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1. Let p", p* be two Green potentials on a hyperbolic Riemann surface
R. Let G be an open set in R. It is well-known that if p*=p*+5h on G for
some harmonic function & on G, then the restriction of g on G equals the
restriction of v on G. '

In this paper, we shall prove a similar result to the above is also valid
for Kuramochi’s potentails and an open set in the Kuramochi compacti-
fication R} of R (Theorem 1). As applications, we shall prove the followings:
(a) The support of the canonical measure associated with §, for a non-minimal
Kuramochi boundary point & is contained in the closure of the set of all
non-minimal Kuramochi boundary points (Theorem 2). As for a non-minimal
Martin boundary point, T. Ikegami had obtained an analogous result to
(a). (b) Let K be a compact set in Rf =Ry—K, (K, is a closed disk in R)
and C be the Kuramochi capacity on Rf. If we denote by Int(K) the set
of all interior points of K in R{, then we have C(K)=C (K—Int(K))
(Theorem 3). :

2. Let R be a hyperbolic Riemann surface. We shall use the same
notation as in [1], for instance, 9,, 7", f*, R, 4y etc. For a subset A of
R, we denote by dA the relative boundary of A in R and by A the closure
of A in R%. The Kuramochi boundary 4, is decomposed into two mutually
disjoint parts: the minimal part 4, and the non-minimal part 4,. By a
measure g on Ry, we always mean a positive measure sz on Rj such that
#(Ky)=0. For a measure p on Ry, we denote by Sp the support of ¢ and
by p|E the restriction of g on a Borel set E in Ry. If a measure g on
R satisfies p(4,)=0, then it is called canonical. It is known that if g is
a measure on R, then there exists a unique canonical measure v such that
p"=7%". For a closed set F in R and measure ¢ on Ry, we denote by g
the canonical associated measure with 7"7. We note that SpzCF.

*) This was presented at a symposium “Maximum principles in a potential theory” held
at the Research Institute for Mathematical Sciences of Kyoto University, 1971.
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- A subset A of R is called polar if there exists a positive superharmonic
function s on R such that s(a)= + oo at every point @ in A. It is known
that a polar set is locally of Lebesgue measure zero. We shall say that a
property hold ¢-p- on a set E if it holds on E except for a polar set.

The following properties are known ([1]).

(a) Let F be a non-polar closed set in R and f be a Dirichlet function”
on R. If G is a component of R—F, then f¥=f on G.

(b) Let F be a closed set in R. If s is a Dirichlet function on R, s=0

on K, and s is a non-negative full-superharmonic function? on R,, then
Sz = sFUF on R,—F. |
(c) Let b be any point in R,U4;. If F is a closed set in R such that

F is a neighborhood of & in R%, then (7,);=0,.
(d) Let # be a measure on R. If F is a closed set in R, then

([#@dp(®) 5 = [@.)sdp®).

By the aid of (a) and (b), we shall prove

LemMmAa. Let s be a non-negative full-superharmonic function on R,.
If I is a closed subset of R,, then

SF = S;7 on R,—F.

ProorF. We can find an open disk D in R such that K,CcD and
(DU@D)NF=¢. For each integer n>0, we set s,=min(s5=%, 7). Since
s, is bounded and the total mass of the associated measure with s, is finite,

it follows from Satz 17.3 in that s, is a Dirichlet function. Hence it
follows from (a) and (b) that

(Sn)7 = (50)5% on R,—F.
Since s7=5=s on Ry—(DUaD), by letting n—>oo, we obtain that sz=s3 on

R,—F.

3. ProprosiTiON. Let F be a closed subset of R, and p be a canonical
measure on Ry. If we set v=p|R—F and i=p—v, then pp=vp+2i and
Sv,.CF ﬂ:R———F . \ ’

Proor. (i) First we shall prove that Sy,cFNR—F. Since Sv,CF,
it is sufficient to prove that Sv,CR—F. Let & be an arbitrary point of
Ri—R—F. Then there is an open neighborhood U of 4 in R{ such that

1) This is called eine Dirichletsche Funktion in N}
2) This is called eine positive vollsuperharmonische Funktion in
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UNR—F=9. We set G=UNR. Since GNR—F=0, R—G is a neigh-
borhood of each ¥ in R—FNR;. Hence it follows from (c) and (d) that
‘%= =P’ on R,. By the Lemma, we obtain that P'%=¢ = P’% and

~

P¥5~ =P" on G. Since P¥=3" q.p. on F and dGCF, we have

| PPy = P% on R,.
Thus we obtain that
P =Pw=P"%=P"%"% on G.
Since P#3=P"=P"* q.p. on G, we see that
PrEe = Prw =P q.p. on G
This shows that
PrEme =P q.p. on Ry
Hence we have
PV =PF on R

and (ve)g,_¢=vs. Thus ve(U)=0. Since b is arbitrary, we see that
Sv,CR—F. _

(ii) Secondly we shall prove that 1,=21 Let & be an arbitrary point
in Rf —R—F. Then there exists an open neighborhood U of & in R} such
that UNR—F=0. Since UNRCE, F is a nelghborhood of b. Hence it
follows from (c) and (d) that ’=7%" on R,. Thls shows that Az=A. There-
fore we complete the proof.

COROLLARY 1. pp|(Rf—R—F)=p|(Rf—R—F).
CorOLLARY 2 ([3]). If SuNF =0, then Sy is contained in F N R—F.

THEOREM 1. Let p, v be canonical measures on Ry and s be a non-
negative full-superharmonic function on R,. Let G be an open subset of
R% such that K,NG=0. If p'=2"+s on GNR,, then p|G=v|G.

ProoF. We can find an open disk D in R such that K,cD and DNG=
0. Then s%=3 is equal to a potential 7. Hence 3*=%"+3%" on GNR,. Let
b be an arbitrary point in G. Then there is an open neighborhood U of
b in R% such that UcG. If we set F=UNR, (CGNR,), then p"=7p"+ P’
on F. Hence it follows from to Proposition that g|U=(v+2)|U.
Since b is arbitrary, we obtain that p|G=(+2G=v|G. '

COROLLARY. If ss=g=s on R, and p"=P"+s on GNR,, then p|G=
v|G. In particular, if "= on GN Ry, then p|G=v|G. |
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As an application of the above corollary, we shall prove

THEOREM 2. Let b, be an arbitrary point in 4,. If p is the canonical
measure associated with @, , then Sy is contained in 4.

PrROOF. Suppose Sg is not contained in 4,. Then there exists an open
set U in R} such that FN4,=0 and ¢(UN4y)>0. We can find a closed
subset F' of R, such that FN4,=0 and F is a neighborhood of U. Since
b, is contained in R,—F, it follows from the in [3] that there exists
a measure v on R such that SyCFNR—F and (G2)s=P*'<0, on R,. Since
F nZlozw‘,' SvN 4d,=¢. Hence v is canonical. Since ?’=", q.p. on F and
un ROCF, we see that 7*=", =" on UNR,. It follows from the
to [Theorem 1 that y|U=pg|U. Since Sy cFNR—F, SyNU=0. Hence

v(UN4 N) 0. Thls contradicts the assumptlon on p. Therefore we complete
the proof.

4. For a compact set K in R¥, the (Kuramochi) capacity C(K) is
defined by sup {¢#(K); ¢ is canonical and p*<1}. It is known ([1]) that
there exists a unique canonical measure ¥ on K such that f)"kgl, P =1
on K except for an F,-set with capacity zero and C(K)=x*(K).

THEOREM 3. If K is a compact set in R5, then 6(K)=(7(K—Int(K)).

ProoF. Since C(K— Int(K )< C(K), it is sufficient to prove the con-
verse 1nequahty Since p =1 on K except for an F,-set with capacity zero,
we see that 7 =1 on Int(K)NR,. Hence, by setting g=1*, v=0and s=1

in the [Corollary| to [Theorem 1, we have that X*(Int(K))=0. Thus we
obtain that ‘

C (K —Int(K )> = sup {p (K —Int(K )), ¢ is canonical and ;ﬂg 1}

2 1*(K —Int (K)) =2%(K) = C(K).
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