
On f-three-structures
Dedicated to Professor Yoshie Katsurada on her sixtieth birthday
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Recently, differentiable manifolds with three structures of the same kind
have been studied, when the structures have properties somewhat related to
a quaternion structure. For examples, almost contact three-structures and
normal contact three- structur\dot{e}s are studied by Kuo [4], Kuo and Tachibana
[5], Tachibana and Yu [7], Tanno [8] and the present authors [2], and f-
three-structures with complementary frames by Kashiwada [3]. In any of
these cases, when there are given two structures of the same kind with
suitable properties, the third structure can be constructed of the given tw\dot{o}

and be of the same kind_{\backslash } In the present paper, we shall study triples of
f-structures which have not necessarily complementary frames.

\S 1. f \cdot structures.

Let M be a differentiable manifold of dimension n and assume that
there is given in M a tensor field f of type (1, 1) satisfying

(1. 1) f^{3}+f=0

and being of rank r everywhere in M^{*)}. Then we call f an f-structure of
rank r, where r is necessarily even (Yano [9]). If we put

(1. 2) F=f_{\backslash }^{2}+I , L=-f^{2} .
I being the unit tensor field of type (1, 1) in M, then we have

F^{2}--F , L^{2}=L , F+L=I ,(1. 3)
fF=Ff=0 , fL=Lf=f.

Thus the F and L can be considered as projection operators acting on each
tangent space of M and defining \dot{c}omplementory distributions in M. We
denote the distribution defined by F and that defined by L respectively also
by F and L . When f is of rank r, these distributions F and L are of
dimensions n– r and r, respectively.

*) Manifolds and geometric objects we discuss are assumed to be differentiable and of
class C^{\infty} .
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Let \{U;x^{h}\} be a coordinate neighborhood of M with local coordinates
(x^{h}).*) If we take a local base \{f_{y}\} for the distribution F in \{U;x^{h}\} , f_{y}

being for each fixed index y a local vector field in \{U;x^{h}\} , then there are
in \{U;x^{h}\}n-r local covector fields f^{x} such that F= \sum_{x}f^{x}\otimes f_{x} and f^{x}(f_{y})

=\delta_{y}^{x**)}. Then we have by (1. 3)

(1. 4) ff_{y}=0’. f^{x}\circ f=0 ,

where the 1-form f_{x^{\circ}}f is defined by (f^{x}\circ f)(X)=f_{x}(fX) for any vector field
X in M. Thus we have from (1.2), (1.3) and (1.4)

f^{2}=-I+ \sum_{x}f^{x}\otimes f_{x}’. ff_{y}=0 ,
(1. 5)

f^{x_{O}}f=0_{i} f^{x}(f_{y})=\delta_{y}^{x}1

The coframe \{f^{x}\} is said to be dual to the frame \{f_{y}\} with respect to the

f-structure f.
For the given f-structure f of rank r in M, we denote by V_{F}(M) the

set of all tangent vectors belonging to the distribution F. Then V_{F}(M) is

asubbundle of the tangent bundle T(M) over M, where we denote by
p_{F} : V_{F}(M)- M the bundle projection. If we take an arbitrary element
v\in p_{F}^{-1}(U)(\subset V_{F}(M)) and assume that v=\Sigma_{x}v^{x}f_{x} , then we see easily that
the correspondence varrow(x^{7\iota}, v^{x}) defines a system of local coordinates (x^{h}, v^{x})

in p_{F}^{-1}(v, x^{h}) , (x^{h}) being local coordinates of the point P=p_{F}(v) in \{U;x^{h}\} . Let

there be given a linear connection \omega in the vector bundle V_{F}(M) and denote
by \Gamma_{fy}^{x} components of \omega with respect to the local base \{f_{y}\} of V_{J},(M) in
\{U;x^{h}\} . Then, given a cross-section W in V_{F}(M) and a vector field X in

M, the covariant derivative \nabla_{X}W of W with respect to \omega has local expression

\nabla_{X}W=\sum_{x}X^{f}(\frac{\partial W^{x}}{\partial x^{f}}+\sum_{y}\Gamma_{fy}^{x}W^{y})f_{x}

in \{U;x^{h}\} , where W= \sum_{x}W^{x}f_{x} and X=X^{f}\partial/\partial x^{f} in \{U;x^{h}\} . We note that

(\begin{array}{lll}\delta_{i}^{h} \wedge\prime 0-\Gamma_{i}^{x} \delta_{y}^{x}\end{array})=(\begin{array}{ll}\delta_{i}^{h} 0\Gamma_{i}^{x} \delta_{y}^{x}\end{array})

holds. Thus, denoting by f_{i}^{h} , f_{y}^{h} and f_{i}^{x} respectively components of f,f_{y}

and f^{x} in \{U;x^{h}\} , we consider a local tensor field f_{U} of type (1, ^{1}) in p_{F}^{-1}(U)

(\subset V_{F}(M)) with components^{***)}

*) The indices h, i, j, k , l run over the range \{1, 2,\cdots, n\} and the summation conven-
sion will be used with respect to this system of indices.

**) The indices x, y, z, u , v run over the range \{n+1, n+2, \cdots, 2n-r\} .
***) The indices \lambda , \mu , \nu run over the range \{1, 2, \cdots, 2n-r\} .
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(\tilde{f}_{/p}^{\lambda})=(\begin{array}{ll}\delta_{k}^{h} 0-\Gamma_{k}^{x} \delta_{u}^{x}\end{array})(\begin{array}{lll}f_{f} k -f_{v}^{k}f_{f} u 0\end{array})(\begin{array}{ll}\delta_{i}^{f} 0\Gamma_{i}^{v} \delta_{y}^{v}\end{array})

(1. 6)
=(\begin{array}{lll}f_{i}^{hh}-\Gamma_{i}^{y}f_{y}^{h} -f_{y}^{h}f^{x}-f_{i}^{k}j_{k}^{7}x_{\dagger}\Gamma_{i}^{z}f_{z}^{k}\Gamma_{k} x f_{y}^{k}\Gamma_{k}^{x}\end{array})

with respect to local coordinates (\xi^{\lambda})=(x^{h}, v^{x}) in p_{F}^{-1}(U) , \Gamma_{i}^{x} being defined
by \Gamma_{i}^{x}=\sum_{y}\Gamma_{\dot{v}y}^{x}v^{y} , where \xi^{1}=x^{1} , \cdots,\xi^{n}=x^{n}, \xi^{n+1}=v^{n+1}, \cdots , \xi^{2n-r}=v^{2n-r} . Then
it is easily verified that the tensor field f_{U} defined locally in each p_{F}^{-1}(U)

determines a global tensor field \tilde{f} of type (1, 1) in V_{F}(M). Using (1.5) and
(1. 6), we can easily prove that \tilde{f}^{2}=-I, i.e. , that \tilde{f} is an almost complex
structure in V_{f}(M) (Ishihara [1]). When the almost complex structure \tilde{f}

is integrable, we say that the given f-structure f is normd with respect to
the linear connection \omega in the oector bundle V_{P}(M) . The f-structure f is
normal with respect to \omega if and only if

N_{fi}^{h}+ \sum_{x}[(\frac{\partial}{\partial x^{f}}f_{i}^{x}+\sum_{y}\Gamma_{fy}^{x}f_{i}^{y})-(\frac{\partial}{\partial x^{i}}f_{f}^{x}+\sum_{y}\Gamma_{iy}^{x}f_{f}^{y})]f_{x}^{h}=0’.

where N_{ji}^{h} are components of the Nijenhuis tensor of f (Ishihara [1]).
In a manifold M with f-structure f, there is a Riemannian metric \gamma

satisfying
\gamma(fX, fY)+\gamma(FX, Y)=\gamma(X, Y) ,

(1. 7) \gamma(fX, Y)+\gamma(X, fY)=0 , \gamma(FX, Y)-\gamma(X, FY)=0 ,

\gamma(LX, Y)-\gamma(X, LY)=0 , \gamma(fX, FY)=0

for any vector fields X and Y in M. We call such a Riemannian metric
\gamma a Riemannian metric associated with the f-structure f (Yano [9], Yano
and Ishihara [11] ).

\S 2. f-three-structures.
Let there be given two f-structures f and g of the same rank r in a

manifold M of dimension n and put

F=f^{2}+I , G=g+I2\tau

Suppose that f and g satisfy the conditions
(2. 1) GF=FG=0 ,

(2. 2) fGf=gEg ,\cdot

(2. 3) gf+fg=Gfg+gfG .
The conditions (2. 1) and (2. 2) imply
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(2. 4) gfG=Fgf , Gfg=fgF
Thus (2. 3) can be also written as

(2. 5) gf-Gfg=gf-fgF=-fg+gfG=-fg+Fgf.
If we put

(2. 6) h=gf-Gfg ,

then we have
h^{2}+I=(-fg+gfG)(gf-Gfg)+I=-fGf

by virtue of (1. 2), (1. 3), (2. 1) and (2. 2) (use (2. 10) ). Moreover, we find

(2. 7) h^{3}+h=(-gf+fgF)fGf=0j

whi\dot{c}h shows that h is another f-structure in M. On putting

H=h^{2}+I-,

we can easily verify the following equati\dot{o}ns :

(2. 8) GF=FG=0 , HG=GH=0 , FH=HF=0 ;

(2. 9) F=-gHg=-hGhi G=-hFh=-fHf . H=-fGf=-gGg ;

(2. 10) f=hg-Hgh . g=fh-Fhf . h=gf-Gfg
and

f=hg-ghG g=fh-hfH h=gf-fgF
(2. 10)’ =-gh+hgH =-hf+fhF =-fg+gfG

=-gh+Ghg , =-hf+Hfh , =-fg+Fgf .
We see easily from (2.9) that F, G and H are of the same rank n-r. Thus
the new f-structure h is of rank r. A triple (f, g, h) of three f-structures

f, g and h of the same rank r is called an f-three structure of rank r, when
(f, g, h) satisfies the conditions (2. 8), (2. 9) and (2. 10). Thus, summing up,
we have

PROPOSITION 1. If there are given in M two f-structures f and g of
the same rrnk r satisfying (2. 1), (2. 2) and (2. 3), then there exists in M an
f-three-structure (f. g, h) of rank r, where h is defined by (2. 6).

Let there be given in M an f-three-structure (f, g, h) of rank r. If
we take, in each coordinate neighborhood \{U;x^{h}\} of M, a local base \{f_{y}\}

for the distribution F determined by the projection operator F=f^{2}+I and
the local coframe \{f^{x}\} being dual to \{f_{y}\} with respect to f, then we have
F= \sum_{x}f^{x}\otimes f_{x} and hence by (2. 8)
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(2. 11) Gf_{y}=0 , Hf_{y}=0;f^{x}\circ G=0 , f^{x}\circ H=0 ,

where G=g^{2}+I and H=h^{2}+I. Next, putting

(2. 12) h_{y}=gf_{y} , g_{y}=fh_{y} ;

(2. 13) h^{x}=-f^{x}\circ g , g^{x}=-h^{x}\circ f ,

we find by (2. 11), (2. 12) and (2. 13)

(2. 14) f_{y}=hg_{y} , f^{x}=-g^{x}\circ h

and by (2. 9)

(2. 15) F= \sum_{x}f^{ax}\otimes f_{x} , G= \sum_{x}g^{x}\otimes g_{x} , H= \sum_{x}h^{x}\otimes h_{x} ,

which shows that \{g_{y}\} and \{h_{y}\} are in \{U;x^{h}\} local bases for the distribu-
tions determined respectively by the projection operators G and H, and, that
\{g^{x}\} is dual to \{g_{y}\} with respect to g and \{h^{x}\} is dual to \{h_{y}\} with respect
to h. If we take account of (2. 10)\sim (2. 14), we have

f_{y}=hg_{y}=-gh_{y} , g_{y}=fh_{y}=-hf_{y}’. h_{y}=gf_{y}=-fq_{y} ;(2. 16)
f^{x}=h^{x}\circ g=-g^{x}\circ h

,\cdot g^{x}=f^{x}\circ h=-h^{x}\circ f,\cdot h^{x}=g\circ fx=-f^{x}\circ g .
We now denote by p_{F} : V_{F}(M)-arrow M, p_{G} : V_{G}(M)- M and p_{H} : V_{H}(M)arrow M the
vector bundles defined in \S 1 with respect to f, g and h, respectively. In
each coordinate neighborhood \{U;x^{h}\} of M, we take local bases \{f_{y}\} of
V_{F}(M), \{g_{y}\} of V_{G}(M) and \{h_{y}\} of V_{H}(M), satisfying (2. 16). Then we can
define bundle isomorphisms f^{*} : V_{H}(M)->V_{G}(M) , g^{*} : V_{F}(M) - V_{H}(M) and
h^{*}: V_{G}(M)arrow V_{F}(M) respectively by f^{*}(w)=fw, g^{*}(u)=gu , h^{*}(v)=hv for
any u\in V_{F}(M), v\in V_{G}(M) and w\in V_{H}(M) . Moreover we have g^{*}\circ h^{*}=-f^{*} ,
h^{*}\circ f^{*}=-g^{*} , f^{*}\circ g^{*}=-h^{*} .

Let there be given a linear connection \omega_{F} in V_{F}(M) and denote by \omega_{G}

the connection induced in V_{G}(M) by h^{*-1} from \omega_{F} and by \omega_{H} the connec-
tion induced in V_{H}(M) by g^{*} from \omega_{F} . Thus, if \omega_{F} has components \Gamma_{fy}^{x}

with respect to \{f_{y}\} , then \omega_{G} and \omega_{H} have the same components \Gamma_{fy}^{x} with
respect to \{g_{y}\} and \{h_{y}\} , respectively. We denote by \tilde{f} the almost complex
structure in V_{F}(M) constructed from f and \omega_{P^{7}} by (1. 6), by \tilde{\sigma}’ the one in
V_{G}(M) constructed from g and \omega_{G} and by \hat{\check{h}}’ the one in V_{H}(M) constructed
from h and \omega_{H} . If we denote by\tilde{.q} and h\sim respectively the almost complex
structures (dh^{*})\circ\tilde{\sigma}’\circ(dh^{*})^{-1} and (dg)^{-1}*\circ\tilde{h}’\circ(dg)* in V_{F}(M), then we have three
almost complex structures \tilde{J^{\cdot}}, \subset/\sim and \tilde{h} in V_{F}(M) . With respect to local
coordinates (\Xi’\backslash )=(x^{h}, v^{h}), they have local components
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(f_{\mu}^{\lambda})= (\begin{array}{ll}\delta_{k}^{h} 0-\Gamma_{k}^{x} \delta_{u}^{x}\end{array})(\begin{array}{lll}f_{j} k -f_{v}^{k}f_{j} u 0\end{array})(\begin{array}{ll}\delta_{i}^{f} 0\Gamma_{i}^{v} \delta_{y}^{v}\end{array}),\cdot

(2. 17) (\tilde{\sigma}_{\mu}^{\lambda})=(\begin{array}{ll}\delta_{k}^{h} 0-\Gamma_{k}^{x} \delta_{u}^{x}\end{array})(\begin{array}{ll}q_{j}^{k} -g_{v}^{k}g_{f}^{u} 0\end{array})(\begin{array}{ll}\delta_{i}^{j} 0\Gamma_{i}^{v} \delta_{y}^{v}\end{array})

j

(\tilde{h}_{\rho}^{\lambda})=(\begin{array}{ll}\delta_{k}^{h} 0-\Gamma_{k}^{x} \delta_{u}^{x}\end{array})(\begin{array}{llll}h_{j} k -h^{k} vh_{j}^{u} 0 \end{array})(\begin{array}{ll}\delta_{i}^{j} 0\Gamma_{i}^{v} \delta_{y}^{v}\end{array}) ,

where f_{f}^{h} , f_{y}^{h} , f_{j}^{x} ; g_{f}^{\prime\iota} , g_{y}^{h} , g_{f}^{x} ; h_{j}^{\prime\iota} , h_{y}^{h} , h_{f}^{x} are local components of f, f_{v} , f_{x} ;
g, g_{y} , g^{x} ; h, h_{y} , h^{x} in \{U;x^{h}\} , respectively. On the other hand, using (2. 15)
and (2. 16), we find

Gfg=( \sum_{x}g^{x}\otimes g_{x})fg=\sum_{x}((g^{x}\circ f)\circ g)\otimes g_{x}=(\sum_{x}(h^{x}\circ g)\otimes g_{x}=\sum_{x}f^{x}\otimes g_{x}

and other similar equations. Thus, taking account of (2. 10), (2.16) and
(2. 17), we have \tilde{\sigma}\tilde{f}=-\tilde{f}\cdot\tilde{\sigma}=\tilde{h} . By similar devices, we have

\tilde{J}=\overline{h}\tilde{v}=-\tilde{\sigma}\tilde{h} , .\tilde{q}=\tilde{f}\tilde{h}---\tilde{h}\tilde{f}.\tilde{h}=.\tilde{\sigma}\tilde{f}=-\tilde{f}\tilde{(J} ,

which means that the triple (\tilde{f},\tilde{r\cdot},\tilde{h}) of almost complex structures is an
almost quaternion structure. Summing up, we have

PROPOSITION 2. Let a manifold M admit an f-three-structure (f, g, h)

of rank r. Then there exists, in the vector bundle V_{J},(M) determined by
projection operator F=f^{2}+I , an almost quaternion ftructure (\tilde{f},\tilde{\prime}.,\hat{h}) with
compmmts (2.17), if a linear connection \omega_{1^{i}} is given in V_{f}(M) .

Let there be given in M an f-three-structure (f, g, h) and a linear con-
nection \omega_{F} in the vector bundle V_{F}(M) . Suppose that the two f-structures

f and g are normal with respect to \omega_{F} and \omega_{G} , where \omega_{G} is the connection
induced in V_{G}(M) by h^{*-1} from \omega_{F} . Then, by definition, the almost com-
plex structures \tilde{f}and\tilde{\subset 1}’ are integrable in V_{F}(M) and in V_{G}(M), respectively.
That is, the two almost complex structures \tilde{f}and.\tilde{q}=(dh^{*})\circ\tilde{.}q’\circ(dh^{*})1 are
both integrable in V_{F}(M) . Hence, by virtue of a well-known theorem (cf.
Obata [6], Yano and Ako [1C] ), the third almost complex structure \tilde{h} is, also
integrable in V_{F}(M) . Consequently, the almost complex structure \tilde{h}’=

(dg^{*})\circ\tilde{h}\circ(dg)^{-1}* is integrable in V_{H}(M), which shows that the third f-structure
h is normal with respect to the induced connection \omega_{H} . Thus we have

PROPOSITION 3. Let a manifold M admit an f-three-structure of rank
r and suppose that there is given a linear connection \omega_{I} in V_{F}(M) . If the

f-structures f and g are normal respectively with respect to \omega_{F} and \omega_{G} ,
where \omega_{G} is the linear connection induced in V_{\theta}(M) by h^{*- 1} from \omega_{P’} , then
the third f-structure h defined by (2. 6) is also normal with respect to the
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linear connection \omega_{H} induced in V_{H}(M) by g^{*}from \omega_{f} ,.

Let (f, g, h) be an f-three-structure in M and a a Riemannian metric
associated with the f-structure f in M. On putting M=g2 and N=h^{2}, we
define in M Riemannian metrics b and c succesively by

b(X, Y)=a(MX, MY)+a(GX, GY),\cdot

c(X, Y)=b(NX, NY)+b(HX, HY) ,

X and Y being arbitrary vector fields in M. If we put

\gamma(X, Y)=c(X, Y)+c(fX, fY)+c(gX, gY)+c(hX, hY)

+c(FX, FY)+c(GX, GY)+c(HX, HY) .
X and Y being arbitrary vector fields in M, then we have a Riemannian
metric \gamma in M. We can verify that this Riemannian metric \gamma is associated
with all of the f-structures f, g and h. Such a Riemannian metric \gamma is said
to be associated with the f-three-structure (f, g, h).

\S 3. Reduction of the structure group of the tangent bundle.
Let there be given an f-three-structure (f, g, h) of rank r in a manifold

of dimension n and take a Riemannian metric \gamma associated with (f, g, h).
Then we have

\gamma(fX,fY)+\gamma(FX, Y)=\mathcal{T}(X, Y) , \gamma(fX, FY)=0 ;
(3. 1) \gamma(gX, gY)+\gamma(GX, Y)=\gamma(X, Y)j \gamma(gX, GY)=0 ;

\gamma(hX, hY)+\gamma(HX, Y)=\gamma(X, Y) , \gamma(hX, HY)=0

and

\gamma(fX, Y)+\gamma(X, fY)=0j \gamma(FX, Y)=\mathcal{T}(X, FY) ;
(3. 2) \gamma(gX, Y)+\gamma(X, gY)=0 , \gamma(GX, Y)=T(X, GY) ;

\gamma(hX, Y)+\gamma(X, hY)=0 , \gamma(HX, Y)=\gamma(X, HY)

for any vector fields X and Y in M. Using(2.10)and(3. 1), we see that,
for each point P of \Lambda f, three subspaces F(T_{P}(M)) , G(T_{P}(M)) and H(T_{P}(M))

are orthogonal to each other, where T_{P}(M) is the tangent space of M at
P. Thus we can decompose the tangent space T_{P}(M) in such away that

T_{P}(M)=W_{P}\oplus F(T_{P}(M))\oplus G(T_{P}(M))\oplus H(T_{P}(M)) (direct sum),

where W_{P} is the orthogonal complement of F(T_{P}(M))\oplus G(T_{P}(M))\oplus H(T_{P}(M))

in T_{P}(M) with respect to the Riemannian metric \gamma . If we take account of
(2. 14), we have
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(hg)X=-(gh)X=fX,\cdot (fh)X=-(hf)X=gX , (gf)X=-(fg)X=hX

for any vector X belonging to W_{P} . Therefore, there are orthonormal
vectors X_{1} , \cdots , X_{s} in W_{P} such that {X_{1} , \cdots , X_{s} ; fX_{1} , \cdots,fX_{s} ; gX_{1} , \cdots , gX_{s} ;
hX_{1} , \cdots , hX_{s}\} is an orthonormal base in W_{P}, where 4s=3r-2n. If we
take an othonormal base \{f_{y}\} in F(T_{P}(M)) , then, using (2. 16) and (3. 1), we
see that \{g_{y}\} and \{h_{y}\} are orthonormal bases respectively in G(T_{P}(M)) and
in H(T_{P})(M) , where g_{y} and h_{y} are defined by (2. 16). Thus we have in
T_{P}(M) an orthonormal base {X_{1} , \cdots , X_{s} ; fX_{1} , \cdots,fX_{S} ; gX_{1} , \cdots , gX_{s} ; hX_{1} ,
\ldots , hX_{s} ; f_{1} , \cdots,f_{n- r} ; g_{1} , \cdots , g_{n-r} ; h_{1} , \cdots , h_{n-r}}, which is called a frame adapted
to the f-three-structure (f, g, h) and \gamma . Therefore, if we take a point P of
M two frames adapted to (f, g, h) and \gamma , the transformation of these two
frames is expressed by an orthogonal matrix T of the form

(3. 3) T=

A\uparrow O \backslash |

||||OOB’
\backslash

where A\in S_{P}(s)(4s=3r-2n) and B\in O(n-r) . Thus we have
PROPOSITION 4. A necessary and sufficimt condition for a manifold

M of dimmsion n to admit an f-three-structure of rank r is that the struc-
ture group of the tangent bundle T(M) over M is reducible to the group
S_{P}(s)\cross O(n-r) consisting of all matrices of the form (3. 3), where 4s=3r-2n.
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