is sufficient to prove that S\nu_{P}\subset\overline{R-F.} Let b be an arbitrary point of
R_{0}^{*}-\overline{R-F}. Then there is an open neighborhood U of b in R_{0}^{*} such that

1) This is called eine Dirichletsche Funktion in [1].
2) This is called eine positive vollsuperharmonische Funktion in [1].
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\overline{U}\cap\overline{R-F}=\emptyset . We set G=U\cap R . Since \overline{G}\cap\overline{R-F}=\emptyset,\overline{R_{0}-G} is a neigh-
borhood of each b’ in R-\overline{F\cap R_{0}}^{*} Hence it follows from (c) and (d) that
\tilde{p}_{\overline{R_{0}- G}}^{\nu}=\overline{p}^{\nu} on R_{0} . By the Lemma, we obtain that \tilde{p}_{\overline{R_{0}-G}}^{\nu}=\tilde{p}_{\tilde{\partial G}}^{\nu\prime} and
\tilde{p}^{\nu_{F_{\overline{R_{0}- G}}}}=\tilde{p}^{\nu_{P_{\partial G}^{\tau_{\cup}}}} on G. Since \overline{p}^{\nu p}=\hat{p}^{\nu}q.p . on F and \partial G\subset F, we have

\tilde{p}^{\nu_{F_{\tilde{\partial G}}}}=\tilde{p}_{\tilde{\partial G}}^{\nu} on R_{0} .
Thus we obtain that

\overline{p}_{\overline{R_{0}-G}}^{\nu}=\overline{p}_{\tilde{\partial G}}^{\nu}=\overline{p}_{\tilde{\partial G}}^{\nu_{F}}=\tilde{p}_{\overline{R_{0}-G}}^{\nu_{F}} on G .

Since \overline{p}_{\tilde{\partial\dot{G}}}^{U}F=\tilde{p}^{\nu}=\overline{p}^{\nu p}q . p. on G, we see that
\overline{p}_{\overline{R_{0}-G}}^{\nu_{F}}=\tilde{p}_{\tilde{\partial G}}^{\nu_{F}}=\dot{\tilde{p}}^{\nu_{F}} q. p. on G .

This shows that
\overline{p}_{\overline{R_{0}-G}}^{\nu_{F}}=\tilde{p}^{\nu_{ff}} q. p. on R_{0} .

Hence we have
\overline{p}_{\overline{R_{0}-G}}^{\nu_{F}}=\tilde{p}^{b}F on R

and (\nu_{F})_{R_{0}-G}=\nu_{F} . Thus \nu_{f}(U)=0 . Since b is arbitrary, we see that
S\nu_{F}\subset\overline{R-F.}

(ii) Secondly we shall prove that \lambda_{F}=\lambda . Let b be an arbitrary point
in R_{0}^{*}-\overline{R-F.} Then there exists an open neighborhood U of b in R_{N}^{*} such
that \overline{U}\cap\overline{R-F}=\emptyset . Since U\cap R\subset F,\overline{F} is a neighborh_{fo}od of b. Hence it
follows from (c) and (d) that \overline{p}_{\tilde{F}}^{\lambda}=\tilde{p}^{\lambda} on R_{0} . This shows that \lambda_{P}=\lambda . There-
fore we complete the proof.

COROLLARY 1. \mu_{F}|(R_{0}^{*}-\overline{R-F})=\mu|(R_{0}^{*}-\overline{R-F}) .
COROLLARY 2 ([3]). If S\mu\cap\overline{F}=\emptyset , then S\mu_{F} is contained in \overline{F}\cap\overline{R-F}.
THEOREM 1. Let \mu , \nu be canonical measures on R_{0}^{*} and s be a non-

negative full-superharmonic function on R_{0} . Let G be an open subset of
R_{N}^{*} such that K_{0}\cap\overline{\overline{G}}=\emptyset . If \overline{p}^{\prime 1}=\overline{p}^{\nu}+s on G\cap R_{0} , then \mu|G\geqq\nu|G .

PROOF. We can find an open disk D in R such that K_{0}\subset D and \overline{D}\cap\overline{\overline{G}}=

\emptyset . Then s_{\overline{R_{0}-D}} is equal to a potential \overline{p}^{j} . Hence \tilde{p}^{\mu}=\overline{p}^{\nu}+\overline{p}^{\lambda} on G\cap R_{0} . Let
b be an arbitrary point in G. Then there is an open neighborhood U of
b in R_{N}^{*} such that \overline{U}\cdot\subset G . If we set F=\overline{U}\cap R_{0}(\subset G\cap R_{0}), then \overline{p}^{\prime 1}=\tilde{p}^{\nu}+\overline{p}^{\lambda}

on F. Hence it follows from Corollary 1 to Proposition that \mu|U=(\nu+\lambda)|U.
Since b is arbitrary, we obtain that \mu|G=(\nu+\lambda)G\geqq\nu|G .

COROLLARY. If s_{\overline{R_{0}-G}}=s on R_{0} and \overline{p}^{\prime l}=\overline{p}^{\nu}+s on G\cap R_{0} , thm \mu|G=

\nu|G . In particular, if \overline{p}^{\mu}=\tilde{p}^{\nu} on G\cap R_{0} , then \mu|G=\nu|G .
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As an application of the above corollary, we shall prove

THEOREM 2. Let b_{0} be an arbitrary point in \Delta_{0} . If \mu is the canonical
measure associated with.\tilde{\sigma}_{b_{0}} , then S\mu is contained in \overline{\Delta}_{0} .

PROOF. Suppose S\mu is not contained in \overline{\Delta}_{0} . Then there exists an open
set U in R_{N}^{*} such that \overline{F}\cap\overline{\Delta}_{0}=\emptyset and \mu(U\cap\Delta_{N})>0 . We can find a closed
subset F of R_{0} such that \overline{F}\cap\overline{\Delta}_{0}=\emptyset and \overline{F} is a neighborhood of \overline{U}. Since
b_{0} is contained in \overline{R_{0}-F}, it follows from the Lemma in [3] that there exists
a measure \nu on R_{0}^{*} such that S\nu\subset\overline{F}\cap\overline{R-F} and (\tilde{.}q_{b_{0}})_{\tilde{F}}\leqq\tilde{p}^{\nu}\leqq\tilde{\sigma}_{b_{0}} on R_{0} . Since
\overline{F}\cap\overline{\Delta}_{0}=(’|, S\nu\cap\overline{\Delta}_{0}=\phi . Hence \nu is canonical. Since \overline{p}^{\nu}=_{b_{0}}\tilde{r\prime}q.p . on F and
U\cap R_{0}\subset F, we see that \tilde{p}^{\nu}=_{b_{J}}^{\tilde{r\prime}}=\overline{p}^{\mu} on U\cap R_{0} . It follows from the Corollary
to Theorem 1 that \nu|U=\mu|U. Since S\nu\subset\overline{F}\cap\overline{R-F,}S\nu\cap\overline{U}=\emptyset . Hence
\nu(U\cap\Delta_{N})=0 . This contradicts the assumption on \mu . Therefore we complete
the proof.

4. For a compact set K in R_{0}^{*} , the (Kuramochi) capacity \tilde{C}’(K) is
defined by sup {\mu(K);\mu is canonical and p^{\prime\ell}\leqq 1 }. It is known ([1]) that
there exists a unique canonical measure \chi^{K} on K such that \overline{p}^{x^{J1}}\leqq 1,\tilde{p}^{z^{Jt}}.--1

on K except for an F_{\sigma}-set with capacity zero and \overline{C}(K)=\chi^{K}(K) .

THEOREM 3. If K is a compact set i7lR_{0}^{*} , then \overline{C}(K)=\overline{C} (K- Int(K)).

PROOF. Since \tilde{C} (K-Int(K))\leqq r^{t} (K), it is sufficient to prove the con-
verse inequality. Since \overline{p}^{x^{J\check{1}}}=1 on K except for an F_{\sigma}-set with capacity zero,
we see that \overline{p}^{t^{J\iota}}=1 on Int(K)\cap R_{0} . Hence, by setting \mu=\chi^{If}, \nu=0 and s=1
in the Corollary to Theorem 1, we have that \chi^{K}(Int(K))=0 . Thus we
obtain that

\hat{C} (K- Int (K))= \sup\{\mu(K- Int (K));\mu is canonical and \hat{p}^{\mu}\leqq 1\}

\geqq\chi^{K} (K- Int (K))=\chi^{K}(K)=\overline{C}(K)\iota
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